Imperfect Exchange Rate Expectations

Giacomo Candian¹ Pierre De Leo²

¹HEC Montreal

²University of Maryland

Imperfect exchange rate expectations

Exchange rates are forward-looking & carry predictable excess returns

High interest rate currencies depreciate too little in short run

(UIP puzzle, Fama 84)

... and depreciate too much in the medium run

(UIP puzzle reversal, Engel 16, Valchev 20)

Imperfect exchange rate expectations

Exchange rates are forward-looking & carry predictable excess returns

High interest rate currencies depreciate too little in short run

(UIP puzzle, Fama 84)
... and depreciate too much in the medium run

(UIP puzzle reversal, Engel 16, Valchev 20)

Do agents' expectational errors explain exchange rate dynamics?

Use survey data to inform theories of expectation formation
 (Coibion & Gorodnichenko 15, Angeletos, Huo & Sastry 20)

Imperfect exchange rate expectations

Exchange rates are forward-looking & carry predictable excess returns

High interest rate currencies depreciate too little in short run

(UIP puzzle, Fama 84)
... and depreciate too much in the medium run

(UIP puzzle reversal, Engel 16, Valchev 20)

Do agents' expectational errors explain exchange rate dynamics?

Use survey data to inform theories of expectation formation
 (Coibion & Gorodnichenko 15, Angeletos, Huo & Sastry 20)

Is there a common thread across macro and exchange rate expectations?

This paper

- 1. FX expectations display both under and over reaction
 - Isolate forecast errors from excess returns in UIP regressions
 - Under reaction & over reaction account for UIP puzzle & reversal

This paper

- 1. FX expectations display both under and over reaction
 - Isolate forecast errors from excess returns in UIP regressions
 - Under reaction & over reaction account for UIP puzzle & reversal
- 2. Identify belief distortions consistent with under and over reaction
 - Simple model with biased beliefs on interest rate differential
 - Validate mechanism using interest rate expectations

This paper

- 1. FX expectations display both under and over reaction
 - Isolate forecast errors from excess returns in UIP regressions
 - Under reaction & over reaction account for UIP puzzle & reversal
- 2. Identify belief distortions consistent with under and over reaction
 - Simple model with biased beliefs on interest rate differential
 - Validate mechanism using interest rate expectations
- 3. Develop GE model consistent with macro & FX forecast data
 - Belief distortions on TFP and demand shocks
 - disciplined by macro survey forecast data (output & inflation)
 - Reproduces several open-economy stylized facts
 - UIP puzzle & reversal, Excess volatility, Backus-Smith, PPP, etc
 - Rationalizes switch in UIP deviations post global financial crisis
 - Forecast errors are endogenous to monetary policy

Related literature

Empirics:

- UIP regressions: Fama 84, Hassan & Mano 15, Engel 16, Valchev 20
- Survey FX expectations: Frankel & Froot 87 89, Bacchetta, Mertens & Van Wincoop 09, Stavrakeva & Tang 20a, 20b, Frankel & Chinn 19, Kalemli-Ozcan & Varela 20
- Survey macro expectations: Coibion & Gorodnichenko 15, Kohlhas & Walther 20, Bordalo, Gennaioli, Ma & Schleifer 20, Angeletos, Huo & Sastry 20

Theory:

- FX puzzles under FIRE: Engel 16, Valchev 20, Bacchetta & Van Wincoop 20, Chernov & Creal 20, Dahlquist & Panasse 20, Itskhoki & Mukhin 19 20
- FX puzzles w/o FIRE: Gourinchas & Tornell 06, Bacchetta & Van Wincoop 06, Burnside, Han, Hirshleifer, & Wang 11, Ilut 12, Yu 13, Stavrakeva & Tang 20a, Bunsupha 18
- PE theories of reversal in forecast errors: Valente, Vasudevan & Wu (2021), Molavi, Tahbaz-Salehi, Vedolin (2021)

Excess returns predictability regression:

$$\underbrace{\Delta s_{t+k} - (r_{t+k-1} - r_{t+k-1}^{\star})}_{\text{Excess foreign-currency return}} = \alpha_k + \beta_k (r_t - r_t^{\star}) + \varepsilon_{t+k}$$

Excess returns predictability regression:

$$\underbrace{\Delta s_{t+k} - (r_{t+k-1} - r_{t+k-1}^{\star})}_{\text{Excess foreign-currency return}} = \alpha_k + \beta_k (r_t - r_t^{\star}) + \varepsilon_{t+k}$$

Under UIP & RE:

$$\beta_k \equiv \frac{\mathsf{Cov}\left(\Lambda_{t+k}, r_t - r_t^{\star}\right)}{\mathsf{Var}(r_t - r_t^{\star})} = 0 \quad \forall k \ge 1$$

Excess returns predictability regression:

$$\underbrace{\Delta s_{t+k} - (r_{t+k-1} - r_{t+k-1}^{\star})}_{\text{Excess foreign-currency return}} = \alpha_k + \beta_k (r_t - r_t^{\star}) + \varepsilon_{t+k}$$

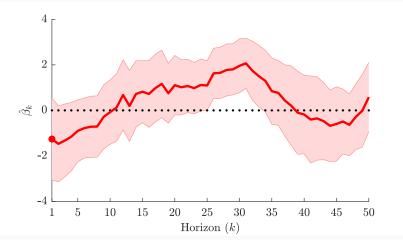
Under UIP & RE:

$$eta_k \equiv rac{\mathsf{Cov}\left(\Lambda_{t+k}, r_t - r_t^\star
ight)}{\mathsf{Var}(r_t - r_t^\star)} = 0 \hspace{0.5cm} orall k \geq 1$$

In the data:

 $\hat{eta}_k <$ 0 at short k: UIP puzzle (Fama 84) $\hat{eta}_k >$ 0 at medium k: UIP puzzle reversal (Engel 16, Valchev 20)

$$\Delta s_{t+k} - (r_{t+k-1} - r_{t+k-1}^{\star}) = \alpha_k + \beta_k (r_t - r_t^{\star}) + \varepsilon_{t+k}$$



Exchange rates: CAD, DKK, DEM-EUR, JPY, NOK, SEK, CHF, GBP

Time periods: 1990:m1-2007:m12

Decomposition of excess returns

Decompose excess returns:

(Frankel & Froot 89)

$$\underbrace{\Delta s_{t+k} - \left(r_{t+k-1} - r_{t+k-1}^{\star}\right)}_{\text{Excess foreign-currency return}} = \underbrace{\left(s_{t+k} - E_{t+k-1}^{s} s_{t+k}\right)}_{\text{Forecast error}} - \underbrace{\xi_{t+k-1}}_{\text{Expected return}} = \underbrace{\xi_{t+k-1}^{s} s_{t+k}}_{\text{Expected return}}$$

