Aggregate Fluctuations from Clustered Micro Shocks

Daisoon Kim
North Carolina State University

ASSA 2022 Annual Meeting: January 7-9, 2022

Where do business cycle fluctuations come from?

When can micro shocks generate macro fluctuations?

- granular origins: fat tail distribution leads non-diversification
- clustered origins: cross-firm correlated idiosyncratic factors

Even if most business cycle research does ignored the cross-firm pairwise correlations, idiosyncratic co-movements potentially lead to macro fluctuations.

Correlated idiosyncratic factors and macro fluctuations

A simple example with identical variance-covariance

Aggregate fluctuations with identical variance and covariance

$$
\underbrace{\operatorname{var}\left(\hat{Y}_{t}\right)}_{\begin{array}{c}
\text { aggregate } \\
\text { volatility }
\end{array}}=\underbrace{\sigma_{\mathrm{A}, t}^{2}}_{\begin{array}{c}
\text { common factor } \\
\text { volatility }
\end{array}}+\underbrace{h_{t}^{2} \sigma_{\mathrm{F}, t}^{2}}_{\begin{array}{c}
\text { idiosyncratic factor } \\
\text { volatility: granularity }
\end{array}}+\underbrace{\left(1-h_{t}^{2}\right) \rho_{\mathrm{F}, t} \sigma_{\mathrm{F}, t}^{2}}_{\begin{array}{c}
\text { idiosyncratic factor } \\
\text { dependency }
\end{array}}
$$

Notation, notes, and remarks:
h_{t} Herfindahl Hirschman Index,
$\sigma_{\mathrm{A}, t}^{2}$ and $\sigma_{\mathrm{F}, t}^{2}$ firm i 's variance of true common and idiosyncratic factor,
$\rho_{\mathrm{F}, t}$ correlation b / w firms i and i 's true idiosyncratic factors,

$$
\begin{array}{r}
{\left[\sum_{i^{\prime}} w_{i^{\prime} t}^{2}\right]^{1 / 2} \in\left[N_{t}^{-1 / 2}, 1\right]} \\
\operatorname{var}\left(\varepsilon_{\mathrm{A}, t}\right) \operatorname{and} \operatorname{var}\left(\varepsilon_{\mathrm{F}, i t}\right) \\
\operatorname{corr}\left(\varepsilon_{\mathrm{F}, i t}, \varepsilon_{\mathrm{F}, i^{\prime} t}\right)
\end{array}
$$

Why and when can we ignore pairwise correlation?

Fluctuations: true vs pseudo factors
firm fluctuation
 idiosyncratic factor

idiosyncratic factor

The identical variance and covariance across firms imply

- $\operatorname{corr}\left(e_{\mathrm{A}, t}, e_{\mathrm{F}, i t}\right)=0$ and $\operatorname{corr}\left(e_{\mathrm{F}, i t}, e_{\mathrm{F}, i^{\prime} t}\right) \approx 0$ for $i \neq i^{\prime}$.
- business cycle studies with pseudo variables are OK (well-defined) where dependency does not matter.
The heterogeneous variance and covariance across firms imply
- $\operatorname{corr}\left(e_{\mathrm{A}, t}, e_{\mathrm{F}, i t}\right) \neq 0$ and $\operatorname{corr}\left(e_{\mathrm{F}, i t}, e_{\mathrm{F}, i^{\prime} t}\right) \neq 0$ is disconnected to $\operatorname{corr}\left(\varepsilon_{\mathrm{F}, i t}, \varepsilon_{\mathrm{F}, i^{\prime} t}\right)$.
- business cycle studies with pseudo variables are spurious and not well-defined.

Simulations (1/4)

Sample pairwise correlations: true vs pseudo idiosyncratic factors

- pseudo idiosyncratic factors ignore true factors' pairwise correlations

Notation, notes, and remarks:

- 3,000 simulations, 50 periods, 5,000 firms, S.D. of $\varepsilon_{\mathrm{F}, i t}$ is 12%.

Simulations (2/4)

Aggregate fluctuations: $N_{t}^{-1} \sum \varepsilon_{\mathrm{F}, i t}$ and $N_{t}^{-1} \sum e_{\mathrm{F}, i t}$

- 2.5\% pairwisely correlation \Rightarrow notable aggregate fluctuations

Notation, notes, and remarks:

- Here, we ignored the common factor. 50 periods, 5,000 firms, S.D. of $\varepsilon_{\mathrm{A}, t}$ is 12%.

Simulation (3/4): with unequal size distributions

Aggregate fluctuations: $\sum w_{i t} \varepsilon_{\mathrm{F}, i t}$ and $\sum w_{i t} e_{\mathrm{F}, i t}$

- 2.5% pairwisely correlation + fat-tailed size distribution \Rightarrow aggregate fluctuations

Notation, notes, and remarks:

- Here, we ignored the common factor. 50 periods, 5,000 firms, S.D. of $\varepsilon_{\mathrm{A}, t}$ is 12%.

Simulations (4/4)

Aggregate volatility: S.D. of $N_{t}^{-1} \sum \varepsilon_{\mathrm{F}, i t}$ and $\sum w_{i t} \varepsilon_{\mathrm{F}, i t}$
A. Aggregate Fluctuations without Tick Tails

B. Aggregate Fluctuations with Tick Tails

- 2.5% pairwisely correlation + fat-tailed size distribution \Rightarrow aggregate fluctuations

Notation, notes, and remarks:

- Here, we ignored the common factor. 3,000 simulations, 50 periods, 5,000 firms, S.D. of $\varepsilon_{\mathrm{A}, t}$ is 12%.

This paper does

This paper provides the micro-foundations for (aggregate) business cycle fluctuations.

- cluster origins (dependency within an industry)
- idiosyncratic shocks are correlated across firms
- variance and pairwise covariance differ across firms

I need to identify true factors $\left(\varepsilon_{\mathrm{A}, t}\right.$ and $\left.\varepsilon_{\mathrm{F}, i t}\right)$ from observation $\left(\hat{y}_{i t}\right)$... maybe challenging...
I compute the upper- and lower-bounds of granular and clustered origins instead of estimating point values. This approach

- relies on some statistical facts rather than additional assumptions and/or information.
- avoids misspecification issues.

This paper finds

Clustered and granular origins:

- The clustered origins explain 1) the great moderation and 2) the recent increase in the US business cycle volatility.

Notation, notes, and remarks:

- Compustat Annual Fundamentals North America database 1976-2018
- Aggregate and industrial GDPs and deflators are from Bureau of Economic Analysis.

Related literature

GDP volatility - related to origins:

- Stock and Watson (2002); Comin and Philippon (2005); Comin and Mulani (2006); Davis, Haltiwanger, Jarmin, Miranda, Foote and Nagypal (2006); Carvalho and Gabaix (2013)

Granularity:

- Jovanovic (1987); Gabaix (2011); di Givonanni and Levchenko (2012); Carvalho and Gabaix (2013); Bremus, Buch, Russ and Schnitzer (2018); Gaubert and Itoskhoki (2018)
- Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi (2012); Carvalho (2014); Oberfield (2018); Herskovic, Kelly, Lustig and Van Nieuwerburgh (2020)

Dependency:

- Long and Plosser (1983); Horvath (1998); Dupor (1999); Foerster, Sarte and Watson (2011); Atalay (2017)
- Oberfield (2018); Schaal and Taschereau-Dumouchel (2018); Mullen (2020); Fiori and Scoccianti (2021)

Heterogeneous firm volatility:

- Stanley, Amaral, Buldyrev, Havlin, Leschhorn, Maass, Salinger and Stanley (1996); Xu and Malkiel (2003); Comin and Philippon (2005); Comin and Mulani (2006); Chun, Kim, Morck and Yeung (2008); Castro, Clementi and Lee (2015); Tweedle (2018)

