Bivariate Tests of Credit Market Discrimination with an Application to Intersectionality

Anastasia Cozarenco

Montpellier Business School, France & Centre for European Research in Microfinance (CERMi)

Ariane Szafarz

Université Libre de Bruxelles (ULB), SBS-EM, Centre Emile Bernheim, Belgium CERMi & New York University

ASSA Annual Meetings, January 8, 2022

Motivation (1)

• Discrimination in credit market

-Definition: loan application rejected due to *personal* rather than *economic* characteristics of the borrower (Black et al., 1978) \Rightarrow Economic AND ethical topic

• Social lending is not immune to discriminatory biases

- Female borrowers receive smaller loans than men in Brazil (Agier & Szafarz, 2013); France (Cozarenco & Szafarz, 2018; Brana, 2013);
 Italy (Alesinal et al., 2013); Peru (Buvinic & Berger, 1990); Paraguay (Fletschner, 2009).
- Disabled people are discriminated against in Africa & Asia (Cramm & Finkenflugel, 2008); Uganda (Mersland et al., 2009; Labie et al., 2010); Zambia & Zimbabwe (Lewis, 2004).

Motivation (2)

Why do we need a new approach to detect biases in social lending?

- Methodological issues
 - Data limitations (Delis et al., 2020): Often no data on rejected applicants, amounts requested, default records
 - $-\operatorname{Tests}$ on approval rates assume equal credit worthiness across groups
 - Coexistence of positive & negative biases depending on the reference group (Ruffle & Shtudiner, 2014)
 - New stream of papers using "outcome tests" (=profit for the lender) (Dobbie et al., 2020)
 - Major achievement in literature using lenders' profitability of marginal applicants
 - \Rightarrow Not suitable for non-profit lenders

Objective of this paper

• New approach to detect biases in social lending

-Outcome = recovery rate \neq profit

– Applicable to non-profit social lenders

• Application to intersectional biases (women/migrants) in microcredit in France

Test for discrimination (based on Ferguson & Peters, 1995) Heckman (1979) approach to address selection bias:

Recovery rate_i =
$$\alpha_{\mathbf{R}} \mathbf{F}_{\mathbf{i}} + \beta'_{R} X_{i} + \epsilon_{i}$$

$$E[Approval_i | \mathbf{F_i}, Z_i] = \Phi(\alpha_{\mathbf{A}} \mathbf{F_i} + \beta'_{\mathbf{A}} Z_i)$$

F_i=Female

	Higher approval Nonsignificant difference rate for women: between approval rate		Lower approval rate for women:
	$lpha_{\mathbf{A}} > 0$	$\alpha_{\mathbf{A}} = 0$	$lpha_{\mathbf{A}} < 0$
Higher recovery			
rate for women:	No bias detected	Weak negative bias	Strong negative bias
$lpha_{f R}>{f 0}$			
Insignificant difference			
between recovery rates:	Weak positive bias	No bias detected	Weak negative bias
$lpha_{f R}={f 0}$			
Lower recovery			
rate for women:	Strong positive bias	Weak positive bias	No bias detected
$\alpha_{\mathbf{R}} < 0$			

Extension to intersectional discrimination

 $\begin{aligned} Recovery\ rate_{i} &= \alpha_{R}\mathbf{F_{i}} + \theta_{R}\mathbf{D_{i}} + \mu_{R}\mathbf{F_{i}} \cdot \mathbf{D_{i}} + \beta_{R}'X_{i} + \epsilon_{i} \\ E[Approval_{i}|\mathbf{F_{i}}, \mathbf{D_{i}}, Z_{i}] &= \Phi(\alpha_{A}\mathbf{F_{i}} + \theta_{A}\mathbf{D_{i}} + \mu_{A}\mathbf{F_{i}} \cdot \mathbf{D_{i}} + \beta_{A}'Z_{i}) \end{aligned}$

 $F_i =$ Female, $D_i =$ Migrant (non-EU)

Panel I: Definition of coefficients				
Comparing	with EU men	with EU women	with migrant men	
EU women	$\delta_1 = \Phi(\alpha_A + \beta'_{\mathbf{A}} \mathbf{Z}_{\mathbf{i}}) - \Phi(\beta'_{\mathbf{A}} \mathbf{Z}_{\mathbf{i}})$			
	$\gamma_1 = lpha_R$			
migrant men	$\delta_2 = \Phi(\theta_A + \beta'_{\mathbf{A}} \mathbf{Z}_{\mathbf{i}}) - \Phi(\beta'_{\mathbf{A}} \mathbf{Z}_{\mathbf{i}})$			
	$\gamma_2= heta_R$			
migrant	$\delta_3 = \Phi(\alpha_A + \theta_A + \mu_A + \beta'_{\mathbf{A}} \mathbf{Z}_{\mathbf{i}})$	$\delta_4 = \Phi(\alpha_A + \theta_A + \mu_A)$	$\delta_5 = \Phi(\alpha_A + \theta_A + \mu_A)$	
women	$-\Phi(eta_{\mathbf{A}}^{\prime}\mathbf{Z_{i}})$	$+\beta'_{\mathbf{A}}\mathbf{Z}_{\mathbf{i}}) - \Phi(\alpha_A + \beta'_{\mathbf{A}}\mathbf{Z}_{\mathbf{i}})$	$+\beta'_{\mathbf{A}}\mathbf{Z}_{\mathbf{i}}) - \Phi(\theta_A + \beta'_{\mathbf{A}}\mathbf{Z}_{\mathbf{i}})$	
	$\gamma_3 = lpha_R + heta_R + \mu_R$	$\gamma_4= heta_R+\mu_R$	$\gamma_5 = lpha_R + \mu_R$	
Panel II: Test results and interpretation				
$\forall j = 1,, 5$	$\delta_{\mathbf{j}} > 0$	$\delta_{\mathbf{j}}=0$	$\delta_{\mathbf{j}} < 0$	
$\gamma_{\mathbf{j}} > 0$	No bias detected	Weak negative bias	Strong negative bias	
$\gamma_{\mathbf{j}}=0$	Weak positive bias	No bias detected	Weak negative bias	
$\gamma_{\mathbf{j}} < 0$	Strong positive bias	Weak positive bias	No bias detected	