Decomposition of excess returns

Decompose excess returns:

(Frankel & Froot 89)

$$\underbrace{\frac{\Delta s_{t+k} - \left(r_{t+k-1} - r_{t+k-1}^{\star}\right)}_{\text{Excess foreign-currency return}}}_{\Lambda_{t+k}} = \underbrace{\left(s_{t+k} - E_{t+k-1}^{s} s_{t+k}\right)}_{\text{Forecast error}} - \underbrace{\xi_{t+k-1}}_{\text{Expected return}}$$

Decompose β_k s:

$$\underbrace{\frac{\mathsf{Cov}\left(\Lambda_{t+k}, r_t - r_t^{\star}\right)}{\mathsf{Var}(r_t - r_t^{\star})}}_{\beta_k} = \underbrace{\frac{\mathsf{Cov}\left(s_{t+k} - E_{t+k-1}^{s} s_{t+k}, r_t - r_t^{\star}\right)}{\mathsf{Var}(r_t - r_t^{\star})}}_{\beta_k^{s}} - \underbrace{\frac{\mathsf{Cov}\left(\xi_{t+k-1}, r_t - r_t^{\star}\right)}{\mathsf{Var}(r_t - r_t^{\star})}}_{\beta_k^{\xi}}$$

Decomposition of excess returns

Decompose excess returns:

(Frankel & Froot 89)

$$\underbrace{\frac{\Delta s_{t+k} - \left(r_{t+k-1} - r_{t+k-1}^{\star}\right)}_{\text{Excess foreign-currency return}}}_{\Lambda_{t+k}} = \underbrace{\left(s_{t+k} - E_{t+k-1}^{s} s_{t+k}\right)}_{\text{Forecast error}} - \underbrace{\xi_{t+k-1}}_{\text{Expected return}}$$

Decompose β_k s:

$$\underbrace{\frac{\mathsf{Cov}\left(\Lambda_{t+k}, r_t - r_t^{\star}\right)}{\mathsf{Var}(r_t - r_t^{\star})}}_{\beta_k} = \underbrace{\frac{\mathsf{Cov}\left(s_{t+k} - E_{t+k-1}^{s} s_{t+k}, r_t - r_t^{\star}\right)}{\mathsf{Var}(r_t - r_t^{\star})}}_{\beta_k^{s}} - \underbrace{\frac{\mathsf{Cov}\left(\xi_{t+k-1}, r_t - r_t^{\star}\right)}{\mathsf{Var}(r_t - r_t^{\star})}}_{\beta_k^{s}}$$

Predictability regression on forecast errors:

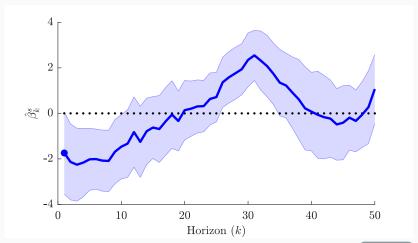
$$\underbrace{\left(s_{t+k} - E_{t+k-1}^{s} s_{t+k}\right)}_{\text{Forecast error}} = \alpha_k^{s} + \beta_k^{s} (r_t - r_t^{\star}) + \nu_{t+k}$$

Data: 3m exchange rate consensus forecast from Consensus Economics

Forecast error predictability

Time periods: 1990:m1-2007:m12

$$s_{t+k} - E_{t+k-1}^s s_{t+k} = \alpha_k + \beta_k^s (r_t - r_t^*) + \varepsilon_{t+k}$$



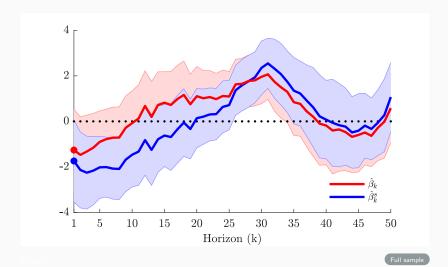
Source: Consensus Economics

Exchange rates: CAD, DKK, DEM-EUR, JPY, NOK, SEK, CHF, GBP

Ill sample 8 / 28

Excess return vs. Forecast error predictability

$$s_{t+k} - E_{t+k-1}^s s_{t+k} = \alpha_k + \beta_k^s (r_t - r_t^*) + \varepsilon_{t+k}$$



Implications for behavioral

theories of exchange rates

Standard foreign-exchange no-arbitrage condition:

$$E_t^s s_{t+1} - s_t = \underbrace{r_t - r_t^*}_{x_t} - \xi_t$$

Standard foreign-exchange no-arbitrage condition:

$$E_t^s s_{t+1} - s_t = \underbrace{r_t - r_t^*}_{\mathsf{x}_t} - \xi_t$$

Assume x_t follows an AR(1) process:

$$x_t = \rho x_{t-1} + \varepsilon_t$$
 $\varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$

Standard foreign-exchange no-arbitrage condition:

$$E_t^s s_{t+1} - s_t = \underbrace{r_t - r_t^*}_{\mathsf{x}_t} - \xi_t$$

Assume x_t follows an AR(1) process:

$$x_t = \rho x_{t-1} + \varepsilon_t$$
 $\varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$

Agents observe x_t . Agents' beliefs about the process for x_t :

$$\begin{aligned} x_t &= z_t \\ z_t &= \rho z_{t-1} + \varepsilon_t \end{aligned} \qquad \varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$$

Standard foreign-exchange no-arbitrage condition:

$$E_t^s s_{t+1} - s_t = \underbrace{r_t - r_t^*}_{\mathsf{x}_t} - \xi_t$$

Assume x_t follows an AR(1) process:

$$x_t = \rho x_{t-1} + \varepsilon_t$$
 $\varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$

Agents observe x_t . Agents' beliefs about the process for x_t :

$$egin{aligned} x_t &= z_t +
u_t \end{aligned} \qquad egin{aligned}
u_t &\sim \mathcal{N}(0, ilde{\sigma}_{
u}^2) \\ z_t &=
ho z_{t-1} + arepsilon_t \end{aligned} \qquad egin{aligned}
\varepsilon_t &\sim \mathcal{N}(0, \sigma_{arepsilon}^2) \end{aligned}$$

Two sources of belief distortion:

1. $\tilde{\sigma}_{\nu}^{2} > 0$: agents perceive x_{t} to be more transitory than it actually is

Standard foreign-exchange no-arbitrage condition:

$$E_t^s s_{t+1} - s_t = \underbrace{r_t - r_t^*}_{x_t} - \xi_t$$

Assume x_t follows an AR(1) process:

$$x_t = \rho x_{t-1} + \varepsilon_t$$
 $\varepsilon_t \sim \mathcal{N}(0, \sigma_{\varepsilon}^2)$

