Aggregate Fluctuations from Clustered Micro Shocks

Daisoon Kim North Carolina State University

ASSA 2022 Annual Meeting: January 7-9, 2022

Where do business cycle fluctuations come from?

When can micro shocks generate macro fluctuations?

granular origins: fat tail distribution leads non-diversification

clustered origins: cross-firm correlated idiosyncratic factors

Even if most business cycle research does ignored the cross-firm pairwise correlations, idiosyncratic co-movements potentially lead to macro fluctuations.

Correlated idiosyncratic factors and macro fluctuations

A simple example with identical variance-covariance

Aggregate fluctuations with identical variance and covariance

Notation, notes, and remarks:

- ht Herfindahl Hirschman Index,
- $\sigma_{{
 m A},t}^2$ and $\sigma_{{
 m F},t}^2~$ firm *i*'s variance of true common and idiosyncratic factor,
 - $ho_{{
 m F},t}$ correlation b/w firms i and i''s true idiosyncratic factors,

$$\begin{split} [\sum_{i'} w_{i't}^2]^{1/2} &\in [N_t^{-1/2}, 1] \\ \mathsf{var}(\varepsilon_{\mathrm{A},t}) \text{ and } \mathsf{var}(\varepsilon_{\mathrm{F},it}) \\ & \mathsf{corr}(\varepsilon_{\mathrm{F},it}, \varepsilon_{\mathrm{F},i't}) \end{split}$$

Why and when can we ignore pairwise correlation?

Fluctuations: true vs pseudo factors

The identical variance and covariance across firms imply

- $\operatorname{corr}(e_{A,t}, e_{F,it}) = 0$ and $\operatorname{corr}(e_{F,it}, e_{F,i't}) \approx 0$ for $i \neq i'$.
- business cycle studies with pseudo variables are OK (well-defined) where dependency does not matter.

The heterogeneous variance and covariance across firms imply

- $\operatorname{corr}(e_{A,t}, e_{F,it}) \neq 0$ and $\operatorname{corr}(e_{F,it}, e_{F,i't}) \neq 0$ is disconnected to $\operatorname{corr}(\varepsilon_{F,it}, \varepsilon_{F,i't})$.
- business cycle studies with pseudo variables are spurious and not well-defined.

Sample pairwise correlations: true vs pseudo idiosyncratic factors

pseudo idiosyncratic factors ignore true factors' pairwise correlations

Notation, notes, and remarks:

▶ 3,000 simulations, 50 periods, 5,000 firms, S.D. of $\varepsilon_{F,it}$ is 12%.

Simulations (2/4)

Aggregate fluctuations: $N_t^{-1} \sum \varepsilon_{\mathrm{F},it}$ and $N_t^{-1} \sum e_{\mathrm{F},it}$

▶ 2.5% pairwisely correlation ⇒ notable aggregate fluctuations

Notation, notes, and remarks:

• Here, we ignored the common factor. 50 periods, 5,000 firms, S.D. of $\varepsilon_{A,t}$ is 12%.

Simulation (3/4): with unequal size distributions

► 2.5% pairwisely correlation + fat-tailed size distribution ⇒ aggregate fluctuations

Notation, notes, and remarks:

• Here, we ignored the common factor. 50 periods, 5,000 firms, S.D. of $\varepsilon_{A,t}$ is 12%.

Simulations (4/4)

Aggregate volatility: S.D. of $N_t^{-1} \sum \varepsilon_{\mathrm{F},it}$ and $\sum w_{it} \varepsilon_{\mathrm{F},it}$

▶ 2.5% pairwisely correlation + fat-tailed size distribution ⇒ aggregate fluctuations

Notation, notes, and remarks:

Here, we ignored the common factor. 3,000 simulations, 50 periods, 5,000 firms, S.D. of ε_{A,t} is 12%.

This paper provides the micro-foundations for (aggregate) business cycle fluctuations.

- cluster origins (dependency within an industry)
 - ► idiosyncratic shocks are correlated across firms
 - variance and pairwise covariance differ across firms

I need to identify true factors ($\varepsilon_{A,t}$ and $\varepsilon_{F,it}$) from observation (\hat{y}_{it})... maybe challenging...

I compute the upper- and lower-bounds of granular and clustered origins instead of estimating point values. This approach

- ► relies on some statistical facts rather than additional assumptions and/or information.
- avoids misspecification issues.

This paper finds

Clustered and granular origins:

The clustered origins explain 1) the great moderation and 2) the recent increase in the US business cycle volatility.

- Compustat Annual Fundamentals North America database 1976–2018
- Aggregate and industrial GDPs and deflators are from Bureau of Economic Analysis.

Related literature

GDP volatility - related to origins:

Stock and Watson (2002); Comin and Philippon (2005); Comin and Mulani (2006); Davis, Haltiwanger, Jarmin, Miranda, Foote and Nagypal (2006); Carvalho and Gabaix (2013)

Granularity:

- Jovanovic (1987); Gabaix (2011); di Givonanni and Levchenko (2012); Carvalho and Gabaix (2013); Bremus, Buch, Russ and Schnitzer (2018); Gaubert and Itoskhoki (2018)
- Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi (2012); Carvalho (2014); Oberfield (2018); Herskovic, Kelly, Lustig and Van Nieuwerburgh (2020)

Dependency:

- Long and Plosser (1983); Horvath (1998); Dupor (1999); Foerster, Sarte and Watson (2011); Atalay (2017)
- Oberfield (2018); Schaal and Taschereau-Dumouchel (2018); Mullen (2020); Fiori and Scoccianti (2021)

Heterogeneous firm volatility:

Stanley, Amaral, Buldyrev, Havlin, Leschhorn, Maass, Salinger and Stanley (1996); Xu and Malkiel (2003); Comin and Philippon (2005); Comin and Mulani (2006); Chun, Kim, Morck and Yeung (2008); Castro, Clementi and Lee (2015); Tweedle (2018)

Theoretical motivation and key concepts

Origins of business cycle fluctuations

Aggregate fluctuations

Origins of business cycle fluctuations (2/2)