Theoretical motivation and key concepts

- Origins of business cycle fluctuations

Origins of business cycle fluctuations (1/2)

Aggregate fluctuations

Notation, notes, and remarks:
$w_{i t}$ firm i 's share, size weight
$\sigma_{\hat{Y}, t}^{2}$ variance of aggregate business cycles,
$\operatorname{var}\left(\hat{Y}_{t}\right)$
$\sigma_{\mathrm{A}, t}^{2}$ and $\sigma_{\mathrm{F}, i t}^{2}$ firm i 's variance of true common and idiosyncratic factor,
$\rho_{\mathrm{F}, i i^{\prime} t} \quad$ correlation of true idiosyncratic factor b / w firms i and i^{\prime},

$$
\begin{array}{r}
\operatorname{var}\left(\varepsilon_{\mathrm{A}, t}\right) \text { and } \operatorname{var}\left(\varepsilon_{\mathrm{F}, i t}\right) \\
\operatorname{corr}\left(\varepsilon_{\mathrm{F}, i t}, \varepsilon_{\mathrm{F}, i^{\prime} t}\right)
\end{array}
$$

Origins of business cycle fluctuations (2/2)

Aggregate fluctuations with identical variance and covariance

- Lucas (1977)'s diversification argument: idiosyncratic shocks average out : it only holds when i) $h_{t} \rightarrow 0$ as $N_{t} \rightarrow \infty$ and ii) $\rho_{\mathrm{F}, t}=0$

Notation, notes, and remarks:
h_{t} Herfindahl Hirschman Index,

$$
\sigma_{\hat{Y}, t}^{2} \text { variance of aggregate business cycles, }
$$

$$
\begin{array}{r}
{\left[\sum_{i^{\prime}} w_{i^{\prime} t}^{2}\right]^{1 / 2} \in\left[N_{t}^{-1 / 2}, 1\right]} \\
\operatorname{var}\left(\hat{Y}_{t}\right) \\
\operatorname{var}\left(\varepsilon_{\mathrm{A}, t}\right) \operatorname{and} \operatorname{var}\left(\varepsilon_{\mathrm{F}, i t}\right) \\
\operatorname{corr}\left(\varepsilon_{\mathrm{F}, i t}, \varepsilon_{\mathrm{F}, i^{\prime} t}\right)
\end{array}
$$

$\sigma_{\mathrm{A}, t}^{2}$ and $\sigma_{\mathrm{F}, t}^{2}$ firm i 's variance of true common and idiosyncratic factor,

Are clustered origins non-negligible?: A simple example

Size of clustered origins relative to granular origins (with identical variance-covariance)

$$
\frac{\chi_{t}}{\Gamma_{t}}=\frac{\left(1-h_{t}^{2}\right) \rho_{\mathrm{F}, t} \sigma_{\mathrm{F}, t}^{2}}{h_{t}^{2} \sigma_{\mathrm{F}, t}^{2}}=\left(\frac{1}{h_{t}^{2}}-1\right) \rho_{\mathrm{F}, t}
$$

- With $h_{t}=0.12$ as in Gabaix (2011)'s example
- $\rho_{\mathrm{F}, t} \in[0.01,0.05]$ implies $\chi_{t} \in \Gamma_{t} \times[0.68,3.42]$

Why has the predominant research long ignored pairwise correlation across firms?

Notation, notes, and remarks:
h_{t} Herfindahl Hirschman Index,
$\sigma_{\mathrm{F}, t}^{2} \quad$ variance of true firm i 's idiosyncratic factor,
$\rho_{\mathrm{F}, t} \quad$ correlation b / w firms i and i 's true idiosyncratic factors,

$$
\begin{array}{r}
{\left[\sum_{i^{\prime}} w_{i^{\prime} t}^{2}\right]^{1 / 2} \in\left[N_{t}^{-1 / 2}, 1\right]} \\
\operatorname{var}\left(\varepsilon_{\mathrm{F}, i t}\right) \\
\operatorname{corr}\left(\varepsilon_{\mathrm{F}, i t}, \varepsilon_{\mathrm{F}, i^{\prime} t}\right)
\end{array}
$$

The Framework with pseudo variables

- Homogeneous variance-covariance
- Heterogeneous variance-covariance
- Evidence from the US public firms

Pseudo factors and spurious relations

True vs Pseudo common and idiosyncratic factors

- True of common and idiosyncratic factors are not directly observable
- Many studies use the pseudo factors; the sample mean and the deviation from it.
- Spurious relations

$$
\operatorname{var}\left(e_{\mathrm{A}, t}\right) \approx \sigma_{\mathrm{A}, t}^{2}+\rho_{\mathrm{F}, t} \sigma_{\mathrm{F}, t}^{2} \quad \text { and } \quad \operatorname{var}\left(e_{\mathrm{F}, i t}\right) \approx \sigma_{\mathrm{F}, t}^{2}-\rho_{\mathrm{F}, t} \sigma_{\mathrm{F}, t}^{2}
$$

- Systemically over- or under-estimated volatility of factors

Notation, notes, and remarks:
$e_{\mathrm{A}, t}$ pseudo common factor,
$e_{\mathrm{F}, i t}$ pseudo idiosyncratic factor,

$$
\begin{array}{r}
e_{\mathrm{A}, t}=N_{t}^{-1} \sum_{i^{\prime}} \hat{y}_{i^{\prime} t}=\varepsilon_{\mathrm{A}, t}+N_{t}^{-1} \sum_{i^{\prime}} \varepsilon_{\mathrm{F}, i^{\prime} t} \\
e_{\mathrm{F}, i t}=\hat{y}_{i t}-e_{\mathrm{A}, t}=\varepsilon_{\mathrm{F}, i t}-N_{t}^{-1} \sum_{i^{\prime}} \varepsilon_{\mathrm{F}, i^{\prime} t}
\end{array}
$$

Properties of homogeneous variance and covariance

Proposition 1

Consider a cluster where firms have identical standard deviation and pairwise correlation of idiosyncratic shocks; $\sigma_{\mathrm{F}, t}>0$ and $\rho_{\mathrm{F}, t} \in(-1,1)$. Then, the cross-sectional sample mean and the deviations from it have the following correlations. For $\forall i \neq i^{\prime}$,

$$
\begin{aligned}
\operatorname{corr}\left(e_{\mathrm{A}, t}, e_{\mathrm{F}, i t}\right) & =0 \\
\operatorname{corr}\left(e_{\mathrm{F}, i t}, e_{\mathrm{F}, i^{\prime} t}\right) & =-\left(N_{t}-1\right)^{-1}
\end{aligned}
$$

- Spurious but well-defined!
- Pseudo common and idiosyncratic factors are orthogonal
- Pseudo idiosyncratic factors are asymptotically orthogonal to each other : true dependency does not matter for the pseudo dependency

Notation, notes, and remarks:

- Note that these results do not hold when I use the weighted mean.

Irrelevance of correlated pseudo idiosyncratic factors

Corollary 1

The variance of aggregate fluctuations can be decomposed into the pseudo common and idiosyncratic shocks' variances asymptotically.

$$
\sigma_{\hat{Y}, t}^{2}=\operatorname{var}\left(e_{\mathrm{A}, t}\right)+h_{t}^{2} \operatorname{var}\left(e_{\mathrm{F}, i t}\right)-\left(\frac{1-h_{t}^{2}}{N_{t}-1}\right) \operatorname{var}\left(e_{\mathrm{F}, i t}\right)
$$

- we can use the pseudo factors where clustered origins (dependency) do not matter asymptotically.