Agents observe x_t . Agents' beliefs about the process for x_t :

$$egin{aligned} x_t &= z_t +
u_t \end{aligned} \qquad egin{aligned}
u_t &\sim \mathcal{N}(0, ilde{\sigma}_{
u}^2) \\ z_t &= ilde{
ho} z_{t-1} + arepsilon_t \end{aligned} \qquad egin{aligned}
arepsilon_t &\sim \mathcal{N}(0, \sigma_{arepsilon}^2) \end{aligned}$$

Two sources of belief distortion:

- 1. $\tilde{\sigma}_{\nu}^{2} > 0$: agents perceive x_{t} to be more transitory than it actually is
- 2. $\tilde{\rho} > \rho$: agents perceive ε_t to be too persistent

Evolution of beliefs

Subjective expectations about the interest differential evolve according to:

$$E_t^s x_{t+1} = (1 - \kappa) \tilde{\rho} E_{t-1}^s x_t + \kappa \tilde{\rho} x_t$$

The Kalman gain κ and the conditional variance Σ at steady state:

$$\kappa = rac{ ilde{
ho}^2 \Sigma + \sigma_arepsilon^2}{ ilde{
ho}^2 \Sigma + \sigma_arepsilon^2 + \sigma_arepsilon^2}; \hspace{0.5cm} \Sigma = (1-\kappa)(ilde{
ho}^2 \Sigma + \sigma_arepsilon^2)$$

Note:
$$\tilde{\sigma}_{\nu}^2 = 0 \Rightarrow \kappa = 1$$

Equilibrium exchange rate

Equilibrium exchange rate

$$s_t = -\sum_{j=0}^{\infty} E_t^s x_{t+j} + \sum_{j=0}^{\infty} E_t^s \xi_{t+j} + \lim_{T \to \infty} E_t^s s_{t+T}$$

Equilibrium exchange rate

Equilibrium exchange rate

$$s_t = -\sum_{j=0}^{\infty} E_t^s x_{t+j} + \sum_{j=0}^{\infty} E_t^s \xi_{t+j} + \lim_{T \to \infty} E_t^s s_{t+T}$$

Simplifying assumptions

(relax both in GE model)

- 1. $\xi_t = 0$, $\forall t$: no expected ex. ret. (e.g. risk premia, convenience yields)
- 2. $\lim_{T\to\infty} E_t^s s_{t+T} = 0$: stationary & correctly perceived long-run level

Equilibrium exchange rate

Equilibrium exchange rate

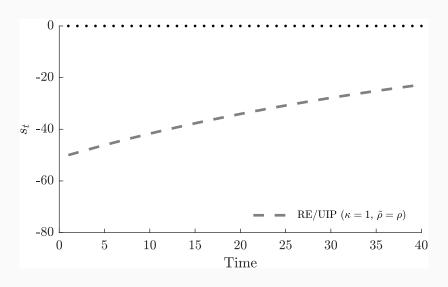
$$s_t = -\sum_{j=0}^{\infty} E_t^s x_{t+j} + \sum_{j=0}^{\infty} E_t^s \xi_{t+j} + \lim_{T \to \infty} E_t^s s_{t+T}$$

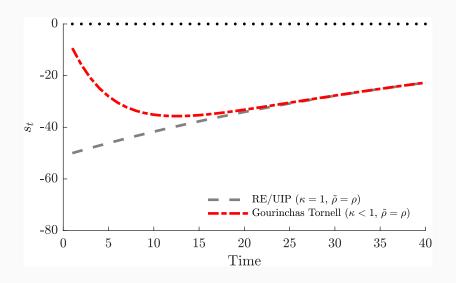
Simplifying assumptions

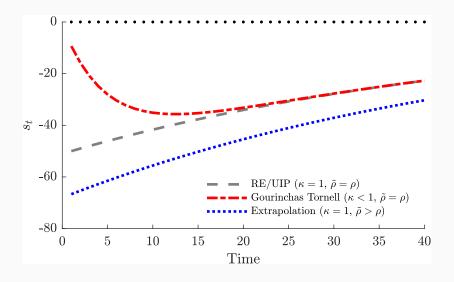
(relax both in GE model)

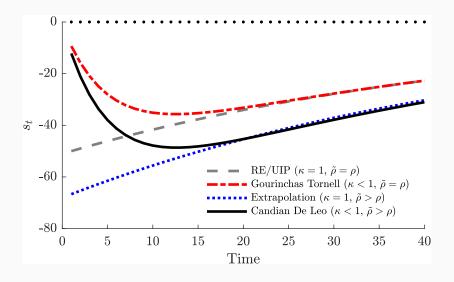
- 1. $\xi_t = 0$, $\forall t$: no expected ex. ret. (e.g. risk premia, convenience yields)
- 2. $\lim_{T\to\infty} E_t^s s_{t+T} = 0$: stationary & correctly perceived long-run level

$$\implies s_t = -x_t - \frac{\tilde{\rho}}{1-\rho} \kappa \sum_{i=0}^{\infty} [(1-\kappa)\tilde{\rho}]^i x_{t-i}$$



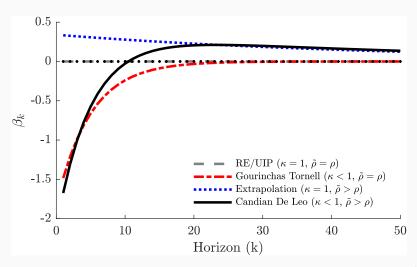






Excess returns regression

$$\Lambda_{t+k} = \alpha_k + \beta_k x_t + \varepsilon_{t+k}$$



Proposition

The following holds true for the excess return predictability coefficient β_k :

- If $\tilde{\rho} \leq \rho$, then β_k is negative for all $k \geq 1$.
- If $\rho < \tilde{\rho} < \bar{\rho}(\kappa)$, then there exists a $\bar{k} > 1$ such that β_k is negative for $k < \bar{k}$ and positive for $k \ge \bar{k}$. β_k converges to zero as $k \to \infty$.
- If $\tilde{\rho} \geq \bar{\rho}(\kappa)$, then β_k is positive for all $k \geq 1$.

