Constructing a Historical Nordic Human Capital Database: An End-to-End Machine Learning Approach

Christian E. Westermann & Christian M. Dahl

University of Southern Denmark

December 31, 2021

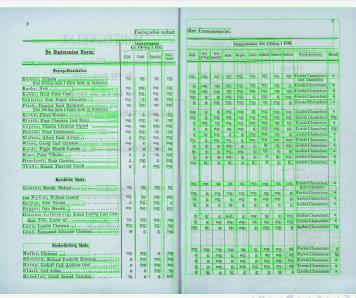
Motivation

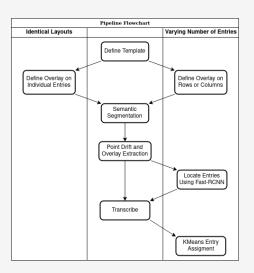
- A unique database on human capital in the Nordic countries, spanning multiple centuries.
- With successful links to current registries, large potential for multi-generational analyses.
- To the best of our knowledge, no end-to-end demonstration of historical tabular data segmentation and transcription exists.
- Structured tabular data are extremely valuable, especially for economists (census data, etc.).
- Many subtle but extremely important complications.
- Contribute a generalizable approach with respect to structured document tables.

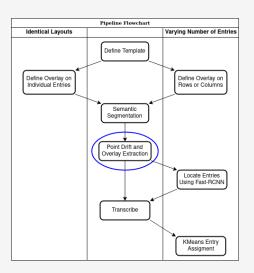
Related Work

- Many parallels to dhSegment, the work of Oliveira et al. (2019).
 - They focus on deep learning based generic segmentation of several tasks such as page-, image-, and text-detection.
 - We wish to introduce a generic approach to structured tabular data.
- LayoutParser by Shen et al. (2021).
 - Unified toolkit for Deep Learning based DIA.
 - Includes layout detection, OCR with Google Vision or Tesseract backend and more.
- Google's Tesseract
 - While sufficient in many tasks, it is too inaccurate for the tables we work with.
 - Too many or not enough boxes detected.
 - Very hard to sort relevant boxes.

Tesseract Example

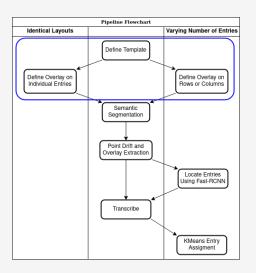






Point Drift

- The engine behind the approach is FilterReg by Wei Gao and Russ Tedrake (2018), a Point-Set Registration algorithm.
- Learn the Motion (Transformation) Parameters, $\Delta\theta$, responsible for the alignment of two point clouds, X and Y.
- We can then apply $\Delta \theta^{-1}$ to Y, which aligns it with X.

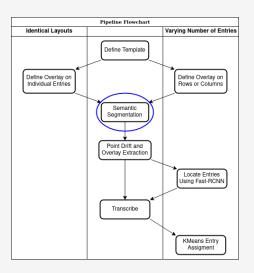


Template and Overlay

- Manually define two setup steps per document layout type: template and overlay.
- We define the template as the document table outline.
- How to define the overlay is dependent on whether number of entries vary.
 - Static: Entry-level overlay
 - Varying: Column- or Row-level overlay.

Template and Overlay

					5
galagere Navne, al stead	Skole eller Dimissor.	Prepar- deutik.	Logik.	Psychr- logic	Eurerolog.
Jessen, L. B.	Frederiksborg Skole,	godt.	mg.	godt.	23. Juni.
Inacreles, J. V.	Randers Skole.	mg.	mg.	mg.	15. Juni.
Johnson, J. V	Metropolitanskolen.	mg.	mg.	mg.	18. Juni
Johnson, O. H.,	Reykjavík Skole.	nig.	mg.	mg.	18. Juni.
Jars, H.A.	Borgerdydsk, paaChavn.	mg.	mg.	mg.	15. Juni
Jorgenson, C	Flensborg Skole.	mg.	mg.	mg.	16. Juni.
Kists, P. J. W	Herlufsholms Skole	godt.	godt.	godt.	24. Juni.
Kleisdorff, G.M	Ribe Skole.	mdl.	mg.	mg.	18. Juni.
Koch, H. L. S. P	Nykjobing Skole.	mg.	godt.	mg.	10. Juni.
Krag, C.F.E.,	Flensborg Skole.	godt.	mg.	mg.	12. Juni.
Krarup, H.A	Borgerdydsk.paaChavn.	tg.	mg.	mg.	23. Juni.
Landspery, Th. Ph	Frederiksborg Skola	mg.	godt.	mg.	19. Juni.
Langkilde, F.E	Odense Skole.	mg.	mg.	mg-	23. Juni
Lauren, A. C.	Anlborg Skole.	gods.	mg.	mg.	9. Juni.
Lamen, H.C.A	Frederiksborg Skole.	ug.	ug.	ug.	26. Juni.
Launy, C. L. B	Aarhuus Skole	godt.	tg.	tg.	31. Januar.
Leth, C.P	Sore Skele.	mg-	mg.	mg.	16. Juni.
Leth, J. Q	Aalborg Skole.	godt.	tg.	. mdl.	31. Januar.
Liunbach, H. C	. Horsens Skola	nig-	ng.	ug.	10. Juni.
Lorentzen, C.N	Flensborg Skole.	godt.	mg.	mg.	20. Juni.
Lockte, H.N.J	Aalborg Skole.	godt.	mg.	mg.	30. Januar.
Madeig, P.A.G	Conferenter. Madvig.	godt.	godt.	tg.	13. Juni.
Martensen, C	Metropolitanskolm.	ug.	mg.	mg.	20. Juni.
Martensen, C.J	Samme Skole.	mg.	ng.	ng.	20. Juni.
Mokr, J.J	Metropolitanskolen.	mg-	ug.	mg.	24. Juni.
Mohr, S. J. G	Aarhuus Skole.	ug.	godt.	godt.	27. Juni.
Maller, P.G	Ribe Skole.	ug.	godt.	godt.	17. Juni,
Motter, J. J. N	Rozekilde Skole.	ug.	mg.	ug.	16. Juni.
Nissen, N. C. A	Cand. ph. C. Koefoed.	godt.	godt.	godt.	20. Juni.
Norregaard, J	Borgerdydsk,paa Chava,	ug.	mg.	mg.	10. Juni.
Olivarius, H.H.F	v. Westenske Institut.	tg.	godt.	mg.	23. Juni.
Olrik, H.L. Th	Herlufsholms Skole.	ng.	mg.	mg.	19. Juni.
Paulsen, L. C. C	Cand. jur. Nellemann.	godt.	mg.	mg.	30. Januar.
Pedersen, C	Borgerdydsk.paa Chavn.	godt.	godt.	tg.	27. Juni.
Petersen, A. N. Falkman-	Sozo Skole.	godt.	mg.	godt.	22. Juni.
Petersen, C. H. W	Haderslev Skole.	godt.	godt.	mg.	15. Juni.
Petersen, P.A	Cand. ph. R. Meller.	ug.	ug.	mg.	9. Juni.
Petersen, R	Haderslev Skole.	godt.	godi.	mg.	30. Januar.
		10000			