Aggregate fluctuations with identical variance and covariance

► Lucas (1977)'s diversification argument: idiosyncratic shocks average out : it only holds when i) $h_t \rightarrow 0$ as $N_t \rightarrow \infty$ and ii) $\rho_{F,t} = 0$

Notation, notes, and remarks:

- ht Herfindahl Hirschman Index,
- $\sigma^2_{\hat{Y},t}$ $\;$ variance of aggregate business cycles,
- $\sigma_{{\rm A},t}^2$ and $\sigma_{{\rm F},t}^2~~{\rm firm}~i{\rm 's}$ variance of true common and idiosyncratic factor,
 - $ho_{{
 m F},t}~~$ correlation b/w firms i and $i^{\prime \prime}$'s true idiosyncratic factors,

$$\begin{split} [\sum_{i'} w_{i't}^2]^{1/2} &\in [N_t^{-1/2}, 1] \\ & \mathsf{var}(\hat{Y}_t) \\ \mathsf{var}(\varepsilon_{\mathrm{A},t}) \text{ and } \mathsf{var}(\varepsilon_{\mathrm{F},it}) \\ & \mathsf{corr}(\varepsilon_{\mathrm{F},it}, \varepsilon_{\mathrm{F},i't}) \end{split}$$

Are clustered origins non-negligible?: A simple example

Size of clustered origins relative to granular origins (with identical variance-covariance)

$$\frac{\chi_t}{\Gamma_t} = \frac{(1-h_t^2)\rho_{\mathrm{F},t}\sigma_{\mathrm{F},t}^2}{h_t^2\sigma_{\mathrm{F},t}^2} = \left(\frac{1}{h_t^2} - 1\right)\rho_{\mathrm{F},t}$$

• With $h_t = 0.12$ as in Gabaix (2011)'s example

•
$$\rho_{\mathrm{F},t} \in [0.01, \ 0.05]$$
 implies $\chi_t \in \Gamma_t \times [0.68, \ 3.42]$

Why has the predominant research long ignored pairwise correlation across firms?

Notation, notes, and remarks:

- ht Herfindahl Hirschman Index,
- $\sigma_{\mathrm{F},t}^2$ variance of true firm *i*'s idiosyncratic factor,
- $ho_{{
 m F},t}$ correlation b/w firms i and i''s true idiosyncratic factors,

$$\begin{split} [\sum_{i'} w_{i't}^2]^{1/2} &\in [N_t^{-1/2}, 1] \\ & \operatorname{var}(\varepsilon_{\mathrm{F}, it}) \\ & \operatorname{corr}(\varepsilon_{\mathrm{F}, it}, \varepsilon_{\mathrm{F}, i't}) \end{split}$$

The Framework with pseudo variables

- ► Homogeneous variance-covariance
- ► Heterogeneous variance-covariance
- Evidence from the US public firms

Pseudo factors and spurious relations

True vs Pseudo common and idiosyncratic factors

- True of common and idiosyncratic factors are not directly observable
- ► Many studies use the pseudo factors; the sample mean and the deviation from it.
- Spurious relations

$$\mathsf{var}(e_{\mathrm{A},t}) \approx \sigma_{\mathrm{A},t}^2 + \rho_{\mathrm{F},t}\sigma_{\mathrm{F},t}^2 \quad \text{and} \quad \mathsf{var}(e_{\mathrm{F},it}) \approx \sigma_{\mathrm{F},t}^2 - \rho_{\mathrm{F},t}\sigma_{\mathrm{F},t}^2$$

Systemically over- or under-estimated volatility of factors

- $e_{\mathrm{A},t}$ pseudo common factor,
- $e_{{
 m F},it}$ pseudo idiosyncratic factor,

$$\begin{split} e_{\mathbf{A},t} &= N_t^{-1} \sum_{i'} \hat{y}_{i't} = \varepsilon_{\mathbf{A},t} + N_t^{-1} \sum_{i'} \varepsilon_{\mathbf{F},i't} \\ e_{\mathbf{F},it} &= \hat{y}_{it} - e_{\mathbf{A},t} = \varepsilon_{\mathbf{F},it} - N_t^{-1} \sum_{i'} \varepsilon_{\mathbf{F},i't} \end{split}$$

Properties of homogeneous variance and covariance

Proposition 1

Consider a cluster where firms have identical standard deviation and pairwise correlation of idiosyncratic shocks; $\sigma_{F,t} > 0$ and $\rho_{F,t} \in (-1,1)$. Then, the cross-sectional sample mean and the deviations from it have the following correlations. For $\forall i \neq i'$,

$$\operatorname{corr}(e_{\mathrm{A},t}, e_{\mathrm{F},it}) = 0$$

 $\operatorname{corr}(e_{\mathrm{F},it}, e_{\mathrm{F},i't}) = -(N_t - 1)^{-1}.$

- Spurious but well-defined!
 - Pseudo common and idiosyncratic factors are orthogonal
 - ► Pseudo idiosyncratic factors are asymptotically orthogonal to each other
 - : true dependency does not matter for the pseudo dependency

- Note that these results do not hold when I use the weighted mean.

Irrelevance of correlated pseudo idiosyncratic factors

Corollary 1

The variance of aggregate fluctuations can be decomposed into the pseudo common and idiosyncratic shocks' variances asymptotically.

$$\sigma_{\hat{Y},t}^2 = \mathsf{var}(e_{\mathrm{A},t}) + h_t^2 \mathsf{var}(e_{\mathrm{F},it}) - \left(\frac{1 - h_t^2}{N_t - 1}\right) \mathsf{var}(e_{\mathrm{F},it})$$

we can use the pseudo factors where clustered origins (dependency) do not matter asymptotically.