Delayed overshooting & magnified adjustment

Excess comovement

Testable implication

- Necessary condition for β_k reversal: Following an innovation in the interest rate differential, interest rate expectations initially under-react, while subsequently over-react.
- We verify this is a robust property of interest rate expectations data

Biased beliefs in GE

GE model: Baseline environment

Two-country New-Keynesian model

Households Firms Market clearing

Central banks target CPI inflation

$$r_t = \phi_\pi \pi_t \quad r_t^\star = \phi_\pi \pi_t^\star$$

• Incomplete international asset markets

$$E_t^s \Delta s_{t+1} = r_t - r_t^* - \xi_t$$

- Households derive liquidity services from government bonds
 - Endogenous time-varying expected excess returns $(\xi_t \propto -(r_t r_t^*))$ Nagel 16, Engel 4, Engel & Wu 20

GE model: Baseline environment

Two-country New-Keynesian model

Households Firms Market clearing

Central banks target CPI inflation

$$r_t = \phi_\pi \pi_t \quad r_t^* = \phi_\pi \pi_t^*$$

• Incomplete international asset markets

$$E_t^s \Delta s_{t+1} = r_t - r_t^* - \xi_t$$

- Households derive liquidity services from government bonds
 - Endogenous time-varying expected excess returns $(\xi_t \propto -(r_t r_t^*))$ Nagel 16, Engel 16, Engel & Wu 20
- Belief distortions ($\tilde{\rho} > \rho$ and $\kappa < 1$) about:

- TFP shocks
- Demand (preference) shocks
- \Rightarrow Agents make forecast errors on endogenous variables (e.g., interest rates, output, inflation, exchange rates, etc.)

GE model: Calibration approach

1. Calibrate standard open-economy parameters to conventional values

+ Shocks relative volatility to match $ho(\Delta q_t, \Delta(c_t-c_t^\star)) pprox -0.20$

GE model: Calibration approach

- 1. Calibrate standard open-economy parameters to conventional values
 - + Shocks relative volatility to match $ho(\Delta q_t, \Delta(c_t c_t^\star)) pprox -0.20$
- 2. Calibrate belief distortions to match moments of macro forecast errors
 - 2.1 Forecast revisions predict subsequent forecast errors ($\beta^{CG} > 0$) (Coibion & Gorodnichenko 15)

$$x_{t+3} - E_t^s x_{t+3} = \alpha^{CG} + \beta^{CG} (E_t^s x_{t+3} - E_{t-1}^s x_{t+3}) + \varepsilon_{t+3}^{CG}.$$

2.2 Current outcomes predict subsequent forecast errors ($\beta^{KW} < 0$) (Kohlhas & Walther 18)

$$x_{t+3} - E_t^s x_{t+3} = \alpha^{KW} + \beta^{KW} x_t + \varepsilon_{t+3}^{KW}.$$

$$y_t = y_t - y_t$$

$$(-f \land y_t) = y_t - y_t -$$

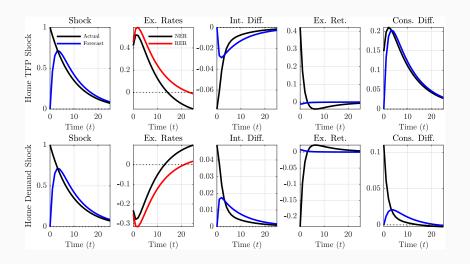
We choose $x = y^{US}, \pi^{US}$ (cf Angeletos, Huo & Sastry 20)

Baseline calibration

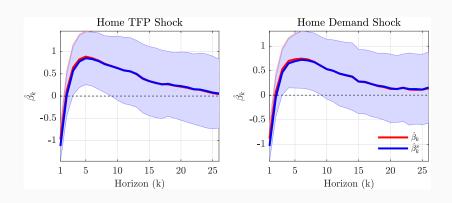
Parameter	Interpretation	Value	Parameter	Interpretation	Value
A. Preferences and Technology			ϕ_{π} Monetary policy inflation response		2.50
β	Discount factor	0.99	α	Elasticity of liquidity function	0.15
σ	Risk aversion	5.00			
φ	Inverse Frisch elasticity	1.00	B. Shocks a	and Beliefs	
λ_p	1- Probability of price reset	0.75	$\sigma_{\zeta}/\sigma_{a}$	Relative std of shocks	2.25
γ	Openness	0.05	ρ_{x}	Shocks persistence	0.90
θ	Trade elasticity	1.50	$ ilde{ ho}_{ imes}$	Shocks perceived persistence	0.98
δ	Intermediation cost	0.001	$\kappa_{\scriptscriptstyle X}$	Kalman gain	0.47

	Data	Model		Data	Model
A. Coibion-Gorodni	chenko R	Regressions	B. Kohlhas-Walthe	r Regres	sions
β^{CG} Inflation	0.60 (0.53)	0.80 (0.92)	β^{KW} Inflation	-0.13 (0.08)	-0.03 (0.08)
β^{CG} Output	0.66 (0.20)	0.66 (0.24)	β^{KW} Output	-0.08 (0.05)	-0.13 (0.07)
$\beta^{\it CG}$ Interest rate	0.64 (0.17)	0.80 (0.92)	β^{KW} Interest rate	-0.09 (0.03)	-0.03 (0.08)

IRFs to a Home TFP improvement



Predictability Regressions in GE



$$\Lambda_{t+k} = \alpha_k + \beta_k (r_t - r_t^*) + \varepsilon_{t+k}$$

Decomposition

Exchange rate dynamics in GE

	Data	M	odel		Data	Me	odel
Moments		$\alpha = 0$	$\alpha = 0.15$	Moments		$\alpha = 0$	$\alpha = 0.15$
A. Exchange Rates and	B. Excess Returns Predictability						
$\rho(\Delta s_t)$	0.16	0.29	0.28	β_1	-1.23 (0.90)	-0.81 (0.16)	-0.88 (0.20)
$\sigma(\Delta s_t)/\sigma(\Delta y_t)$	6.26	3.05	3.12	β_1^s	-1.74 (0.92)	-0.81 (0.16)	-1.04 (0.20)
$\rho(q_t)$	0.95	0.95	0.94	β_1^{ξ}	-0.46 (0.26)	0.00 (0.00)	-0.15 (0.00)
$\rho(\Delta q_t, \Delta s_t)$	0.99	1.00	1.00	Fama R ²	0.02	0.06	0.05
$\rho(\Delta q_t, \Delta(c_t - c_t^*))$	-0.17	-0.19	-0.19	$\sum_{k} \beta_{k}^{q}$	> 0	> 0	> 0
$\sigma(r_t-r_t^\star)/\sigma(\Delta s_t)$	0.12	0.31	0.27				
$\rho(r_t-r_t^\star)$	0.77	0.72	0.71	C. Stavrake	/a-Tang Regr	essions	
$\rho(\Delta c_t, \Delta c_t^\star)$	0.18	-0.05	-0.06	β^{ST}	0.17 (0.02)	0.47 (0.08)	0.48 (0.08)

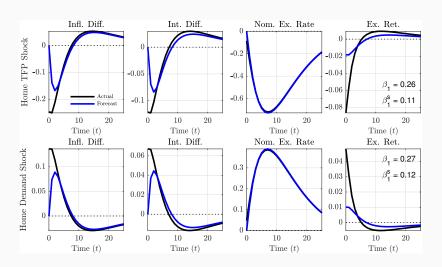
The New Fama Puzzle

- \bullet Fama β turns positive after 2008 crisis ("The New Fama Puzzle")
 - Due to switch of covariance bwn forecast errors & interest differentials