Notation, notes, and remarks:

- $\operatorname{cov}\left(e_{\mathrm{F}, i t}, e_{\mathrm{A}, t}\right)=0$
- $\operatorname{cov}\left(e_{\mathrm{F}, i t}, e_{\mathrm{F}, i^{\prime} t}\right)=-\left(N_{t}-1\right)^{-1} \operatorname{var}\left(e_{\mathrm{F}, i t}\right)$

The Framework with pseudo variables

- Homogeneous variance-covariance
- Heterogeneous variance-covariance

Properties of homogeneous variance and covariance

Proposition 2

Consider a cluster where idiosyncratic shocks' standard deviation and pairwise correlation are different across firms. Then, the covariance between the crosssectional sample mean and firm i 's deviation from it is non-zero in general.

$$
\begin{aligned}
\operatorname{cov}\left(e_{\mathrm{A}, t}, e_{\mathrm{F}, i t}\right)= & \frac{1}{N_{t}}\left[\sigma_{\mathrm{F}, i t}^{2}-\frac{1}{N_{t}} \sum_{i^{\prime}} \sigma_{\mathrm{F}, i^{\prime} t}^{2}\right] \\
& +\left[\frac{1}{N_{t}} \sum_{i^{\prime} \neq i} \rho_{\mathrm{F}, i i^{\prime} t} \sigma_{\mathrm{F}, i t} \sigma_{\mathrm{F}, i^{\prime} t}-\frac{1}{N_{t}} \sum_{i^{\prime}} \frac{1}{N_{t}} \sum_{i^{\prime \prime} \neq i^{\prime}} \rho_{\mathrm{F}, i^{\prime} i^{\prime \prime} t} \sigma_{\mathrm{F}, i^{\prime} t} \sigma_{\mathrm{F}, i^{\prime \prime} t}\right]
\end{aligned}
$$

- not well-defined
- pseudo common and idiosyncratic factors are correlated
- pseudo idiosyncratic factors are correlated to each other
- We need to recover true idiosyncratic factors' volatility and dependency.

Are variance and covariance heterogeneous? (1/2)

Evidence on heterogeneous variance and covariance of true idiosyncratic factor

- homogeneous variance: identical $\operatorname{var}\left(\hat{y}_{i t}\right)$ across firms

$$
\operatorname{var}\left(\hat{y}_{i t}\right)=\sigma_{\mathrm{A}, t}^{2}+\sigma_{\mathrm{F}, i t}^{2}
$$

- homogeneous covariance: identical $\operatorname{cov}\left(\hat{y}_{i t}, \hat{y}_{i^{\prime} t}\right)$ across firms

$$
\operatorname{cov}\left(\hat{y}_{i t}, \hat{y}_{i^{\prime} t}\right)=\sigma_{\mathrm{A}, t}^{2}+\rho_{\mathrm{F}, i^{\prime} t} \sigma_{\mathrm{F}, i t} \sigma_{\mathrm{F}, i^{\prime} t}
$$

```
Notation, notes, and remarks:
        \mp@subsup{\hat{y}}{it}{} firm's fluctuations,
    \sigma
= \varepsilon
    var(\mp@subsup{\varepsilon}{\textrm{A},t}{})
    \sigma
    var(\varepsilon
\rho
    corr( }\mp@subsup{\varepsilon}{\textrm{F},it}{},\mp@subsup{\varepsilon}{\textrm{F},\mp@subsup{i}{}{\prime}t}{}
```


Are variance and covariance heterogeneous? Yes! (2/2)

Evidence on heterogeneous variance and covariance of true idiosyncratic factor

Notation, notes, and remarks:

- Source: Compustat Annual Fundamentals North America database 1976-2018
- In each t, I calculate a firm's standard deviation and correlations of labor productivity in $[t-4, t+5]$. I report the statistics after demeaning within industry in each year.

Origins of aggregate fluctuations

- Empirical Strategy
- The evolution of micro origins in the US

Origins of industrial fluctuations

Industry (cluster) s fluctuations: $\hat{Y}_{s t}=\sum_{i \in I_{s t}} w_{s i t} \hat{y}_{i t}$ where $\hat{y}_{i t}=\varepsilon_{\mathrm{A}, s t}+\varepsilon_{\mathrm{F}, i t}$

$$
\begin{aligned}
\sigma_{\hat{Y}, s t}^{2} & =\sigma_{\mathrm{A}, s t}^{2}+\sum_{i \in I_{s t}} w_{s i t}^{2} \sigma_{\mathrm{F}, i t}^{2} \\
& =\underbrace{\sigma_{\mathrm{A}, s t}^{2}}+\underbrace{\sum_{\substack{i, i^{\prime} \in I_{s t} \\
i^{\prime} \neq i}} w_{s i t} w_{s i^{\prime} t} \rho_{\mathrm{F}, i i^{\prime} t} \sigma_{\mathrm{F}, i t} \sigma_{\mathrm{F}, i^{\prime} t}}_{\text {granular origins }: \Gamma_{s t}} w_{s i t}^{2} \operatorname{var}\left(\hat{y}_{i t}\right)-h_{s t}^{2} \sigma_{\mathrm{A}, s t}^{2}
\end{aligned}+\underbrace{\sum_{\substack{i, i^{\prime} \in I_{s t} \\
i^{\prime} \neq i}} w_{s i t} w_{s i^{\prime} t} \operatorname{cov}\left(\hat{y}_{i t}, \hat{y}_{i^{\prime} t}\right)-\left(1-h_{s t}^{2}\right) \sigma_{\mathrm{A}, s t}^{2}}_{\text {cluster origins }: \chi_{s t}}
$$

Notation, notes, and remarks:
$h_{s t}$ Herfindahl Hirschman Index in industry s,

$$
\left[\sum_{i \in I_{s t}} w_{s t}^{2}\right]^{1 / 2} \in\left[N_{s t}^{-1 / 2}, 1\right]
$$

$w_{s i t}$ share of firm i in industry s, size weight

Origins of industrial fluctuations

Industry (cluster) s fluctuations: $\hat{Y}_{s t}=\sum_{i \in I_{s t}} w_{s i t} \hat{y}_{i t}$ where $\hat{y}_{i t}=\varepsilon_{\mathrm{A}, s t}+\varepsilon_{\mathrm{F}, i t}$

$$
\begin{aligned}
& \sigma_{\hat{Y}, s t}^{2}=\underbrace{\sigma_{\mathrm{A}, s t}^{2}}+\underbrace{\sum_{i \in I_{s t}} w_{s i t}^{2} \sigma_{\mathrm{F}, i t}^{2}}_{\text {aggregate }}+\underbrace{\sigma_{\mathrm{A}, s t}^{2}}_{\text {granular origins : } \Gamma_{s t}}+\underbrace{}_{\substack{i, i^{\prime} \in I_{s t} \\
i^{\prime} \neq i}} w_{s i t} w_{s i^{\prime} t} \rho_{\mathrm{F}, i i^{\prime} t} \sigma_{\mathrm{F}, i t} \sigma_{\mathrm{F}, i^{\prime} t} \\
& \sum_{i \in I_{s t}} w_{s i t}^{2} \operatorname{var}\left(\hat{y}_{i t}\right)-h_{s t}^{2} \sigma_{\mathrm{A}, s t}^{2}
\end{aligned}+\underbrace{\sum_{\substack{i, i^{\prime} \in I_{s t} \\
i_{s i t}}} w_{s i t} w_{s i^{\prime} t} \operatorname{cov}\left(\hat{y}_{\left.y_{i t}, \hat{y}_{i^{\prime} t}\right)-\left(1-h_{s t}^{2}\right) \sigma_{\mathrm{A}, s t}^{2}}\right.}_{\text {cluster origins : } \chi_{s t}}
$$