- $\blacktriangleright \quad \mathsf{cov}(e_{\mathrm{F},it},e_{\mathrm{A},t}) = 0$
- $\operatorname{cov}(e_{\mathrm{F},it},e_{\mathrm{F},i't}) = -(N_t-1)^{-1}\operatorname{var}(e_{\mathrm{F},it})$

The Framework with pseudo variables

- ► Homogeneous variance-covariance
- ► Heterogeneous variance-covariance

Properties of homogeneous variance and covariance

Proposition 2

Consider a cluster where idiosyncratic shocks' standard deviation and pairwise correlation are different across firms. Then, the covariance between the cross-sectional sample mean and firm *i*'s deviation from it is non-zero in general.

$$\begin{aligned} \mathsf{cov}(e_{\mathrm{A},t}, e_{\mathrm{F},it}) &= \frac{1}{N_t} \bigg[\sigma_{\mathrm{F},it}^2 - \frac{1}{N_t} \sum_{i'} \sigma_{\mathrm{F},i't}^2 \bigg] \\ &+ \bigg[\frac{1}{N_t} \sum_{i' \neq i} \rho_{\mathrm{F},ii't} \sigma_{\mathrm{F},it} \sigma_{\mathrm{F},i't} - \frac{1}{N_t} \sum_{i'} \frac{1}{N_t} \sum_{i'' \neq i'} \rho_{\mathrm{F},i'i''t} \sigma_{\mathrm{F},i't} \sigma_{\mathrm{F},i''t} \bigg] \end{aligned}$$

- not well-defined
 - pseudo common and idiosyncratic factors are correlated
 - pseudo idiosyncratic factors are correlated to each other
- ► We need to recover true idiosyncratic factors' volatility and dependency.

Are variance and covariance heterogeneous? (1/2)

Evidence on heterogeneous variance and covariance of true idiosyncratic factor

► homogeneous variance: identical $var(\hat{y}_{it})$ across firms

$$\mathsf{var}(\hat{y}_{it}) = \sigma_{\mathrm{A},t}^2 + \sigma_{\mathrm{F},it}^2$$

► homogeneous covariance: identical $cov(\hat{y}_{it}, \hat{y}_{i't})$ across firms

$$\operatorname{cov}(\hat{y}_{it}, \hat{y}_{i't}) = \sigma_{\mathrm{A},t}^2 + \rho_{\mathrm{F},ii't}\sigma_{\mathrm{F},it}\sigma_{\mathrm{F},i't}$$

\hat{y}_{it}	firm's fluctuations,	$=\varepsilon_{\mathrm{F},it}+\varepsilon_{\mathrm{A},t}=e_{\mathrm{F},it}+e_{\mathrm{A},t}$
$\sigma_{\mathrm{A},t}^2$	variance of true common factor,	$var(\varepsilon_{\mathrm{A},t})$
$\sigma_{{\rm F},it}^2$	firm <i>i</i> 's variance of true idiosyncratic factor,	$var(\varepsilon_{\mathrm{F},it})$
$\rho_{\mathrm{F},ii't}$	correlation of true idiosyncratic factor b/w firms i and i' ,	$corr(\varepsilon_{\mathrm{F},it},\varepsilon_{\mathrm{F},i't})$

Are variance and covariance heterogeneous? Yes! (2/2)

Evidence on heterogeneous variance and covariance of true idiosyncratic factor

Notation, notes, and remarks:

Source: Compustat Annual Fundamentals North America database 1976–2018

▶ details

In each t, I calculate a firm's standard deviation and correlations of labor productivity in [t − 4, t + 5]. I report the statistics after demeaning within industry in each year.

Origins of aggregate fluctuations

Empirical Strategy

► The evolution of micro origins in the US

Origins of industrial fluctuations

Industry (cluster) s fluctuations: $\hat{Y}_{st} = \sum_{i \in I_{st}} w_{sit} \hat{y}_{it}$ where $\hat{y}_{it} = \varepsilon_{A,st} + \varepsilon_{F,it}$

- hst Herfindahl Hirschman Index in industry s,
- w_{sit} share of firm *i* in industry *s*,

$$[\sum_{i \in I_{st}} w_{st}^2]^{1/2} \in [N_{st}^{-1/2}, 1]$$
 size weight

Origins of industrial fluctuations

Industry (cluster) *s* fluctuations: $\hat{Y}_{st} = \sum_{i \in I_{st}} w_{sit} \hat{y}_{it}$ where $\hat{y}_{it} = \varepsilon_{A,st} + \varepsilon_{F,it}$

$$\sigma_{\hat{Y},st}^{2} = \sigma_{A,st}^{2} + \sum_{i \in I_{st}} w_{sit}^{2} \sigma_{F,it}^{2} + \sum_{i \in I_{st}} w_{sit}^{2} w_{sit}^{2} \sigma_{F,it}^{2} + \sum_{i,i' \in I_{st}} w_{sit} w_{si't} \rho_{F,ii't} \sigma_{F,it'} \sigma_{F,it'}$$

$$= \sigma_{A,st}^{2} + \sum_{i \in I_{st}} w_{sit}^{2} var(\hat{y}_{it}) - h_{st}^{2} \sigma_{A,st}^{2} + \sum_{i,i' \in I_{st}} w_{sit} w_{si't} cov(\hat{y}_{it}, \hat{y}_{i't}) - (1 - h_{st}^{2}) \sigma_{A,st}^{2}$$

$$= granular origins : \Gamma_{st} + \sum_{i' \neq i} cluster origins : \chi_{st}$$

- h_{st} Herfindahl Hirschman Index in cluster s,
- w_{sit} share of firm *i* in cluster *s*,

$$\label{eq:star} [\sum_{i \in I_{st}} w_{st}^2]^{1/2} \in [N_{st}^{-1/2}, 1]$$
 size weight

How to identify a range of common factor

Proposition 3

In a cluster, the common shocks' variance should not be larger than $\sigma_{A,st}^{*2}$.

$$0 \le \sigma_{\mathbf{A},st}^2 \le \sigma_{\mathbf{A},st}^{*2} = \min_{i,i' \in I_{st}} \left\{ \mathsf{var}(\hat{y}_{it}), \ \left[1 + \mathsf{corr}(\hat{y}_{it}, \hat{y}_{i't}) \right] \mathsf{sd}(\hat{y}_{it}) \mathsf{sd}(\hat{y}_{i't}) \right\}$$

• $\operatorname{var}(\hat{y}_{it}) = \sigma_{\mathrm{A},st}^2 + \sigma_{\mathrm{F},it}^2$: since variance is non-negative,

$$\operatorname{var}(\hat{y}_{it}) \geq \sigma_{\mathrm{A},st}^2$$
 and $\operatorname{var}(\hat{y}_{it}) \geq \sigma_{\mathrm{F},it}^2$