Bussiere et al. 18

- In GE, UIP violations depend on:
 - (a) agents' biases
 - (b) structural relationships implied by the model
- ⇒ UIP violations are endogenous to monetary policy regime
 - Our GE model can rationalize New Fama Puzzle (β_1^s) 's differ across policy regimes)
 - Interpret post-2008 passive monetary/active fiscal policy regime Bianchi & Melosi 17

The New Fama Puzzle: IRFs under passive monetary policy



The New Fama Puzzle: Fama β across policy regimes

	Data			Model	
Pre-2008 β_1	-1.26 (0.90)	AM/PF	-0.88 (0.20)	-0.88 (0.20)	-0.88 (0.20)
Post-2008 β_1	1.93 (2.30)	PM/AF	0.26 (0.02)	0.55 (0.17)	0.56 (0.17)
Tax rule			$ \rho_{\tau} = 0 \delta_{y} = 0 $	$\rho_{\tau} = 0 \ \delta_y = 0.25$	$\rho_{\tau} = 0.45 \ \delta_{y} = 0.25$

Tax rule:

$$\tilde{\tau}_t = \rho_\tau \tilde{\tau}_t + (1 - \rho_\tau) \left[\delta_b \tilde{\mathcal{B}}_{H,t-1} + \delta_y (\hat{y}_t - \hat{y}_t^n) \right]$$

Conclusions

Exchange rate expectations display both under and over reaction

- Account for UIP puzzle and reversal (Fama 84, Engel 16)
- Similar patterns in macro expectations (Angeletos et al. 20)
- → provides new discipline on models of exchange rate expectations

Consistent with two-country model with biased beliefs

- Explains forecast error predictability of macro-variables & FX
- Explain many FX puzzles w/o relying on exogenous UIP shocks
- Explain switch in direction of UIP deviations post-2008

Backup slides

IRFs to interest rate innovation: Model prediction

In the simple model, exchange rate expectations under & over react because interest rate expectations under & over react to shocks

Define χ_k as the response of the 1-step-ahead **interest rate forecast error** to an innovation in the interest rate process:

$$\chi_{k} = \frac{\partial (x_{t+k} - E^{s}_{t+k-1} x_{t+k})}{\partial \varepsilon_{t}} \quad \forall k \geq 0.$$

IRFs to interest rate innovation: Model prediction

In the simple model, exchange rate expectations under & over react because interest rate expectations under & over react to shocks

Define χ_k as the response of the 1-step-ahead **interest rate forecast error** to an innovation in the interest rate process:

$$\chi_{k} = \frac{\partial (x_{t+k} - E^{s}_{t+k-1} x_{t+k})}{\partial \varepsilon_{t}} \quad \forall k \geq 0.$$

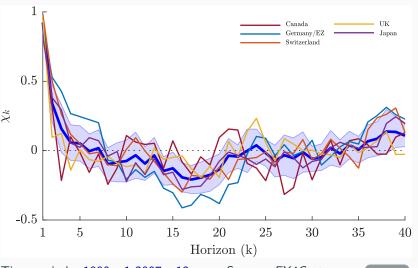
• **Testable implication:** β_k switch from negative to positive *only if* χ_k switch from positive to negative

Estimate χ_k by local projections

(Jorda 05)

IRFs to interest rate innovation

$$x_{t+k} - E_{t+k-1} x_{t+k} = \psi_k + \chi_k \hat{\varepsilon}_t + u_{t+k}$$



Time periods: 1990:m1-2007:m12 Source: FX4Casts

31 / 28

Existing theories of behavioral expectations (III)

Diagnostic Expectations BGS 18, BGLS 19:

$$E_t^{\theta} x_{t+1} = E_t x_{t+1} + \theta [E_t x_{t+1} - E_{t-1} x_{t+1}]. \tag{1}$$

Lemma

Under diagnostic expectations of the form (1)

$$\beta_1 = \rho(1+\rho)\theta > 0$$

$$\beta_i = 0 \quad \forall i > 1$$

Robust to adding recency effects.

Evidence

$$\begin{array}{c|cccc} & \beta_j & \beta_j^s & \beta_j^\xi \\ \hline j \leq H & \beta_j < 0 & \beta_j^s < 0 & \beta_j^\xi \approx 0 \\ & \text{Fama 84} & \text{FF 89} \\ \hline j > H & \beta_j > 0 & \beta_j^s > 0 & \beta_j^\xi \approx 0 \\ & \text{Engel 16} & \text{This paper} \end{array}$$

$$\underbrace{\Delta s_{t+1} - \left(r_t - r_t^\star\right)}_{\text{excess returns } \Lambda_{t+1}} = \alpha_1 + \beta_1 \left(r_t - r_t^\star\right)$$

$$\underbrace{\Delta s_{t+j+1} - \left(r_{t+j} - r_{t+j}^\star\right)}_{\text{excess returns } \Lambda_{t+j+1}} = \alpha_j + \beta_j \left(r_t - r_t^\star\right)$$

$$\underbrace{\Delta s_{t+j+1} - \left(r_{t+j} - r_{t+j}^\star\right)}_{\text{excess returns } \Lambda_{t+j+1}} = \underbrace{\left(s_{t+j+1} - E_{t+j}^s s_{t+j+1}\right)}_{\text{exp. errors}} - \xi_{t+j}$$

$$\underbrace{\left(s_{t+j+1} - E_{t+j}^s s_{t+j+1}\right)}_{\text{exp. errors}} = \alpha_j^s + \beta_j^s \left(r_t - r_t^\star\right)$$

Home Household

$$\max E_0^s \sum_{t=0}^{\infty} (\beta^t \zeta_t) \left[\frac{C_t^{1-\sigma} - 1}{1-\sigma} - \frac{L_t^{1+\varphi}}{1+\varphi} + \frac{1}{1-\gamma} \left(\frac{\textit{M}_{\textit{H},t},}{\textit{P}_t} + \kappa \frac{\textit{B}_{\textit{H},t}}{\textit{P}_t} \right)^{1-\gamma} \right],$$

subject to

$$\begin{split} & P_t C_t + M_{H,t} + B_{H,t+1} + B_{H,t+1}^m + S_t B_{H,t+1}^{*m} \leq \\ & W_t L_t + M_{H,t-1} + R_{t-1} B_{H,t} + R_{t-1}^m B_{H,t}^{*m} + S_t R_{t-1}^{*m} B_{H,t}^{*m} + \Pi_t - T_t. \end{split}$$

Consumption basket:

$$C_t \equiv \left((1 - \gamma)^{\frac{1}{\theta}} (C_{Ht})^{\frac{\theta - 1}{\theta}} + \gamma^{\frac{1}{\theta}} (C_{Ft})^{\frac{\theta - 1}{\theta}} \right)^{\frac{\theta}{\theta - 1}} \quad \theta > 0, \gamma \in [0, 1/2)$$