Semantic Segmentation

- Now that we have X, how do we find Y?
- Semantic segmentation (pixel-wise classification) using Deep Learning.
- Three classes: Line, text / scribbles and background.
- Pixels that make up detected lines become the Y point cloud.

Semantic Segmentation: Neural Network Architecture

- We use the architecture of DeeplabV3+, by Chen et al. (2018).
- U-shaped and like other U-shaped architectures since originally introduced by Ronneberger et al. in 2015, it has proven to excel at semantic segmentation.
- We train two separate models, one for horizontal line identification and one for vertical.

Semantic Segmentation: Training Data

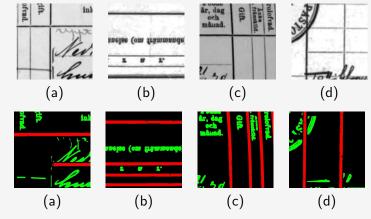
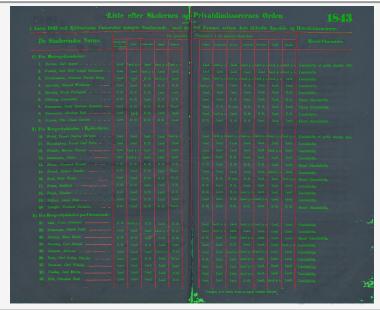
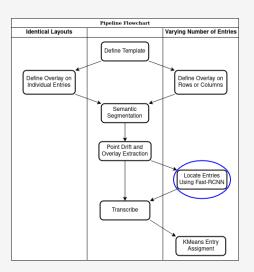


Figure: Top row: Input training images. Bottom row: Corresponding labels / masks. Red, green and black correspond to lines, text and background respectively.

Semantic Segmentation: Results

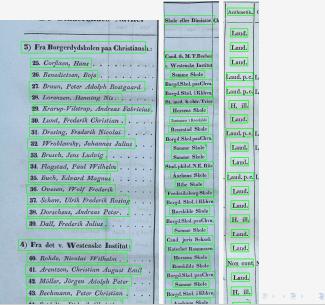


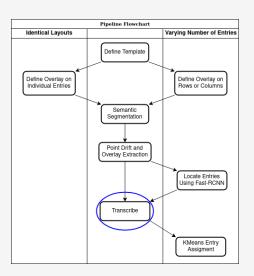


Entry Detection Using Fast-RCNN

- Faster Region-based Convolutional Network (Faster-RCNN) by Ren et al. (2016).
- Performed column-wise on extracted areas using the overlay.
- We know what column we are dealing with and we can then proceed on locating entries top to bottom.
- Network was trained on data in this paper, but we seek generality here as well, in the future.

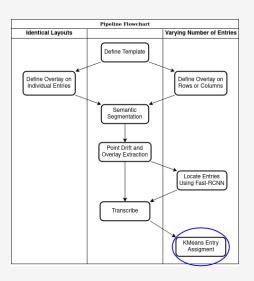
Entry Detection Using Fast-RCNN: Results





Transcription

- Transcription can be done using any feasible model.
- Given the precise cutouts together with a little cleaning, Tesseract performs very well on these documents.
- Otherwise, you would have to do some fine-tuning / custom training.



Assigning Entries Using KMeans

- Crucial step of the pipeline for documents with no constant number of entries.
- Missing an entry propagates the error which in the worst case leads to a full document of wrong assignments.
- We alleviate this by assigning entries using KMeans-clustering.
 - Issue a majority vote on the number of entries.
 - Create a cluster for each row based on the center y-coordinate of each bounding box.
 - Iterate through entries in each column and predict their respective row.