► $\operatorname{cov}(\hat{y}_{it}, \hat{y}_{i't}) = \sigma_{A,st}^2 + \rho_{F,ii't}\sigma_{F,it}\sigma_{F,i't}$: since correlation is b/w -1 and 1,

$$\operatorname{cov}(\hat{y}_{it}, \hat{y}_{i't}) \geq \sigma_{\mathrm{A}, st}^2 - \sigma_{\mathrm{F}, it} \sigma_{\mathrm{F}, i't} \geq \sigma_{\mathrm{A}, st}^2 - \operatorname{sd}(\hat{y}_{it}) \operatorname{sd}(\hat{y}_{i't})$$

Notation, notes, and remarks:

- $\sigma_{A,st}^2$ variance of true common factor in cluster s,
- $\sigma_{{
 m F},it}^2$ firm *i*'s variance of true idiosyncratic factor,

 $ho_{\mathrm{F},ii't}$ correlation of true idiosyncratic factor b/w firms i and i',

 $\begin{array}{c} \mathsf{var}(\varepsilon_{\mathrm{A},t})\\\\ \mathsf{var}(\varepsilon_{\mathrm{F},it})\\\\ \mathsf{corr}(\varepsilon_{\mathrm{F},it},\varepsilon_{\mathrm{F},i't}) \end{array}$

How to identify granular and cluster origins

Corollary 2
The clustered and granular origins are bounded as follows.

$$\sum_{\substack{i,i' \in I_{st} \\ i' \neq i}} w_{sit} w_{si't} \operatorname{cov}(\hat{y}_{it}, \hat{y}_{i't}) - (1 - h_{st}^2) \sigma_{A,st}^{*2} \le \chi_{st} \le \sum_{\substack{i,i' \in I_{st} \\ i' \neq i}} w_{sit} w_{si't} \operatorname{cov}(\hat{y}_{it}, \hat{y}_{i't})$$

$$\sum_{i \in I_{st}} w_{sit}^2 \operatorname{var}(\hat{y}_{it}) - h_{st}^2 \sigma_{A,st}^{*2} \le \Gamma_{st} \le \sum_{i \in I_{st}} w_{sit}^2 \operatorname{var}(\hat{y}_{it})$$

- χ_{st} cluster origins,
- Γ_{st} granular origins,
- *h*_{st} Herfindahl Hirschman Index in cluster s,
- w_{sit} share of firm *i* in cluster *s*,
- $\sigma^{*2}_{A,st}$ upper bound of variance of true common factor in cluster s

$$\begin{split} \sum_{i \in I_{st}} w_{sit} \sum_{i' \in I_{st} \setminus \{i\}} w_{si't} \rho_{\mathrm{F},ii't} \sigma_{\mathrm{F},it'} \\ \sigma_{\mathrm{A},st}^2 + \sum_{i \in I_{st}} w_{sit}^2 \sigma_{\mathrm{F},it}^2 \\ [\sum_{i \in I_{st}} w_{st}^2]^{1/2} \in [N_{st}^{-1/2}, 1] \\ \text{size weight} \end{split}$$

Origins of macroeconomic fluctuations

Macro fluctuations:
$$\widehat{\text{GDP}}_t = d_t \sum_{i \in I_t} w_{it} \hat{y}_{it} = d_t \sum_{s \in S} w_{st} \hat{Y}_{st}$$

$$\operatorname{var}(\widehat{\operatorname{GDP}}_{t}) = d_{t}^{2} \bigg[\sum_{s \in S} w_{st}^{2} \sigma_{\hat{Y},st}^{2} + \sum_{\substack{s,s' \in S \\ s \neq s'}} w_{st} w_{s't} \operatorname{cov}(\hat{Y}_{st}, \hat{Y}_{s't}) \bigg] = d_{t}^{2} \sum_{s \in S} w_{st}^{2} \bigg[\underbrace{\sigma_{A,st}^{2}}_{\operatorname{macro}} + \underbrace{\Gamma_{st}}_{\operatorname{granular}} + \underbrace{\chi_{st}}_{\operatorname{cluster}} \bigg] + \operatorname{BIO}_{t}$$

Domar weights — Domar (1961); Hulten (1978)

$$\widehat{\mathrm{GDP}}_{t} = \sum_{i \in I_{t}} \underbrace{\frac{\mathrm{sales}_{it-1}}{\mathrm{GDP}_{t-1}}}_{\mathsf{Domar weight}} \hat{y}_{it} = \left(\underbrace{\frac{\sum_{i' \in I_{t}} \mathrm{sales}_{it-1}}{\mathrm{GDP}_{t-1}}}_{\mathsf{Domar adjustment: } d_{t}}\right) \sum_{s \in S} w_{st} \sum_{i \in I_{st}} w_{it} \hat{y}_{it}$$

Notation, notes, and remarks:

 $\begin{array}{ll} w_{it} \text{ and } w_{sit} & \text{share of firm } i \text{ in total and in cluster } s, & \text{size weight} \\ w_{st} & \text{share of cluster } s \text{ in total}, & w_{it} = w_{st} w_{sit} \\ \text{BIO}_t & \text{between-industry origins,} \\ \text{BIO}_t = d_t^2 \sum_{\substack{s,s' \in S \\ s \neq s'}} w_{st} w_{s't} \left[\text{cov}(\varepsilon_{\text{A},st}, \varepsilon_{\text{A},s't}) + \sum_{\substack{i \in I_{st} \\ i' \in I_{s't}}} w_{sit} w_{si't} \text{cov}(\varepsilon_{\text{F},it}, \varepsilon_{\text{F},i't}) \right] \end{array}$

Origins of aggregate fluctuations

- Empirical Strategy
- ► The evolution of micro origins in the US

Data and measurements

Sales and employments, \mathtt{sale}_{it} and , \mathtt{emp}_{it}

▶ from Compustat North America: Fundamental Annuals (1975–2018)

Industry-level deflators, p_{st}

- from the US Bureau of Economic Analysis
- Chain-Type Price Indexes for Gross Output by Industry [2012=100]

Logged labor productivity and its business cycle components: y_{it} and \hat{y}_{it}

▶ $y_{it} = \ln \mathtt{sale}_{it} - \ln \mathtt{p}_{st} - \ln \mathtt{emp}_{it}$

alternatively, logged real sales $y_{it} = \ln \mathtt{sale}_{it} - \ln \mathtt{p}_{st}$

► its business cycle components are from

$$\hat{y}_{it} = y_{it} - \beta_s y_{it-1} - \psi_s^{\mathsf{age}} \times \ln \mathsf{age}_t - \psi_s^{\mathsf{emp}} \times \ln \mathsf{emp}_t - \psi_s^{\mathsf{time}} \times t - \delta_i$$

alternatively, the growth rates (log-difference)

Results: Origins of macroeconomic fluctuations (1/3)

Clustered and granular origins:

- Compustat Annual Fundamentals North America database 1976–2018
- Aggregate and industrial GDP and deflators are from Bureau of Economic Analysis.
- ► 53 clusters (industries).