Notation, notes, and remarks:

$$
\begin{aligned}
h_{s t} & \text { Herfindahl Hirschman Index in cluster } s, \\
w_{s i t} & \text { share of firm } i \text { in cluster } s,
\end{aligned}
$$

$$
\begin{array}{r}
{\left[\sum_{i \in I_{s t}} w_{s t}^{2}\right]^{1 / 2} \in\left[N_{s t}^{-1 / 2}, 1\right]} \\
\\
\text { size weight }
\end{array}
$$

How to identify a range of common factor

Proposition 3

In a cluster, the common shocks' variance should not be larger than $\sigma_{\mathrm{A}, s t}^{* 2}$.

$$
0 \leq \sigma_{\mathrm{A}, s t}^{2} \leq \sigma_{\mathrm{A}, s t}^{* 2}=\min _{i, i^{\prime} \in I_{s t}}\left\{\operatorname{var}\left(\hat{y}_{i t}\right),\left[1+\operatorname{corr}\left(\hat{y}_{i t}, \hat{y}_{i^{\prime} t}\right)\right] \operatorname{sd}\left(\hat{y}_{i t}\right) \operatorname{sd}\left(\hat{y}_{i^{\prime} t}\right)\right\}
$$

$>\operatorname{var}\left(\hat{y}_{i t}\right)=\sigma_{\mathrm{A}, s t}^{2}+\sigma_{\mathrm{F}, i t}^{2}:$ since variance is non-negative,

$$
\operatorname{var}\left(\hat{y}_{i t}\right) \geq \sigma_{\mathrm{A}, s t}^{2} \quad \text { and } \quad \operatorname{var}\left(\hat{y}_{i t}\right) \geq \sigma_{\mathrm{F}, i t}^{2}
$$

- $\operatorname{cov}\left(\hat{y}_{i t}, \hat{y}_{i^{\prime} t}\right)=\sigma_{\mathrm{A}, s t}^{2}+\rho_{\mathrm{F}, i i^{\prime} t} \sigma_{\mathrm{F}, i t} \sigma_{\mathrm{F}, i^{\prime} t}$: since correlation is b/w-1 and 1,

$$
\operatorname{cov}\left(\hat{y}_{i t}, \hat{y}_{i^{\prime} t}\right) \geq \sigma_{\mathrm{A}, s t}^{2}-\sigma_{\mathrm{F}, i t} \sigma_{\mathrm{F}, i^{\prime} t} \geq \sigma_{\mathrm{A}, s t}^{2}-\operatorname{sd}\left(\hat{y}_{i t}\right) \operatorname{sd}\left(\hat{y}_{i^{\prime} t}\right)
$$

Notation, notes, and remarks:

$\sigma_{\mathrm{A}, s t}^{2}$ variance of true common factor in cluster s,
$\sigma_{\mathrm{F}, i t}^{2} \quad$ firm i 's variance of true idiosyncratic factor,
$\rho_{\mathrm{F}, i i^{\prime} t} \quad$ correlation of true idiosyncratic factor b / w firms i and i^{\prime},

How to identify granular and cluster origins

Corollary 2

The clustered and granular origins are bounded as follows.

$$
\begin{gathered}
\sum_{\substack{i, i^{\prime} \in I_{s t} \\
i^{\prime} \neq i}} w_{s i t} w_{s i^{\prime} t} \operatorname{cov}\left(\hat{y}_{i t}, \hat{y}_{i^{\prime} t}\right)-\left(1-h_{s t}^{2}\right) \sigma_{\mathrm{A}, s t}^{* 2} \leq \chi_{s t} \leq \sum_{\substack{i, i^{\prime} \in I_{s t} \\
i^{\prime} \neq i}} w_{s i t} w_{s i^{\prime} t} \operatorname{cov}\left(\hat{y}_{i t}, \hat{y}_{i^{\prime} t}\right) \\
\sum_{i \in I_{s t}} w_{s i t}^{2} \operatorname{var}\left(\hat{y}_{i t}\right)-h_{s t}^{2} \sigma_{\mathrm{A}, s t}^{* 2} \leq \Gamma_{s t} \leq \sum_{i \in I_{s t}} w_{s i t}^{2} \operatorname{var}\left(\hat{y}_{i t}\right)
\end{gathered}
$$

Notation, notes, and remarks:
$\chi_{s t}$ cluster origins,
$\Gamma_{s t}$ granular origins,
$h_{s t}$ Herfindahl Hirschman Index in cluster s,
$w_{s i t}$ share of firm i in cluster s,
$\sigma_{\mathrm{A}, s t}^{* 2}$ upper bound of variance of true common factor in cluster s

$$
\begin{array}{r}
\sum_{i \in I_{s t}} w_{s i t} \sum_{i^{\prime} \in I_{s t} \backslash\{i\}} w_{s i^{\prime} t} \rho_{\mathrm{F}, i i^{\prime} t} \sigma_{\mathrm{F}, i t} \sigma_{\mathrm{F}, i^{\prime} t} \\
\sigma_{\mathrm{A}, s t}^{2}+\sum_{i \in I_{s t}} w_{s i t}^{2} \sigma_{\mathrm{F}, i t}^{2} \\
{\left[\sum_{i \in I_{s t}} w_{s t}^{2}\right]^{1 / 2} \in\left[N_{s t}^{-1 / 2}, 1\right]} \\
\text { size weight }
\end{array}
$$

Origins of macroeconomic fluctuations

Macro fluctuations: $\widehat{\operatorname{GDP}}_{t}=d_{t} \sum_{i \in I_{t}} w_{i t} \hat{y}_{i t}=d_{t} \sum_{s \in S} w_{s t} \hat{Y}_{s t}$

$$
\operatorname{var}\left(\widehat{\mathrm{GDP}}_{t}\right)=d_{t}^{2}\left[\sum_{s \in S} w_{s t}^{2} \sigma_{\hat{Y}, s t}^{2}+\sum_{\substack{s, s^{\prime} \in S \\ s \neq s^{\prime}}} w_{s t} w_{s^{\prime} t} \operatorname{cov}\left(\hat{Y}_{s t}, \hat{Y}_{s^{\prime} t}\right)\right]=d_{t}^{2} \sum_{s \in S} w_{s t}^{2}[\underbrace{\sigma_{\mathrm{A}, s t}^{2}}_{\text {macro }}+\underbrace{\Gamma_{s t}}_{\text {granular }}+\underbrace{\chi_{s t}}_{\text {cluster }}]+\mathrm{BIO}_{t}
$$

- Domar weights — Domar (1961); Hulten (1978)

$$
\widehat{\mathrm{GDP}}_{t}=\sum_{i \in I_{t}} \underbrace{\frac{\operatorname{sales}_{i t-1}}{\mathrm{GDP}_{t-1}}}_{\text {Domar weight }} \hat{y}_{i t}=(\underbrace{\frac{\sum_{i^{\prime} \in I_{t}} \operatorname{sales}_{i t-1}}{\mathrm{GDP}_{t-1}}}_{\text {Domar adjustment: } d_{t}}) \sum_{s \in S} w_{s t} \sum_{i \in I_{s t}} w_{i t} \hat{y}_{i t}
$$

Notation, notes, and remarks:

$w_{i t}$ and $w_{\text {sit }} \quad$ share of firm i in total and in cluster s,
size weight
$w_{s t}$ share of cluster s in total,

$$
w_{i t}=w_{s t} w_{s i t}
$$

BIO_{t} between-industry origins,

$$
\mathrm{BIO}_{t}=d_{t}^{2} \sum_{\substack{s, s^{\prime} \in S \\ s \neq s^{\prime}}} w_{s t} w_{s^{\prime} t}\left[\operatorname{cov}\left(\varepsilon_{\mathrm{A}, s t}, \varepsilon_{\mathrm{A}, s^{\prime} t}\right)+\sum_{\substack{i \in I_{s t} \\ i^{\prime} \in I_{s^{\prime} t}}} w_{s i t} w_{s i^{\prime} t} \operatorname{cov}\left(\varepsilon_{\mathrm{F}, i t}, \varepsilon_{\mathrm{F}, i^{\prime} t}\right)\right]
$$

Origins of aggregate fluctuations

- Empirical Strategy
- The evolution of micro origins in the US

Data and measurements

Sales and employments, sale ${ }_{i t}$ and, emp ${ }_{i t}$

- from Compustat North America: Fundamental Annuals (1975-2018)

Industry-level deflators, $\mathrm{p}_{s t}$

- from the US Bureau of Economic Analysis
- Chain-Type Price Indexes for Gross Output by Industry [2012=100]

Logged labor productivity and its business cycle components: $y_{i t}$ and $\hat{y}_{i t}$

- $y_{i t}=\ln \operatorname{sale}_{i t}-\ln \mathrm{p}_{s t}-\ln \mathrm{emp}_{i t}$ alternatively, logged real sales $y_{i t}=\ln \operatorname{sale}_{i t}-\ln \mathrm{p}_{s t}$
- its business cycle components are from

$$
\hat{y}_{i t}=y_{i t}-\beta_{s} y_{i t-1}-\psi_{s}^{\mathrm{age}} \times \ln \mathrm{age}_{t}-\psi_{s}^{\mathrm{emp}} \times \ln \mathrm{emp}_{t}-\psi_{s}^{\text {time }} \times t-\delta_{i}
$$

alternatively, the growth rates (log-difference)

Results: Origins of macroeconomic fluctuations (1/3)

Clustered and granular origins:

Notation, notes, and remarks:

- Compustat Annual Fundamentals North America database 1976-2018
- Aggregate and industrial GDP and deflators are from Bureau of Economic Analysis.
- 53 clusters (industries).

Results: Origins of macroeconomic fluctuations (2/3)

Ratio of clustered and granular origins to GDP volatility:

Notation, notes, and remarks:

- Compustat Annual Fundamentals North America database 1976-2018
- Aggregate and industrial GDP and deflators are from Bureau of Economic Analysis.
- 53 clusters (industries).

Results: Origins of macroeconomic fluctuations (3/3)

Robustness check

- with vs. without Domar adjustment
- business cycle component vs. growth rate of labor productivity
- labor productivity vs. firm (real) sales

Conclusion

I introduce cross-firm idiosyncratic shocks

- Demeaned (pseudo) productivities misrepresent cross-firm dependency when their productivities' variance-covariance is heterogeneous

Revisit micro origins of aggregate fluctuations

- Clustered micro shocks are important.
- Granularity is still important.
- Recently, I observed the rise of micro origins.

Thank you!

References

Acemoglu, Daron, Vasco M. Carvalho, Asuman Ozdaglar, and Alireza Tahbaz-Salehi (2012) "The Network Origins of Aggregate Fluctuations," Econometrica, 80(5), 1977-2016.
Amiti, Mary, and David E. Weinstein. (2018): "How Much Do Idiosyncratic Bank Shocks Affect Investment? Evidence from Matched Bank-Firm Loan Data," Journal of Political Economy, 126(2):525-587.
Atalay, Enghin (2017): "How Important Are Sectoral Shocks?," American Economic Journal: Macroeconomics, 9(4), 254-80.
Bremus, Franziska, Claudia M. Buch, Katheryn N. Russ, and Monika Schnitzer (2018): "Big Banks and Macroeconomic Outcomes: Theory and Cross-Country Evidence of Granularity," Journal of Money, Credit and Banking, 50(8), 1785-1825.
Buch, Claudia M., and Katja Neugebauer (2011): "Bank-Specific Shocks and the Real Economy," Journal of Banking \& Finance, 35(8), 2179-2187.
Carvalho, Vasco M. (2014): "From Micro to Macro via Production Networks," Journal of Economic Perspectives, 28(4), 23-48.

References (cont.)

Carvalho, Vasco, and Xavier Gabaix (2013): "The Great Diversification and Its Undoing," American Economic Review, 103(5), 1697-1727.
Castro, Rui, Gian Luca Clementi, and Yoonsoo Lee (2015): "Cross Sectoral Variation in the Volatility of Plant Level Idiosyncratic Shocks," The Journal of Industrial Economics, 63(1), 1-29.
Chun, Hyunbae, Jung-Wook Kim, Randall Morck, and Bernard Yeung (2008):
"Creative Destruction and Firm-Specific Performance Heterogeneity," Journal of Financial Economics, 89(1), 109-135.
Comin, Diego, and Sunil Mulani (2006): "Diverging Trends in Aggregate and Firm Volatility," The Review of Economics and Statistics, 88(2), 374-383.
Comin, Diego, and Thomas Philippon (2005): "The Rise in Firm-Level Volatility: Causes and Cconsequences," NBER Macroeconomics Annual, 20, 167-201.

References (cont.)

Davis, Steven J., John Haltiwanger, Ron Jarmin, Javier Miranda, Christopher Foote, and Eva Nagypal (2006): "Volatility and Dispersion in Business Growth Rates: Publicly Traded versus Privately Held Firms," NBER Macroeconomics Annual, 21, 107-179.

Domar, Evsey D. (1961): "On the Measurement of Technological Change," The Economic Journal, 71(284), 709-729.
Dupor, Bill (1999): "Aggregation and Irrelevance in Multi-Sector Models," Journal of Monetary Economics, 43(2), 391-409.
Evans, David S. (1987): "The Relationship Between Firm Growth, Size, and Age: Estimates for 100 Manufacturing Industries," The Journal of Industrial Economics, 35(4), 567-581.

FIori, Giuseppe, and Filippo Scoccianti (2021): "Aggregate Dynamics and Microeconomic Heterogeneity: The Role of Vintage Technology," Unpublished Manuscript, North Carolina State University.

References (cont.)

Foerster, Andrew T., Pierre-Daniel G. Sarte, and Mark W. Watson (2011):
"Sectoral versus Aggregate Shocks: A Structural Factor Analysis of Industrial Production," Journal of Political Economy, 119(1), 1-38.
Gabaix, XaVier (2011): "The granular Origins of Aggregate Fluctuations," Econometrica, 79(3), 733-772.
Gaubert, Cecile, and Oleg Itskhoki (2018): "Granular Comparative Advantage." Working Paper 24807, National Bureau of Economic Research.
di Giovanni, Julian and Andrei A. Levchenko (2012): "Country Size, International Trade, and Aggregate Fluctuations," Journal of Political Economy, 120(6), 1083-1132.
di Giovanni, Julian, Andrei A. Levchenko, and Isabelle Mejean (2014): "Firms, Destinations, and Aggregate Fluctuations," Econometrica, 82(4), 1303-1340.
Hall, Bronwyn H. (1987): "The Relationship Between Firm Size and Firm Growth in the US Manufacturing Sector," The Journal of Industrial Economics, 35(4), 583-606.

References (cont.)