Home Firms

When the have a chance $(1 - \lambda_p)$, set prices in domestic currency to maximize:

$$E_t^s \sum_{s=0}^{\infty} (\lambda_p)^s M_{t,t+s} \left[\tilde{P}_t(h) Y_{t+s}^d(h) - W_{t+s} L_{t+s}(h) \right],$$

subject to

$$Y_t(h) = A_t L_t(h),$$

$$Y_t^d(h) = \left(\frac{P_t(h)}{P_{Ht}}\right)^{-\nu} \left(\frac{P_{Ht}}{P_t}\right)^{-\theta} \left[(1-\gamma)C_t + \gamma \mathcal{Q}_t^{\theta} C_t^*\right],$$

Return

Shocks and Expectations

Each exogenous disturbance $x_t \in \{\log A_t, \log A_t^*, \log \zeta_t, \log \zeta_t^*\}$, follows:

$$x_t = \rho_x x_{t-1} + \varepsilon_t^x, \quad \varepsilon_t^x \sim \mathcal{N}(0, \sigma_x^2).$$

Households and firms observe the realizations of x_t but believe:

$$\begin{split} & \mathbf{x}_t = \mathbf{z}_t^{\mathsf{x}} + \boldsymbol{\nu}_t^{\mathsf{x}}, & \boldsymbol{\nu}_t^{\mathsf{x}} \sim \mathcal{N}(\mathbf{0}, \tilde{\sigma}_{\boldsymbol{\nu}, \mathsf{x}}^2), \\ & \mathbf{z}_t^{\mathsf{x}} = \tilde{\rho}_{\mathsf{x}} \mathbf{z}_{t-1}^{\mathsf{x}} + \boldsymbol{\varepsilon}_t^{\mathsf{x}}, & \boldsymbol{\varepsilon}_t^{\mathsf{x}}, \sim \mathcal{N}(\mathbf{0}, \sigma_{\mathsf{x}}^2). \end{split}$$

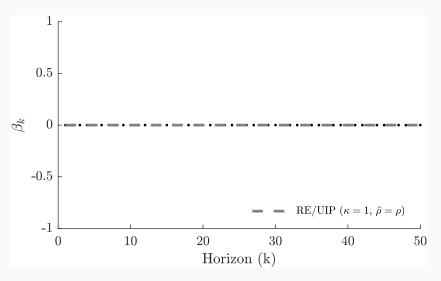
Existing theories of behavioral expectations (I)

Special case: Distorted Beliefs / Adaptive Expectations ($\tilde{\sigma}_{\nu}^2 > 0 \ \& \ \tilde{\rho} = \rho$)

$$s_t - s_t^{RE} = \frac{1}{1 - \rho} \Big(E_t x_{t+1} - E_t^s x_{t+1} \Big) = \frac{1}{1 - \rho} \sum_{i=0}^{\infty} (\rho (1 - \kappa))^{i+1} \varepsilon_{t-i}$$

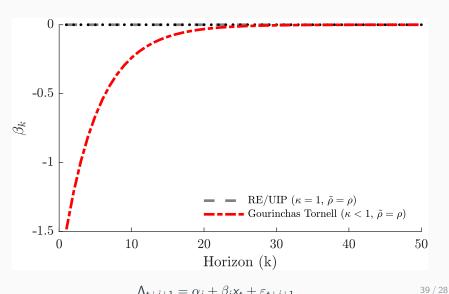
$$\beta_{j+1} = -[\rho(1-\kappa)]^{j} \frac{\rho(1-\rho(1-\kappa))(1-\kappa)(1+\rho)}{1-(1-\kappa)\rho^{2}} \le 0 \quad \forall j \ge 0$$

Implied β s



$$\Lambda_{t+i+1} = \alpha_i + \beta_i x_t + \varepsilon_{t+i+1}$$

Implied β s



 $\Lambda_{t+i+1} = \alpha_i + \beta_i x_t + \varepsilon_{t+i+1}$

Existing theories of behavioral expectations (II)

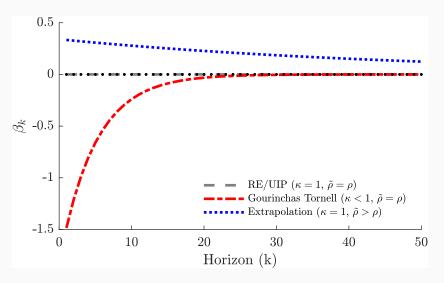
Special case: Pure Extrapolation Bias. $(\tilde{\sigma}_{\nu}^2 = 0 \& \tilde{\rho} > \rho)$

$$s_t = -rac{1}{1- ilde{
ho}} x_t = \underbrace{rac{1-
ho}{1- ilde{
ho}}}_{>1} s_t^{RE}$$

$$\beta_j = \rho^j \frac{\tilde{\rho} - \rho}{1 - \tilde{\rho}} > 0$$

Diagnostic Expectations

Implied β s



$$\Lambda_{t+i+1} = \alpha_i + \beta_i x_t + \varepsilon_{t+i+1}$$

Rational expectations equilibrium

Special case: Rational Expectations ($ilde{\sigma}_{
u}^2=0$ & $ilde{
ho}=
ho$)

$$s_t^{RE} = -\frac{1}{1-\rho} x_t$$

Lemma

Under rational expectations, excess returns are unpredictable at all horizons:

$$eta_j \equiv rac{\mathsf{Cov}\left(oldsymbol{\Lambda}_{t+j+1}, x_t
ight)}{\mathsf{Var}(\mathsf{x_t})} = 0 \hspace{0.5cm} orall j \geq 0.$$

UIP puzzle and reversal

Proposition

The Fama predictability coefficient in the model is:

$$\beta_1 = \frac{1 - (1 - \kappa)\tilde{\rho}}{1 - \tilde{\rho}} \left(\frac{\tilde{\rho}\kappa}{1 - (1 - \kappa)\tilde{\rho}\rho} - \rho \right)$$

The Fama coefficient is negative as long as $\tilde{\rho} < \left[(1 - \kappa) \rho + \frac{\kappa}{\rho} \right]^{-1} = \bar{\rho}$. This condition is likely to be satisfied if $\tilde{\rho}$ is not much larger than ρ .