Results: Origins of macroeconomic fluctuations (2/3)

Ratio of clustered and granular origins to GDP volatility:

- Compustat Annual Fundamentals North America database 1976–2018
- Aggregate and industrial GDP and deflators are from Bureau of Economic Analysis.
- ► 53 clusters (industries).

Robustness check

- ► with vs. without Domar adjustment
- business cycle component vs. growth rate of labor productivity
- ► labor productivity vs. firm (real) sales

I introduce cross-firm idiosyncratic shocks

Demeaned (pseudo) productivities misrepresent cross-firm dependency when their productivities' variance-covariance is heterogeneous

Revisit micro origins of aggregate fluctuations

- Clustered micro shocks are important.
- ► Granularity is still important.
- Recently, I observed the rise of micro origins.

Thank you!

References

- ACEMOGLU, DARON, VASCO M. CARVALHO, ASUMAN OZDAGLAR, AND ALIREZA TAHBAZ-SALEHI (2012) "The Network Origins of Aggregate Fluctuations," *Econometrica*, 80(5), 1977–2016.
- AMITI, MARY, AND DAVID E. WEINSTEIN. (2018): "How Much Do Idiosyncratic Bank Shocks Affect Investment? Evidence from Matched Bank-Firm Loan Data," *Journal of Political Economy*, 126(2):525–587.
- ATALAY, ENGHIN (2017): "How Important Are Sectoral Shocks?," *American Economic Journal: Macroeconomics*, 9(4), 254–80.
- BREMUS, FRANZISKA, CLAUDIA M. BUCH, KATHERYN N. RUSS, AND MONIKA SCHNITZER (2018): "Big Banks and Macroeconomic Outcomes: Theory and Cross-Country Evidence of Granularity," *Journal of Money, Credit and Banking*, 50(8), 1785–1825.
- BUCH, CLAUDIA M., AND KATJA NEUGEBAUER (2011): "Bank-Specific Shocks and the Real Economy," *Journal of Banking & Finance*, 35(8), 2179–2187.
- CARVALHO, VASCO M. (2014): "From Micro to Macro via Production Networks," *Journal of Economic Perspectives*, 28(4), 23–48.

- CARVALHO, VASCO, AND XAVIER GABAIX (2013): "The Great Diversification and Its Undoing," *American Economic Review*, 103(5), 1697–1727.
- CASTRO, RUI, GIAN LUCA CLEMENTI, AND YOONSOO LEE (2015): "Cross Sectoral Variation in the Volatility of Plant Level Idiosyncratic Shocks," *The Journal of Industrial Economics*, 63(1), 1–29.
- CHUN, HYUNBAE, JUNG-WOOK KIM, RANDALL MORCK, AND BERNARD YEUNG (2008): "Creative Destruction and Firm-Specific Performance Heterogeneity," *Journal of Financial Economics*, 89(1), 109–135.
- COMIN, DIEGO, AND SUNIL MULANI (2006): "Diverging Trends in Aggregate and Firm Volatility," *The Review of Economics and Statistics*, 88(2), 374–383.
- COMIN, DIEGO, AND THOMAS PHILIPPON (2005): "The Rise in Firm-Level Volatility: Causes and Cconsequences," *NBER Macroeconomics Annual*, 20, 167–201.

- DAVIS, STEVEN J., JOHN HALTIWANGER, RON JARMIN, JAVIER MIRANDA, CHRISTOPHER FOOTE, AND EVA NAGYPAL (2006): "Volatility and Dispersion in Business Growth Rates: Publicly Traded versus Privately Held Firms," *NBER Macroeconomics Annual*, 21, 107–179.
- DOMAR, EVSEY D. (1961): "On the Measurement of Technological Change," *The Economic Journal*, 71(284), 709–729.
- DUPOR, BILL (1999): "Aggregation and Irrelevance in Multi-Sector Models," *Journal of Monetary Economics*, 43(2), 391–409.
- EVANS, DAVID S. (1987): "The Relationship Between Firm Growth, Size, and Age: Estimates for 100 Manufacturing Industries," *The Journal of Industrial Economics*, 35(4), 567–581.
- FIORI, GIUSEPPE, AND FILIPPO SCOCCIANTI (2021): "Aggregate Dynamics and Microeconomic Heterogeneity: The Role of Vintage Technology," Unpublished Manuscript, North Carolina State University.

- FOERSTER, ANDREW T., PIERRE-DANIEL G. SARTE, AND MARK W. WATSON (2011): "Sectoral versus Aggregate Shocks: A Structural Factor Analysis of Industrial Production," *Journal of Political Economy*, 119(1), 1–38.
- GABAIX, XAVIER (2011): "The granular Origins of Aggregate Fluctuations," *Econometrica*, 79(3), 733–772.
- GAUBERT, CECILE, AND OLEG ITSKHOKI (2018): "Granular Comparative Advantage." Working Paper 24807, National Bureau of Economic Research.
- DI GIOVANNI, JULIAN AND ANDREI A. LEVCHENKO (2012): "Country Size, International Trade, and Aggregate Fluctuations," *Journal of Political Economy*, 120(6), 1083–1132.
- DI GIOVANNI, JULIAN, ANDREI A. LEVCHENKO, AND ISABELLE MEJEAN (2014): "Firms, Destinations, and Aggregate Fluctuations," *Econometrica*, 82(4), 1303–1340.
- HALL, BRONWYN H. (1987): "The Relationship Between Firm Size and Firm Growth in the US Manufacturing Sector," *The Journal of Industrial Economics*, 35(4), 583–606.