Herskovic, Bernard, Bryan Kelly, Hanno Lustig, and Stijn Van Nieuwerburgh (2020): "Firm Volatility in Granular Networks," (2020): Journal of Political Economy, 128(11), 4097-4162.
Horvath, Michael (1998): "Cyclicality and Sectoral Linkages: Aggregate Fluctuations from Independent Sectoral Shocks," Review of Economic Dynamics, 1(4), 781-808.
Hulten, Charles R. (1978): "Growth Accounting with Intermediate Inputs," The Review of Economic Studies, 45(3), 511-518.
Jovanovic, BoYan (1987): "Micro Shocks and Aggregate Risk," The Quarterly Journal of Economics, 102(2), 395-409.
Kalnina, Ilze and Kokouvi Tewou (2020): "Cross-Sectional Dependence in Idiosyncratic Volatility," Unpublished Manuscript, North Carolina State University.
Kim, Chang-Jin and Charles R. Nelson (1999): "Has the U.S. Economy Become More Stable? A Bayesian Approach Based on a Markov-Switching Model of the Business Cycle," The Review of Economics and Statistics, 81(4), 608-616.

References (cont.)

Long, John B., And Charles I. Plosser. (1983): "Real Business Cycles," Journal of Political Economy, 91(1), 39-69.
Lucas, Rert E. (1977): "Understanding Business Cycles," Carnegie-Rochester Conference Series on Public Policy, 5, 7-29.
Mullen, Rory (2020): "On aggregate Fluctuations, Systemic Risk, and Covariance of Firm-Level Activity," Unpublished Manuscript, Warwick Business School.
Oberfield, Ezra (2018): "A Theory of Input-Output Architecture," Econometrica, 86(2), 559-589.
Schaal, Edouard, and Mathieu Taschereau-Dumouchel (2018): "Herding, Technology Adoption and Boom-Bust Cycles," 2018 Meeting Papers 111, Society for Economic Dynamics.
Stanley, Michael H. R., Luis A. N. Amaral, Sergey V. Buldyrev, Shlomo Havlin, Heiko Leschhorn, Philipp Maass, Michael A. Salinger, and H. Eugene Stanley (1996): "Scaling Behaviour in the Growth of Companies," Nature, 379(6568), 804-806.

References (cont.)

Stock, James H. and Mark W. Watson (2002): "Has the Business Cycle Changed and Why?," NBER Macroeconomics Annual, 17, 159-218.
Tweedle, Jesse (2018): "Correlated Shocks within Firms," Economics Letters, 163, 95-97. Xu, Yexiao, and BurtonÂ G. Malkiel (2003): "Investigating the Behavior of Idiosyncratic Volatility," The Journal of Business, 76(4), 613-645.

Overview

A.1. Mathematical appendix

A.2. Data appendix

Pseudo common and idiosyncratic factors and their relations :

 homogeneous variance and covarianceSpurious relations with homogeneous variance and covariance

$$
\begin{aligned}
& \operatorname{var}\left(\hat{y}_{i t}\right) \\
& =\sigma_{\Xi}^{2}+\sigma_{\mathrm{F}, i t}^{2} \\
& \operatorname{var}\left(e_{\mathrm{F}, i t}\right) \\
& \operatorname{var}\left(e_{\mathrm{A}, t}\right) \\
& =\left(1-\frac{1}{N_{t}}\right)\left(1-\rho_{\mathrm{F}, t}\right) \sigma_{\mathrm{F}, t}^{2} \quad \rightarrow \quad \sigma_{\mathrm{F}, t}^{2}-\rho_{\mathrm{F}, t} \sigma_{\mathrm{F}, t}^{2} \\
& =\sigma_{\mathrm{A}, t}^{2}+\frac{\sigma_{\mathrm{F}, t}^{2}}{N_{t}}+\left(1-\frac{1}{N_{t}}\right) \rho_{\mathrm{F}, t} \sigma_{\xi}^{2} \quad \rightarrow \quad \sigma_{\mathrm{A}, t}^{2}+\rho_{\mathrm{F}, t} \sigma_{\mathrm{F}, t}^{2} \\
& \operatorname{cov}\left(e_{\mathrm{F}, i t}, e_{\mathrm{A}, t}\right)=\operatorname{corr}\left(e_{\mathrm{F}, i t}, e_{\mathrm{A}, t}\right) \quad=0 \\
& \operatorname{cov}\left(e_{\mathrm{F}, i t}, e_{\mathrm{F}, i^{\prime} t}\right) \\
& \operatorname{corr}\left(e_{\mathrm{F}, i t}, e_{\mathrm{F}, i^{\prime} t}\right) \\
& =-\frac{1}{N_{t}}\left(1-\rho_{\mathrm{F}, t}\right) \sigma_{\mathrm{F}, t}^{2} \\
& \rightarrow 0 \\
& =-\frac{1}{N_{t}-1} \\
& \rightarrow \quad 0
\end{aligned}
$$

Nice properties of pseudo common and idiosyncratic factors : homogeneous variance and covariance (1/2)

Pseudo common and idiosyncratic factors with weight

$$
e_{\mathrm{A}, t}^{\mathrm{w}}=\sum_{i^{\prime}} \mathrm{w}_{i^{\prime} t} \hat{y}_{i^{\prime} t}=\varepsilon_{\mathrm{A}, t}+\sum_{i^{\prime}} \mathrm{w}_{i^{\prime} t} \varepsilon_{\mathrm{F}, i^{\prime} t} \quad \text { and } \quad e_{\mathrm{F}, i t}^{\mathrm{w}}=\hat{y}_{i t}-e_{\mathrm{A}, t}=\varepsilon_{\mathrm{F}, i t}-\sum_{i^{\prime}} \mathrm{w}_{i^{\prime} t} \varepsilon_{\mathrm{F}, i^{\prime} t}
$$

- small idiosyncratic variance of firms with large weights

$$
\operatorname{var}\left(e_{\mathrm{F}, i t}^{\mathrm{W}}\right)=\left(1-2 \mathrm{w}_{i t}+\mathrm{m}_{2}^{\mathrm{w}}\right)\left(1-\rho_{\mathrm{F}, t}\right) \sigma_{\mathrm{F}, t}^{2}
$$

- true dependency, ρ_{ξ}, does not matter for correlation b / w idiosyncratic shocks

$$
\operatorname{corr}\left(e_{\mathrm{F}, i t}, e_{\mathrm{F}, i^{\prime} t}\right)=-\frac{\mathrm{w}_{i t}+\mathrm{w}_{i^{\prime} t}-\mathrm{m}_{2}^{\mathrm{w}}}{\sqrt{1-2 \mathrm{w}_{i t}+\mathrm{m}_{2}^{\mathrm{w}}} \sqrt{1-2 \mathrm{w}_{i^{\prime} t}+\mathrm{m}_{2}^{\mathrm{w}}}}
$$

- more unequal weight tends to generate positive dependency
- less (more) weighted firms tends to be positively (negatively) correlated

Notation, notes, and remarks:
$\mathrm{w}_{i t}$ arbitrary weight,
$\mathrm{m}_{2}^{\mathrm{w}}$ measurements how much equally weighted,
$>\operatorname{cov}\left(e_{\mathrm{F}, i t}, e_{\mathrm{F}, i^{\prime} t}\right)=-\left(\mathrm{w}_{i t}+\mathrm{w}_{i^{\prime} t}-\mathrm{m}_{2}^{\mathrm{W}}\right)\left(1-\rho_{\mathrm{F}, t}\right) \sigma_{\mathrm{F}, t}^{2}$

Nice properties of pseudo common and idiosyncratic factors : homogeneous variance and covariance (2/2)

Pseudo common and idiosyncratic factors

$$
\begin{aligned}
& \operatorname{var}\left(e_{\mathrm{A}, t}\right) \\
& \operatorname{corr}\left(e_{\mathrm{A}, t}, e_{\mathrm{F}, i t}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sigma_{\mathrm{A}, t}^{2}+\mathrm{m}_{2}^{\mathrm{w}} \sigma_{\mathrm{F}, t}^{2}+\left(1-\mathrm{m}_{2}^{\mathrm{w}}\right) \rho_{\mathrm{F}, t} \sigma_{\mathrm{F}, t}^{2} \\
& =-\frac{\mathrm{w}_{i t}-\mathrm{m}_{2}^{\mathrm{w}}}{\sqrt{\frac{\sigma_{\mathrm{A}, t}^{2} / \sigma_{\mathrm{F}, t}^{2}+\rho_{\mathrm{F}, t}}{1-\rho_{\mathrm{F}, t}}+\mathrm{m}_{2}^{\mathrm{w}}} \sqrt{1-2 \mathrm{w}_{i t}+\mathrm{m}_{2}^{\mathrm{w}}}}
\end{aligned}
$$

- pseudo common and idiosyncratic shocks are correlated...it is not ideal...
- idiosyncratic factor of firm with a small (large) weight tends to be positively (negatively) correlated to the common factor
- we need $\mathrm{w}_{i t}=\mathrm{m}_{2}^{\mathrm{w}}$ to get uncorrelated pseudo common and idiosyncratic shocks.
- how? set $\mathrm{w}_{i t}=1 / N_{t}$ for all i !