An application to microcredit in Europe

Context

- $-\operatorname{\mathbf{Microcredit}}$ in $\operatorname{\mathbf{Europe}}$ is a nascent, yet growing market
- -1.26 million active borrowers in 2019, +14% since 2018
- -3.70 billion gross microloan portfolio outstanding
- Highly standardized loans
- -Main objective: financial inclusion & job creation
- -Strong dependence on subsidies

Hand-collected dataset from a French NGO

- $-\operatorname{Microcredit}$ to $\mathbf{unbanked}$ individuals
- -Gender & citizenship (EU vs. migrants)
- -Average loan size: EUR 2,231
- -Average duration: 33 months
- Fixed interest rate: 1% 4%

An application to microcredit in Europe

Descriptive statistics

	Full sample	Panel I: Applicants		Panel II: Borrowers	
		Rejected	Accepted	Repaying	Defaulting
Variables	(1)	(2)	(3)	(4)	(5)
Percentage		0.437	0.563	0.871	0.129
Recovery rate				1.000	0.415
Female	0.485	0.450	0.511***	0.517	0.473*
Migrant	0.086	0.089	0.083	0.082	0.090
Observations	5,789	2,528	3,261	2,840	421

T-tests for equal means. Significance: *** p < 0.01, ** p < 0.05, * p < 0.1

Results (1) – Simple discrimination

	Recovery rate		Approval	
	Coef	SE	Marginal effect	SE
Female $(\hat{\alpha})$	0.016**	(0.007)	0.028**	(0.014)
Migrant $(\hat{\theta})$	-0.016	(0.014)	-0.009	(0.022)
Instruments:				
Unemployment rate in town of residence			0.016^{***}	(0.004)
Unemployment rate at national level			-0.131***	(0.048)
Mills ratio	0.018***	(0.008)		
Number of observations	3,262		5,792	
*** p<0.01, ** p<0.05, * p<0.1				

- -No bias: women are more likely to receive a loan because they are more creditworthy than men
- Significant Mills ratio: Heckman approach is relevant

	Recovery rate		Approval		
	Coef	SE	Marginal effect	SE	
Panel I:	Panel I: Marginal effects				
Female $(\hat{\alpha})$	0.021***	(0.007)	0.020	(0.015)	
Migrant $(\hat{\theta})$	0.009	(0.016)	-0.050*	(0.027)	
Female*Migrant $(\hat{\mu})$	-0.055**	(0.027)	0.114^{***}	(0.038)	
Panel II: Total marginal effects					
Migrant women vs. EU women	-0.046**	(0.023)	0.065**	(0.032)	
Migrant women vs. EU men	-0.025	(0.025)	0.085^{**}	(0.033)	
Migrant women vs. migrant men	-0.034	(0.028)	0.134^{***}	(0.038)	
EU women vs. EU men	0.021***	(0.007)	0.020	(0.015)	
Migrant men vs. EU men	0.009	(0.016)	-0.050*	(0.027)	
$\frac{***}{n} = 0.01 + \frac{**}{n} = 0.05 + \frac{*}{n} = 0.01$					

Results (2) – Intersectional discrimination

 $p < 0.01, \uparrow \uparrow p < 0.05, \uparrow p < 0.1$

-Strong positive bias in favor of migrant women vs. EU women

- -Weak positive bias in favor of migrant women vs.EU/migrant men
- -Weak negative bias against EU women vs. EU men
- -Weak negative bias against migrant men vs. EU men

Summary of results

• Expectation : Social mission

	Men	Women
EU		+
Migrant	+	++

• Reality: Social mission & Stereotypes

Conclusion

• Case Study:

 Positive and socially consistent bias in favor of migrant women in pro-social lending can hide entrenched stereotypes

 \Rightarrow Pro-social lenders are not immune to discriminatory attitude

• Method:

- -Our test detects biases otherwise invisible: Intersectional discrimination can occur even without any simple discrimination
- Intersectional discrimination in lending deserves attention
- \Rightarrow Our test design can be extended to any type of lender (for-profit, non-profit, hybrid)

Thank you for your attention.