- HERSKOVIC, BERNARD, BRYAN KELLY, HANNO LUSTIG, AND STIJN VAN NIEUWERBURGH (2020): "Firm Volatility in Granular Networks," (2020): *Journal of Political Economy*, 128(11), 4097–4162.
- HORVATH, MICHAEL (1998): "Cyclicality and Sectoral Linkages: Aggregate Fluctuations from Independent Sectoral Shocks," *Review of Economic Dynamics*, 1(4), 781–808.
- HULTEN, CHARLES R. (1978): "Growth Accounting with Intermediate Inputs," *The Review of Economic Studies*, 45(3), 511–518.
- JOVANOVIC, BOYAN (1987): "Micro Shocks and Aggregate Risk," *The Quarterly Journal of Economics*, 102(2), 395–409.
- KALNINA, ILZE AND KOKOUVI TEWOU (2020): "Cross-Sectional Dependence in Idiosyncratic Volatility," Unpublished Manuscript, North Carolina State University.
- KIM, CHANG-JIN AND CHARLES R. NELSON (1999): "Has the U.S. Economy Become More Stable? A Bayesian Approach Based on a Markov-Switching Model of the Business Cycle," *The Review of Economics and Statistics*, 81(4), 608–616.

- LONG, JOHN B., AND CHARLES I. PLOSSER. (1983): "Real Business Cycles," *Journal of Political Economy*, 91(1), 39–69.
- LUCAS, RERT E. (1977): "Understanding Business Cycles," *Carnegie-Rochester Conference Series on Public Policy*, 5, 7–29.
- MULLEN, RORY (2020): "On aggregate Fluctuations, Systemic Risk, and Covariance of Firm-Level Activity," Unpublished Manuscript, Warwick Business School.
- OBERFIELD, EZRA (2018): "A Theory of Input-Output Architecture," *Econometrica*, 86(2), 559–589.
- SCHAAL, EDOUARD, AND MATHIEU TASCHEREAU-DUMOUCHEL (2018): "Herding, Technology Adoption and Boom-Bust Cycles," 2018 Meeting Papers 111, Society for Economic Dynamics.
- STANLEY, MICHAEL H. R., LUIS A. N. AMARAL, SERGEY V. BULDYREV, SHLOMO HAVLIN, HEIKO LESCHHORN, PHILIPP MAASS, MICHAEL A. SALINGER, AND H. EUGENE STANLEY (1996): "Scaling Behaviour in the Growth of Companies," *Nature*, 379(6568), 804–806.

- STOCK, JAMES H. AND MARK W. WATSON (2002): "Has the Business Cycle Changed and Why?," *NBER Macroeconomics Annual*, 17, 159–218.
- TWEEDLE, JESSE (2018): "Correlated Shocks within Firms," *Economics Letters*, 163, 95–97.
 XU, YEXIAO, AND BURTONÂ G. MALKIEL (2003): "Investigating the Behavior of Idiosyncratic Volatility," *The Journal of Business*, 76(4), 613–645.

A.1. Mathematical appendix

A.2. Data appendix

Pseudo common and idiosyncratic factors and their relations : homogeneous variance and covariance

Spurious relations with homogeneous variance and covariance

$$\begin{aligned} \operatorname{var}(\hat{y}_{it}) &= \sigma_{\Xi}^{2} + \sigma_{F,it}^{2} \\ \operatorname{var}(e_{F,it}) &= \left(1 - \frac{1}{N_{t}}\right) \left(1 - \rho_{F,t}\right) \sigma_{F,t}^{2} & \rightarrow \sigma_{F,t}^{2} - \rho_{F,t} \sigma_{F,t}^{2} \\ \operatorname{var}(e_{A,t}) &= \sigma_{A,t}^{2} + \frac{\sigma_{F,t}^{2}}{N_{t}} + \left(1 - \frac{1}{N_{t}}\right) \rho_{F,t} \sigma_{\xi}^{2} & \rightarrow \sigma_{A,t}^{2} + \rho_{F,t} \sigma_{F,t}^{2} \\ \operatorname{cov}(e_{F,it}, e_{A,t}) &= \operatorname{corr}(e_{F,it}, e_{A,t}) &= 0 \\ \operatorname{cov}(e_{F,it}, e_{F,i't}) &= -\frac{1}{N_{t}} \left(1 - \rho_{F,t}\right) \sigma_{F,t}^{2} & \rightarrow 0 \\ \operatorname{corr}(e_{F,it}, e_{F,i't}) &= -\frac{1}{N_{t} - 1} & \rightarrow 0 \end{aligned}$$

Nice properties of pseudo common and idiosyncratic factors : homogeneous variance and covariance (1/2)

Pseudo common and idiosyncratic factors with weight

$$e^{\rm w}_{{\rm A},t} = \sum_{i'} {\rm w}_{i't} \hat{y}_{i't} = \varepsilon_{{\rm A},t} + \sum_{i'} {\rm w}_{i't} \varepsilon_{{\rm F},i't} \quad \text{and} \quad e^{\rm w}_{{\rm F},it} = \hat{y}_{it} - e_{{\rm A},t} = \varepsilon_{{\rm F},it} - \sum_{i'} {\rm w}_{i't} \varepsilon_{{\rm F},i't}$$

small idiosyncratic variance of firms with large weights

$$var(e_{F,it}^{w}) = (1 - 2w_{it} + m_{2}^{w})(1 - \rho_{F,t})\sigma_{F,t}^{2}$$

• true dependency, ρ_{ξ} , does not matter for correlation b/w idiosyncratic shocks

$$corr(e_{F,it}, e_{F,i't}) = -\frac{w_{it} + w_{i't} - m_2^{w}}{\sqrt{1 - 2w_{it} + m_2^{w}}\sqrt{1 - 2w_{i't} + m_2^{w}}}$$

- more unequal weight tends to generate positive dependency
- less (more) weighted firms tends to be positively (negatively) correlated

- wit arbitrary weight,
- $m_2^{\rm w}$ $\;$ measurements how much equally weighted,