Delayed overshooting

Delayed overshooting with magnified adjustment

(Eichenbaum & Evans, 1995, Engel, 2016)

Proposition

There is delayed overshooting at horizon τ if and only if $\frac{\sigma_{\nu}^2}{\sigma_{\varepsilon}^2} > 0$ and:

$$\tau < \frac{\ln\left(\frac{1-\rho}{\kappa\tilde{\rho}(1-\tilde{\rho}(1-\kappa))}\left((1-\tilde{\rho})\left[1-(1-\kappa)\frac{\tilde{\rho}}{\rho}\right]+\kappa\tilde{\rho}\right)\right)}{\ln\left((1-\kappa)\frac{\tilde{\rho}}{\rho}\right)} = \bar{\tau}$$

Engel (2016) puzzle

The Engel puzzle says that high interest rate currencies tend to be strong relative to the UIP exchange rate. Formally, this can be expressed as:

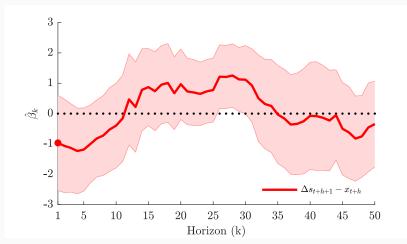
$$\mathsf{Cov}(s_t - s_t^{IP}, x_t) < 0 \qquad \sum_{k=0}^{\infty} \beta_{k+1} > 0$$

Proposition

The model with distorted beliefs and extrapolation explains the Engel puzzle as long as:

$$\tilde{\rho} - \rho > \frac{\tilde{\rho}\kappa(1-\rho)}{1-(1-\kappa)\tilde{\rho}} \left(\frac{(1-\kappa)\tilde{\rho}(\rho^{-1}-\rho)}{1-(1-\kappa)\tilde{\rho}\rho} \right) > 0.$$
 (2)

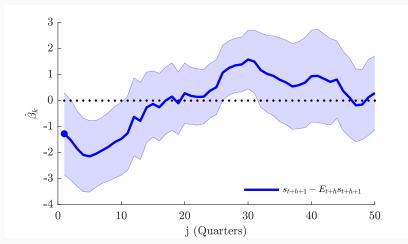
Evidence from excess returns predictability regressions



Exchange rates: CAD, DKK, DEM-EUR, JPY, NOK, SEK, CHF, GBP

Time periods: 1990:m1-2019:m7

Forecast errors predictability

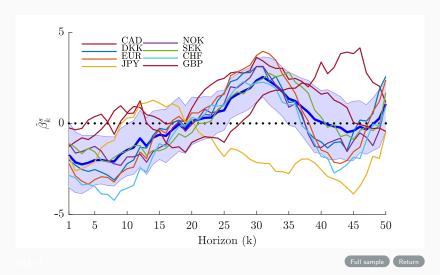


Exchange rates: CAD, DKK, DEM-EUR, JPY, NOK, SEK, CHF, GBP

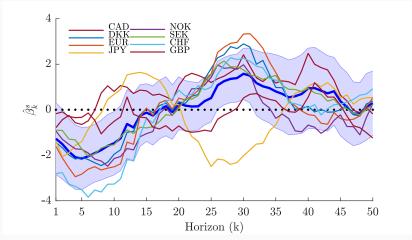
Time periods: 1990:m1-2019:m7 Source: Consensus Economics

Forecast error predictability

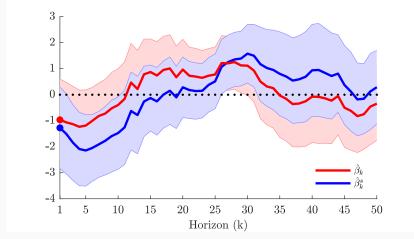
$$s_{t+k} - E_{t+k-1}^s s_{t+k} = \alpha_k + \beta_k^s (r_t - r_t^*) + \varepsilon_{t+k}$$



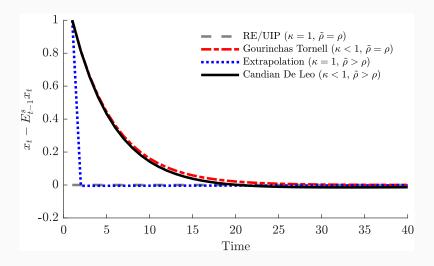
Forecast errors predictability



Excess returns vs. Forecast errors predictability



IRFs to interest rate innovation: Model



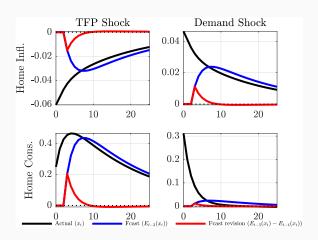
Market Clearing and Equilibrium

- 1. Labor markets clear
- 2. Goods market clear:

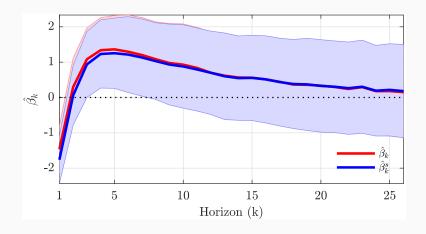
$$\begin{aligned} Y_{Ht} &= \left(\frac{P_{Ht}}{P_t}\right)^{-\theta} \left[(1 - \gamma)C_t + \gamma \mathcal{Q}_t^{\theta} C_t^* \right], \\ Y_{Ft} &= \left(\frac{P_{Ft}^*}{P_t^*}\right)^{-\theta} \left[\gamma \mathcal{Q}_t^{-\theta} C_t + (1 - \gamma)C_t^* \right]. \end{aligned}$$

3. Asset markets clear.

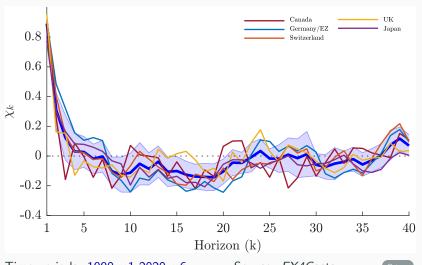
IRFs of Forecasts and Revisions



Predictability Regressions in GE: Decomposition



IRFs to interest rate innovation



Time periods: 1990:m1-2020:m6

Source: FX4Casts

55 / 28

Beta decomposition

Decompose β_k s:

$$\underbrace{\frac{\mathsf{Cov}\left(\mathsf{\Lambda}_{t+k}, r_t - r_t^\star\right)}{\mathsf{Var}(r_t - r_t^\star)}}_{\beta_k} = \underbrace{\frac{\mathsf{Cov}\left(s_{t+k} - E_{t+k-1}^s s_{t+k}, r_t - r_t^\star\right)}{\mathsf{Var}(r_t - r_t^\star)}}_{\beta_k^s} - \underbrace{\frac{\mathsf{Cov}\left(\xi_{t+k-1}, r_t - r_t^\star\right)}{\mathsf{Var}(r_t - r_t^\star)}}_{\beta_\xi^s}$$

	eta_1	eta_1^s	eta_1^{ξ}
Data	-1.26	-1.74	0.48
Model	-1.47	-1.76	0.29

Kalman filter

Lemma

Subjective expectations about the interest differential evolve according to:

$$\begin{split} E_t^s x_{t+1} &= (1 - \kappa_t) \tilde{\rho} E_{t-1}^s x_t + \kappa_t \tilde{\rho} x_t, \\ \Sigma_t &= (1 - \kappa_t) (\tilde{\rho}^2 \Sigma_{t-1} + \sigma_\varepsilon^2), \\ \kappa_t &= \frac{\tilde{\rho}^2 \Sigma_{t-1} + \sigma_\varepsilon^2}{\tilde{\rho}^2 \Sigma_{t-1} + \sigma_\varepsilon^2 + \tilde{\sigma}_\nu^2} \end{split}$$