Notation, useful for the next few slides, I promise...

Heterogeneous variance and covariance

numbers: 1 covariance matrix firm $i=1$

firm	1	2	3	. .	$N_{t}-1$	N_{t}
1	\checkmark					
2						
3						
:						
$N_{t}-1$						
N_{t}						

Notation:
$\sigma_{\mathrm{F}, i t}^{2} \quad$ firm i 's variance of true idiosyncratic factor, $\operatorname{var}\left(\varepsilon_{\mathrm{F}, i t}\right)$
$\bar{\sigma}_{\mathrm{F}}^{2} \quad$ average of true idiosyncratic factor,
$\mathrm{C}_{\mathrm{F}, i i^{\prime}} \quad$ covariance of true idiosyncratic factor b / w firms i and i^{\prime},
$\overline{\mathrm{C}}_{\mathrm{F}, i}$ average of firms i 's covariance of true idiosyncratic factor,

$$
\begin{array}{r}
N_{t}^{-1} \sum_{i} \sigma_{\mathrm{F}, i t}^{2} \\
\operatorname{cov}\left(\varepsilon_{\mathrm{F}, i t}, \varepsilon_{\mathrm{F}, i^{\prime} t}\right) \\
\left(N_{t}-1\right)^{-1} \sum_{i^{\prime} \neq i} \mathrm{C}_{\mathrm{F}, i i^{\prime}}
\end{array}
$$

Notation, useful for the next few slides, I promise...

Heterogeneous variance and covariance

numbers: N_{t} covariance matrix firm

1
2
3
\vdots
$N_{t}-1$

1	2	3	\cdots	$N_{t}-1$	N_{t}
\checkmark					
	\checkmark				
		\checkmark			
			\ddots		
				\checkmark	
					\checkmark

Notation:

$\sigma_{\mathrm{F}, i t}^{2} \quad$ firm i 's variance of true idiosyncratic factor,

$$
\operatorname{var}\left(\varepsilon_{\mathrm{F}, i t}\right)
$$

$\bar{\sigma}_{\mathrm{F}}^{2}$

average of true idiosyncratic factor, $N_{t}^{-1} \sum_{i} \sigma_{\mathrm{F}, i t}^{2}$
$\mathrm{C}_{\mathrm{F}, i i^{\prime}} \quad$ covariance of true idiosyncratic factor b / w firms i and i^{\prime},
$\overline{\mathrm{C}}_{\mathrm{F}, i}$ average of firms i 's covariance of true idiosyncratic factor,
$\overline{\overline{\mathrm{C}}}_{\mathrm{F}} \quad$ average covariance of true idiosyncratic factor,
$\left(N_{t}-1\right)^{-1} \sum_{i^{\prime} \neq i} \mathrm{C}_{\mathrm{F}, i i^{\prime}}$ $N_{t}^{-1} \sum_{i} \overline{\mathrm{C}}_{\mathrm{F}, i}$

Notation, useful for the next few slides, I promise...

Heterogeneous variance and covariance

$$
\begin{array}{ll}
\text { numbers: } 1 & \\
\text { covariance matrix } & \text { firm } \\
i=1 & 1 \\
i^{\prime}=2 & 2 \\
& 3 \\
& \vdots \\
& N_{t}-1
\end{array}
$$

1	2	3	\cdots	$N_{t}-1$	N_{t}
\checkmark					

Notation:

$$
\begin{aligned}
\sigma_{\mathrm{F}, i t}^{2} & \text { firm } i \text { 's variance of true idiosyncratic factor, } \\
\bar{\sigma}_{\mathrm{F}}^{2} & \text { average of true idiosyncratic factor, }
\end{aligned}
$$

$$
\operatorname{var}\left(\varepsilon_{\mathrm{F}, i t}\right)
$$

$$
N_{t}^{-1} \sum_{i} \sigma_{\mathrm{F}, i t}^{2}
$$

$\mathrm{C}_{\mathrm{F}, i i^{\prime}} \quad$ covariance of true idiosyncratic factor b / w firms i and $i^{\prime}, \operatorname{cov}\left(\varepsilon_{\mathrm{F}, i t}, \varepsilon_{\mathrm{F}, i^{\prime} t}\right)$
$\overline{\mathrm{C}}_{\mathrm{F}, i} \quad$ average of firms i 's covariance of true idiosyncratic factor,

$$
\begin{array}{r}
\left(N_{t}-1\right)^{-1} \sum_{i^{\prime} \neq i} \mathrm{C}_{\mathrm{F}, i i^{\prime}} \\
N_{t}^{-1} \sum_{i} \overline{\mathrm{C}}_{\mathrm{F}, i}
\end{array}
$$

$\overline{\overline{\mathrm{C}}}_{\mathrm{F}}$ average covariance of true idiosyncratic factor,

Notation, useful for the next few slides, I promise...

Heterogeneous variance and covariance

$$
\begin{array}{ll}
\text { numbers: } N_{t}-1 & \\
\text { covariance matrix } & \text { firm } \\
i=1 & 1 \\
& 2 \\
& 3 \\
& \vdots \\
& N_{t}-1 \\
& N_{t}
\end{array}
$$

1		2	3	\cdots	$N_{t}-1$
					N_{t}
\checkmark					
\checkmark					
\vdots					
\checkmark					
\checkmark					

Notation:

$\sigma_{\mathrm{F}, i t}^{2} \quad$ firm i 's variance of true idiosyncratic factor,
$\bar{\sigma}_{\mathrm{F}}^{2}$ average of true idiosyncratic factor,
$\mathrm{C}_{\mathrm{F}, i i^{\prime}} \quad$ covariance of true idiosyncratic factor b / w firms i and i^{\prime},

$$
\begin{array}{r}
\operatorname{var}\left(\varepsilon_{\mathrm{F}, i t}\right) \\
N_{t}^{-1} \sum_{i} \sigma_{\mathrm{F}, i t}^{2}
\end{array}
$$

$$
\overline{\mathrm{C}}_{\mathrm{F}, i} \quad \text { average of firms } i \text { 's covariance of true idiosyncratic factor, }\left(N_{t}-1\right)^{-1} \sum_{i^{\prime} \neq i} \mathrm{C}_{\mathrm{F}, i i^{\prime}}
$$

$$
\overline{\overline{\mathrm{C}}}_{\mathrm{F}} \quad \text { average covariance of true idiosyncratic factor, }
$$

$$
N_{t}^{-1} \sum_{i} \overline{\mathrm{C}}_{\mathrm{F}, i}
$$

Notation, useful for the next few slides, I promise...