•
$$\operatorname{cov}(e_{\mathrm{F},it}, e_{\mathrm{F},i't}) = -(\mathbf{w}_{it} + \mathbf{w}_{i't} - \mathbf{m}_2^{\mathrm{w}})(1 - \rho_{\mathrm{F},t})\sigma_{\mathrm{F},t}^2$$

$$\begin{split} \sum_{i'} \mathbf{w}_{i't} &= 1 \text{ and } \mathbf{w}_{it} > 0 \\ \mathbf{m}_2^{\mathbf{w}} &= \sum_{i''} \mathbf{w}_{i''t}^2 \in [N_t^{-1}, 1] \end{split}$$

Nice properties of pseudo common and idiosyncratic factors : homogeneous variance and covariance (2/2)

Pseudo common and idiosyncratic factors

$$\begin{aligned} \mathsf{var}(e_{\mathrm{A},t}) &= \sigma_{\mathrm{A},t}^{2} + \mathsf{m}_{2}^{\mathsf{w}} \sigma_{\mathrm{F},t}^{2} + (1 - \mathsf{m}_{2}^{\mathsf{w}}) \rho_{\mathrm{F},t} \sigma_{\mathrm{F},t}^{2} \\ \mathsf{corr}(e_{\mathrm{A},t}, e_{\mathrm{F},it}) &= -\frac{\mathsf{w}_{it} - \mathsf{m}_{2}^{\mathsf{w}}}{\sqrt{\frac{\sigma_{\mathrm{A},t}^{2} / \sigma_{\mathrm{F},t}^{2} + \rho_{\mathrm{F},t}}{1 - \rho_{\mathrm{F},t}}} + \mathsf{m}_{2}^{\mathsf{w}} \sqrt{1 - 2\mathsf{w}_{it} + \mathsf{m}_{2}^{\mathsf{w}}} \end{aligned}$$

- pseudo common and idiosyncratic shocks are correlated...it is not ideal...
 - idiosyncratic factor of firm with a small (large) weight tends to be positively (negatively) correlated to the common factor
- we need $w_{it} = m_2^w$ to get uncorrelated pseudo common and idiosyncratic shocks.

• how? set
$$w_{it} = 1/N_t$$
 for all $i!$

Heterogeneous variance and covariance

Notation:

firm *i*'s variance of true idiosyncratic factor, $var(\varepsilon_{F,it})$

- $\overline{\sigma}_{\rm F}^2 -$ average of true idiosyncratic factor,
- $\mathbf{C}_{\mathrm{F},ii'}$ covariance of true idiosyncratic factor b/w firms i and i',
 - $\overline{\mathbf{C}}_{\mathbf{F},i}$ average of firms *i*'s covariance of true idiosyncratic factor,

 $N_t^{-1} \sum_i \sigma_{\mathrm{F},it}^2$ $\operatorname{cov}(\varepsilon_{\mathrm{F},it}, \varepsilon_{\mathrm{F},i't})$ $(N_t - 1)^{-1} \sum_{i' \neq i} C_{\mathrm{F},ii'}$

Heterogeneous variance and covariance

Notation:

 $\overline{\sigma}_{\rm F}^2 \quad \text{average of true idiosyncratic factor, } N_t^{-1} \sum_i \sigma_{{\rm F},it}^2$

- $\mathbf{C}_{\mathrm{F},ii'}$ covariance of true idiosyncratic factor b/w firms i and i',
 - $\overline{\mathrm{C}}_{\mathrm{F},i}$ average of firms *i*'s covariance of true idiosyncratic factor,
 - $\overline{\overline{\mathrm{C}}}_{\mathrm{F}}$ average covariance of true idiosyncratic factor,

 $\operatorname{var}(\varepsilon_{\mathrm{F},it})$

 $\begin{aligned} & \mathsf{cov}(\varepsilon_{\mathrm{F},it},\varepsilon_{\mathrm{F},i't})\\ & (N_t-1)^{-1}\sum_{i'\neq i} \mathrm{C}_{\mathrm{F},ii'}\\ & N_t^{-1}\sum_{i} \overline{\mathrm{C}}_{\mathrm{F},i} \end{aligned}$

Heterogeneous variance and covariance

Notation:

 $\overline{\sigma}_{\rm F}^2 -$ average of true idiosyncratic factor,

covariance of true idiosyncratic factor b/w firms *i* and *i'*, $cov(\varepsilon_{F,it}, \varepsilon_{F,i't})$

- $\overline{\mathbf{C}}_{\mathrm{F},i}$ average of firms i 's covariance of true idiosyncratic factor,
 - $\overline{\overline{\mathrm{C}}}_{\mathrm{F}}$ average covariance of true idiosyncratic factor,

 $\frac{\mathrm{var}\big(\varepsilon_{\mathrm{F},it}\big)}{N_t^{-1}\sum_i\sigma_{\mathrm{F},it}^2}$

 $(N_t - 1)^{-1} \sum_{i' \neq i} C_{\mathbf{F}, ii'}$ $N_t^{-1} \sum_i \overline{C}_{\mathbf{F}, i}$

Heterogeneous variance and covariance

 $var(\varepsilon_{F,it})$

 $N_{\star}^{-1} \sum_{i} \overline{C}_{F,i}$

Notation:

 $\sigma_{\mathrm{F}\ it}^2$ firm i's variance of true idiosyncratic factor, $N_t^{-1} \sum_i \sigma_{\mathrm{F},it}^2$ $\overline{\sigma}_{\mathrm{F}}^2$ average of true idiosyncratic factor, $cov(\varepsilon_{\mathrm{F},it},\varepsilon_{\mathrm{F},i't})$ $C_{F,ii'}$ covariance of true idiosyncratic factor b/w firms i and i', $\overline{\mathrm{C}}_{\mathrm{F},i}$ average of firms *i*'s covariance of true idiosyncratic factor, $(N_t - 1)^{-1} \sum_{i' \neq i} C_{F,ii'}$ $\overline{\overline{C}}_{F}$ average covariance of true idiosyncratic factor,

Heterogeneous variance and covariance

Notation:

- $\sigma_{{
 m F},it}^2$ firm *i*'s variance of true idiosyncratic factor,
 - $\overline{\sigma}_{\rm F}^2 ~~$ average of true idiosyncratic factor,
- $\mathbf{C}_{\mathrm{F},ii'}$ covariance of true idiosyncratic factor b/w firms i and i',
 - $\overline{\mathrm{C}}_{\mathrm{F},i}$ average of firms *i*'s covariance of true idiosyncratic factor,

 $\overline{\overline{C}}_{F}$

average covariance of true idiosyncratic factor, $N_t^{-1} \sum_i \overline{C}_{F,i}$

 $\operatorname{var}(\varepsilon_{\mathrm{F},it})$ $N_{t}^{-1} \sum_{i} \sigma_{\mathrm{F},it}^{2}$ $\operatorname{cov}(\varepsilon_{\mathrm{F},it}, \varepsilon_{\mathrm{F},i't})$ $(N_{t}-1)^{-1} \sum_{i' \neq i} C_{\mathrm{F},ii'}$

Pseudo common and idiosyncratic factors and their relations : heterogeneous variance and covariance

Spurious relations with homogeneous variance and covariance

 $\begin{aligned} \mathsf{var}(\hat{y}_{it}) &= \sigma_{\Xi}^2 + \sigma_{F,it}^2 \\ \mathsf{var}(e_{\mathrm{A},t}) &= \sigma_{\Xi}^2 + \overline{\Psi} & \to \sigma_{\Xi}^2 + \overline{\overline{\mathrm{C}}}_{\mathrm{F}} \\ \mathsf{var}(e_{\mathrm{F},it}) &= (\sigma_{F,it}^2 - \Psi_i) - (\Psi_i - \overline{\Psi}) & \to (\sigma_{F,it}^2 - \overline{\mathrm{C}}_{\mathrm{F},i}) - (\overline{\mathrm{C}}_{\mathrm{F},i} - \overline{\overline{\mathrm{C}}}_{\mathrm{F}}) \\ \mathsf{cov}(e_{\mathrm{F},it}, e_{\mathrm{A},t}) &= \Psi_i - \overline{\Psi} & \to \overline{\mathrm{C}}_{\mathrm{F},i} - \overline{\overline{\mathrm{C}}}_{\mathrm{F}} \\ \mathsf{cov}(e_{\mathrm{F},it}, e_{\mathrm{F},i't}) &= (\mathrm{C}_{\mathrm{F},ii'} - .5\Psi_i - .5\Psi_i') & \to (\mathrm{C}_{\mathrm{F},ii'} - .5\overline{\mathrm{C}}_{\mathrm{F},i} - .5\overline{\mathrm{C}}_{\mathrm{F},i'}) \\ &- .5(\Psi_i - \overline{\Psi}) - .5(\Psi_i' - \overline{\Psi}) & - .5(\overline{\mathrm{C}}_{\mathrm{F},i} - \overline{\overline{\mathrm{C}}}_{\mathrm{F}}) - .5(\overline{\mathrm{C}}_{\mathrm{F},i'} - \overline{\overline{\mathrm{C}}}_{\mathrm{F}}) \end{aligned}$

$$\begin{split} \Psi_i &= N_t^{-1} \sigma_{\mathbf{F},it}^2 + \left(1 - N_t^{-1}\right) \overline{\mathbf{C}}_{\mathbf{F},i} \quad \to \overline{\mathbf{C}}_{\mathbf{F},i} \\ \overline{\Psi} &= N_t^{-1} \sum_{i''} \Psi_i'' = N_t^{-1} \overline{\sigma}_{\mathbf{F}}^2 + \left(1 - N_t^{-1}\right) \overline{\overline{\mathbf{C}}}_{\mathbf{F}} \quad \to \overline{\overline{\mathbf{C}}}_{\mathbf{F}} \end{split}$$

A.1. Mathematical appendix

A.2. Data appendix

Variable	Full sample	1980–1985	1986–2000	2001–2013		
Within-firm standard deviation of labor productivity: $var(\hat{y}_{it})$						
Mean	0.199	0.174	0.205	0.203		
Standard deviation	0.226	0.171	0.232	0.238		
Quantile 10%	0.058	0.056	0.058	0.059		
50%	0.133	0.126	0.137	0.132		
90%	0.378	0.324	0.396	0.385		
Observations (firms)	82,670	13,480	35,750	33,440		
Pairwise within-cluster correlation of labor productivity: $corr(\hat{y}_{it}, \hat{y}_{i't})$						
Mean	0.106	0.086	0.060	0.150		
Standard deviation	0.340	0.341	0.328	0.344		
Quantile 10%	-0.353	-0.366	-0.380	-0.321		
50%	0.112	0.084	0.064	0.164		
90%	0.559	0.544	0.496	0.602		
Observations (pairs)	9,424,466	1,203,324	3,759,910	4,461,232		

Notes: I calculate the firm *i*'s standard deviation and pair of *i* and *i*'s correlation at time *t* with a rolling window of 10 years, [t - 4, t + 5]. The correlations are only for the pairs in the same cluster. There are 53 clusters.

[Step 1]

Bureau of Economic Analysis (BEA) database.

 Industry-level deflators (p_{st}): Chain-Type Price Indexes for Gross Output by Industry [2012=100]

Compustat North America: Fundamental Annuals (1975–2018) databases.

• Sales $(sale_{it})$ and employments (emp_{it})

[Step 2]

First, I keep the following observations in the Compustat database.

- No major mergers flag: Comparability status ($compst_{it}$) does not equal to AB.
- ► Country ISO 3 digit code (loc_{it}): USA
- ► Currency ISO 3 digit code (curcd_{it}): USD

back

Then, I exclude firms with the following criteria.

- Non-positive sales
- Non-positive employments
- Utilities sector (NAICS 22)
- Public administration sector (NAICS 91–92)

[Step 3]

I merge the Compustat sample and the industry-level BEA deflator. I calculate the logged labor productivity as real sales divided by employments $(\ln \mathtt{sale}_{it} - \ln \mathtt{p}_{st} - \ln \mathtt{emp}_{it})$ for firm *i* in industry *s* at *t*.

[Step 4]

Since some clusters have low observations, I merge them.