Path Dependence and Stagnation in a Classical Growth Model

Tom Michl, Colgate University Daniele Tavani, Colorado State University

2022 Union for Radical Political Economics at ASSA Conference

Overview: An exercise in structuralist macroeconomics

- ► Taylor-Foley-Rezai (CJE) technical progress function.
 - Economies of scale (Kaldor-Verdoorn Law)
 - Distribution-led technical change
 - Supports path dependence—zero root system
- Classical foundation: Say's Law, normal utilization, Cambridge Equation
- Capital-using (saving) technical change
- Endogenous population growth and distribution
- Answer to Harrod combines Solow, Kaldor, and Marx
- Main results
 - Clarifies wage-led growth
 - Interprets neoliberal stagnation
 - Framework for interpreting shocks like Covid

The Model

g-rate of accumulation, π -profit share, ρ -output-capital ratio (capital productivity), β -consumption rate, γ -labor productivity growth, χ -capital productivity growth, κ -capital-population, ϵ -employment-population, hat indicates growth rate.

Cambridge Equation

$$g = \pi \rho - \beta$$
.

TFR technical progress function

$$\gamma = \gamma_0 + \gamma_1 \hat{\kappa} - \gamma_2 \pi.$$

Auxiliary equation

$$\chi = f(\hat{e}) + \varepsilon;$$
 $f(0) = 0,$ $f' < 0$

Population growth

$$\mathit{n} = \bar{\mathit{n}} + \eta \min\{\mathit{e},1\}$$

Distribution

$$\pi = \bar{\pi} - \mu e$$

Exogenous population growth and distribution

How an increase in the profit share generates wage-led growth

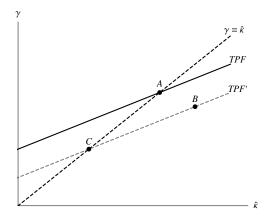


Figure: An increase in the profit share shifts the technical progress function (TPF) downward in the basic model. In the short run (B), accumulation and employment are profit-led. In the long run (C), growth is wage-led in the basic model.

Properties of the general model

The bottom row is an example of path dependence.

Table: Comparative equilibria

	de	d ho	dn	$d\gamma$	dg	$d\pi$
dī	_		+		+	+/0
$d\gamma_0$	_	+	-/0	+	+	+/0
$dar{\pi}$	+	_	+/0	_	+/-	+
d(1-eta)	+	_	+/0	+/0	+/- +/0	-/0
$d\epsilon$	+	+/0	+/0	+/0	+/0	-/0

The table shows the signs of dc/dr where r is the row entry and c is the column entry. A slash indicates that results depend on parameter values. Recall that $(1-\beta)$ is the capitalization rate. The bottom row identifies a temporary shock to capital productivity; all other entries refer to permanent changes in parameters.

What makes growth wage- or profit-led?

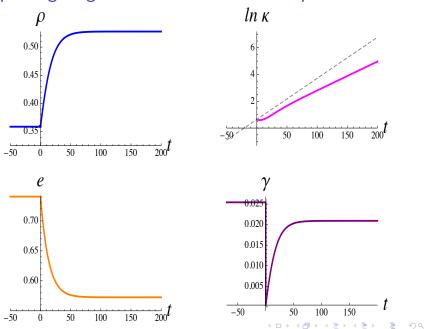

Exogenous labor supply is a sufficient condition for wage-led growth; endogenous labor is a necessary condition for profit-led growth

Table: Distribution-led growth and alternative closures: the sign of $dg/d\bar{\pi}$.

	exogenous n	endogenous n
exogenous π	_	+/-
endogenous π	_	+/-

The table shows the signs of $dg/d\bar{\pi}$ in each of four cases of the model. A slash indicates that results depend on parameter values.

Deciphering stagnation: a decline in the capitalization rate

Alternative accounts of stagnation.

Supply-side story

- ► Slower population growth
- Slower exogenous technical change

Structuralist hypothesis

- Capital resurgent (rising profit share)
- Lower capitalization rate

Some evidence supports the structuralist hypothesis.

In particular, the rising profit share and decline in the employment rate

Table: Selected Data for the U.S. 1980-2018

Variable	(1)	(2)	(3)	(4)	(5)	(6)	(4)-(1)
	1980-1999	1980-1989	1990-1999	2000-2018	2000-2007	2008-2018	Change
е	0.7058	0.6877	0.7239	0.7001	0.7211	0.6849	-0.0057
ρ	0.3459	0.3019	0.3899	0.3642	0.3587	0.3682	+0.0183
n	0.0111	0.0109	0.0113	0.0074	0.0117	0.0043	-0.0037
γ	0.0192	0.0164	0.0220	0.0183	0.0245	0.0138	-0.0009
g	0.0204	0.0194	0.0214	0.0154	0.0181	0.0135	-0.0050
π	0.2490	0.2475	0.2506	0.2806	0.2640	0.2928	+0.0316
$1-\beta$	0.9341	0.9445	0.9237	0.9132	0.9236	0.9056	-0.0209
S	0.2388	0.2613	0.2162	0.1539	0.1926	0.1258	-0.0848

Conclusions

- Wage-led growth is strengthened by labor constraints. Profit-led growth depends on a high elasticity of labor force growth.
- ► Secular stagnation results from capital resurgence combined with a reduced capitalization rate. Profits without growth.
- Slower productivity growth and population growth are a consequence of stagnation, not a cause.
- ▶ Path dependence can occur from temporary shocks, such as a decline in capital productivity. Possible consequence of Covid?