Heterogeneous variance and covariance

numbers: $N_{t}\left(N_{t}-1\right)$

 covariance matrix| firm | 1 | 2 | 3 | . | $N_{t}-$ | N_{t} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | | \checkmark | \checkmark | . . | \checkmark | \checkmark |
| 2 | \checkmark | | \checkmark | . \cdot | \checkmark | \checkmark |
| 3 | \checkmark | \checkmark | | . . | \checkmark | \checkmark |
| : | ! | ! | ; | | ! | : |
| $N_{t}-1$ | \checkmark | \checkmark | \checkmark | \ldots | | \checkmark |
| N_{t} | \checkmark | \checkmark | \checkmark | . . | \checkmark | |

Notation:

$\sigma_{\mathrm{F}, i t}^{2} \quad$ firm i 's variance of true idiosyncratic factor,
$\bar{\sigma}_{\mathrm{F}}^{2} \quad$ average of true idiosyncratic factor,
$\mathrm{C}_{\mathrm{F}, i i^{\prime}} \quad$ covariance of true idiosyncratic factor b/w firms i and i^{\prime},
$\overline{\mathrm{C}}_{\mathrm{F}, i}$ average of firms i 's covariance of true idiosyncratic factor,

$$
\begin{array}{r}
\operatorname{var}\left(\varepsilon_{\mathrm{F}, i t}\right) \\
N_{t}^{-1} \sum_{i} \sigma_{\mathrm{F}, i t}^{2} \\
\operatorname{cov}\left(\varepsilon_{\mathrm{F}, i t}, \varepsilon_{\mathrm{F}, i^{\prime} t}\right) \\
\left(N_{t}-1\right)^{-1} \sum_{i^{\prime} \neq i} \mathrm{C}_{\mathrm{F}, i i^{\prime}}
\end{array}
$$

Pseudo common and idiosyncratic factors and their relations : heterogeneous variance and covariance

Spurious relations with homogeneous variance and covariance

$$
\begin{array}{llll}
\operatorname{var}\left(\hat{y}_{i t}\right) & = & \sigma_{\Xi}^{2}+\sigma_{\mathrm{F}, i t}^{2} & \\
\operatorname{var}\left(e_{\mathrm{A}, t}\right) & = & \sigma_{\Xi}^{2}+\bar{\Psi} & \rightarrow \sigma_{\Xi}^{2}+\overline{\mathrm{C}}_{\mathrm{F}} \\
\operatorname{var}\left(e_{\mathrm{F}, i t}\right) & =\left(\sigma_{\mathrm{F}, i t}^{2}-\Psi_{i}\right)-\left(\Psi_{i}-\bar{\Psi}\right) & \rightarrow\left(\sigma_{\mathrm{F}, i t}^{2}-\overline{\mathrm{C}}_{\mathrm{F}, i}\right)-\left(\overline{\mathrm{C}}_{\mathrm{F}, i}-\overline{\overline{\mathrm{C}}}_{\mathrm{F}}\right) \\
\operatorname{cov}\left(e_{\mathrm{F}, i t}, e_{\mathrm{A}, t}\right)= & \Psi_{i}-\bar{\Psi} & \rightarrow \overline{\mathrm{C}}_{\mathrm{F}, i}-\overline{\overline{\mathrm{C}}}_{\mathrm{F}} \\
\operatorname{cov}\left(e_{\mathrm{F}, i t}, e_{\mathrm{F}, i^{\prime} t}\right) & =\left(\mathrm{C}_{\mathrm{F}, i i^{\prime}}-.5 \Psi_{i}-.5 \Psi_{i}^{\prime}\right) & \rightarrow\left(\mathrm{C}_{\mathrm{F}, i i^{\prime}}-.5 \overline{\mathrm{C}}_{\mathrm{F}, i}-.5 \overline{\mathrm{C}}_{\mathrm{F}, i^{\prime}}\right) \\
& & -.5\left(\Psi_{i}-\bar{\Psi}\right)-.5\left(\Psi_{i}^{\prime}-\bar{\Psi}\right) & \\
& & -.5\left(\overline{\mathrm{C}}_{\mathrm{F}, i}-\overline{\mathrm{C}}_{\mathrm{F}}\right)-.5\left(\overline{\mathrm{C}}_{\mathrm{F}, i^{\prime}}-\overline{\mathrm{C}}_{\mathrm{F}}\right)
\end{array}
$$

Notation, notes, and remarks:

$$
\begin{aligned}
\Psi_{i} & =N_{t}^{-1} \sigma_{\mathrm{F}, i t}^{2}+\left(1-N_{t}^{-1}\right) \overline{\mathrm{C}}_{\mathrm{F}, i} \quad \rightarrow \overline{\mathrm{C}}_{\mathrm{F}, i} \\
\bar{\Psi} & =N_{t}^{-1} \sum_{i^{\prime \prime}} \Psi_{i}^{\prime \prime}=N_{t}^{-1} \bar{\sigma}_{\mathrm{F}}^{2}+\left(1-N_{t}^{-1}\right) \overline{\mathrm{C}}_{\mathrm{F}} \quad \rightarrow \overline{\overline{\mathrm{C}}}_{\mathrm{F}}
\end{aligned}
$$

Overview

A.1. Mathematical appendix

A.2. Data appendix

Summary statistics

Variable	Full sample	1980-1985	1986-2000	2001-2013
Within-firm standard deviation of labor productivity: $\operatorname{var}\left(\hat{y}_{i t}\right)$				
Mean	0.199	0.174	0.205	0.203
Standard deviation	0.226	0.171	0.232	0.238
Quantile 10\%	0.058	0.056	0.058	0.059
50\%	0.133	0.126	0.137	0.132
90\%	0.378	0.324	0.396	0.385
Observations (firms)	82,670	13,480	35,750	33,440

Pairwise within-cluster correlation of labor productivity: $\operatorname{corr}\left(\hat{y}_{i t}, \hat{y}_{i^{\prime} t}\right)$

Mean	0.106	0.086	0.060	0.150
Standard deviation	0.340	0.341	0.328	0.344
Quantile	-0.353	-0.366	-0.380	-0.321
	0.112	0.084	0.064	0.164
	0.559	0.544	0.496	0.602

Observations (pairs) 9,424,466 1,203,324 3,759,910 4,461,232
Notes: I calculate the firm i 's standard deviation and pair of i and i 's correlation at time t with a rolling window of 10 years, $[t-4, t+5]$. The correlations are only for the pairs in the same cluster. There are 53 clusters.

[Step 1]

Bureau of Economic Analysis (BEA) database.

- Industry-level deflators ($\mathrm{p}_{s t}$): Chain-Type Price Indexes for Gross Output by Industry [2012=100]
Compustat North America: Fundamental Annuals (1975-2018) databases.
- Sales (sale ${ }_{i t}$) and employments ($\mathrm{emp}_{i t}$)
[Step 2]
First, I keep the following observations in the Compustat database.
- No major mergers flag: Comparability status (compst ${ }_{i t}$) does not equal to $A B$.
- Country ISO 3 digit code (loc $_{i t}$): USA
- Currency ISO 3 digit code $\left(\operatorname{curcd}_{i t}\right)$: USD

Data construction (2/2)

Then, I exclude firms with the following criteria.

- Non-positive sales
- Non-positive employments
- Utilities sector (NAICS 22)
- Public administration sector (NAICS 91-92)

[Step 3]

I merge the Compustat sample and the industry-level BEA deflator.
I calculate the logged labor productivity as real sales divided by employments
($\ln \mathrm{sale}_{i t}-\ln \mathrm{p}_{s t}-\ln \mathrm{emp}_{i t}$) for firm i in industry s at t.

[Step 4]

Since some clusters have low observations, I merge them.