The Kalman gain κ_t and the conditional variance Σ_{t+1} eventually converge to their steady state values:

$$m{\kappa} = rac{ ilde{
ho}^2 \Sigma + \sigma_arepsilon^2}{ ilde{
ho}^2 \Sigma + \sigma_arepsilon^2 + \sigma_arepsilon^2}; \hspace{0.5cm} \Sigma = (1-\kappa)(ilde{
ho}^2 \Sigma + \sigma_arepsilon^2)$$

Households and liquidity serices (I)

The utility function of the representative household in country H is

$$E_0^s \sum_{t=0}^{\infty} (\beta^t \zeta_t) \left[\frac{C_t^{1-\sigma} - 1}{1-\sigma} - \frac{L_t^{1+\varphi}}{1+\varphi} + \frac{1}{1-\gamma} \left(Q_t\right)^{1-\gamma} \right],$$

where

$$Q_t = \frac{M_{H,t}}{P_t} + \kappa \frac{B_{H,t}}{P_t}$$

The Home budget constraint reads:

$$\begin{split} & P_t C_t + M_{H,t} + B_{H,t+1} + B_{H,t+1}^m + S_t B_{H,t+1}^{*m} \leq \\ & W_t L_t + M_{H,t-1} + R_{t-1} B_{H,t} + R_{t-1}^m B_{H,t}^m + S_t R_{t-1}^{*m} B_{H,t}^{*m} + \Pi_t - T_t. \end{split}$$

Households and liquidity serices (II)

The home household's FOCs wrt $M_{H,t}, B_{H,t}, B_{H,t}^m, B_{H,t}^m$

$$\begin{split} 1 &= \beta \mathbb{E}_{t} \left[\frac{\zeta_{t+1}}{\zeta_{t}} \left(\frac{C_{t+1}}{C_{t}} \right)^{-\sigma} \frac{P_{t}}{P_{t+1}} \right] + \frac{Q_{t}^{-\gamma}}{C_{t}^{-\sigma}}, \\ 1 &= \beta R_{t} \mathbb{E}_{t} \left[\frac{\zeta_{t+1}}{\zeta_{t}} \left(\frac{C_{t+1}}{C_{t}} \right)^{-\sigma} \frac{P_{t}}{P_{t+1}} \right] + \kappa \frac{Q_{t}^{-\gamma}}{C_{t}^{-\sigma}}, \\ 1 &= \beta R_{t}^{m} \mathbb{E}_{t} \left[\frac{\zeta_{t+1}}{\zeta_{t}} \left(\frac{C_{t+1}}{C_{t}} \right)^{-\sigma} \frac{P_{t}}{P_{t+1}} \right], \\ 1 &= \beta R_{t}^{*m} \mathbb{E}_{t} \left[\frac{\zeta_{t+1}}{\zeta_{t}} \left(\frac{C_{t+1}}{C_{t}} \right)^{-\sigma} \frac{S_{t+1}}{S_{t}} \frac{P_{t}}{P_{t+1}} \right]. \end{split}$$

The foreign households problem is symmetric.

Extension with endogenous liquidity premia

GE model extension:

Households derive liquidity services from government bonds

• Endogenous time-varying expected excess returns $(\xi_t \propto -(r_t - r_t^*))$ Nagel 16, Engel 16, Engel & Wu 20

Expectational errors on future path of liquidity premia

Extended Model: IRFs

▶ Improves quantitative fit of the model

Moments I Moments II

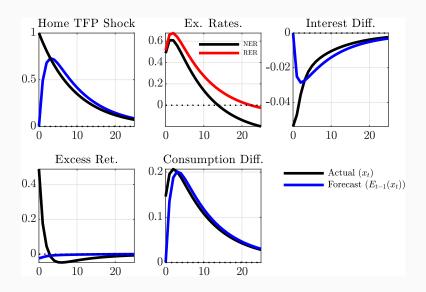
ightharpoonup Reproduces $\hat{\beta}$ and both its components $(\hat{\beta}^s \& \hat{\beta}^\xi)$

Fama eta decomposition

Forecast-error moments

	Data	Model	
		$\alpha = 0$	lpha= 0.15
β^{CG} Inflation	0.61	0.54	0.59
β^{CG} Output	0.77	0.59	0.59
β^{CG} Interest rate	0.64	0.54	0.55
β^{KW} Inflation	-0.13	-0.09	-0.08
β^{KW} Output	-0.12	-0.13	-0.13
β^{KW} Interest rate	-0.07	-0.09	-0.08
β^{ST} Exchange rate	0.20	0.44	0.44

IRFs to a Home TFP improvement



Open-economy moments

	Data	Model	
		$\alpha = 0$	$\alpha = 0.15$
$\rho(\Delta s_t)$	0.30	0.31	0.30
$\sigma(\Delta s_t)/\sigma(\Delta y_t)$	5.20	3.26	3.59
$\rho(q_t)$	0.94	0.95	0.95
$\rho(\Delta q_t, \Delta s_t)$	0.99	0.99	1.00
$\rho(\Delta q_t, \Delta(c_t - c_t^{\star}))$	-0.40	-0.36	-0.38
Fama β	-1.23	-1.30	-1.47
Fama R ²	0.02	0.04	0.04
$\sigma(r_t - r_t^{\star})/\sigma(\Delta q_t)$	0.16	0.30	0.22
$\rho(r_t - r_t^{\star})$	0.90	0.77	0.76
$\rho(\Delta c_t, \Delta c_t^{\star})$	0.30	-0.10	-0.12

Households and liquidity serices (III)

The two relevant Euler equations in the model are:

$$0 = E_t \theta_{t+1} + r_t + \alpha r_t$$
 $0 = E_t \theta_{t+1}^* + r_t^* + \alpha r_t^*$

where $\alpha = \beta \frac{\kappa}{1-\kappa} > 0$. .

UIP condition:

$$E_t \Delta s_{t+1} - (r_t^m - r_t^{m*}) = 0$$

Rearranging the above equations, one can show that:

$$E_t \Delta s_{t+1} - (r_t - r_t^*) = \alpha (r_t - r_t^*)$$

