
Deep Learning Classi�cation: Modeling Discrete
Labor Choice

Lilia Maliar and Serguei Maliar

January, 2022

ASSA 2022

Discrete- versus continuous-set choices

� Macroeconomic models are generally built on continuous-set choices.
� For example, the agent can distribute wealth in any proportion
between consumption and savings or she can distribute time
endowment in any proportion between work and leisure.

� But certain economic choices are discrete: the agent can either buy
a house or not, be either employed or not, either retire or not, etc.

The progress in modeling discrete choices is still limited!

The results in the present paper

� We introduce a deep learning classi�cation (DLC) method that
solves models with both continuous-set and discrete-set choices.

� To solve for continuous-set choices:
� we parameterize decision functions with a deep neural network;
� and we �nd the coe�cients of the neural network (biases and
weights) to satisfy the model's equations.

� Our main novelty is a classi�cation method for constructing
discrete-set choices.

� We de�ne a state-contingent probability function that:
� for each feasible discrete choice, gives the probability that this
speci�c choice is optimal;

� we parameterize the probability function with a deep neural network;
� and we �nd the network parameters to satisfy the optimality
conditions for the discrete choices.

An illustration from data science: image recognition

� Consider the image recognition problem{a typical classi�cation
problem in data science.

� For example, a machine classi�es images into cats, dogs and sheep.
� We parameterize the probabilities of the three classes with a deep
neural network.

� The machine is given a collection of images and is trained to
minimize the cross-entropy loss (which is equivalent to maximizing
the likelihood function) that ensures the correct classi�cation of
images; see Goodfellow, Bengio and Courville (2016) for a survey of
classi�cation methods in data science.

Classi�cation method for discrete choices in economics

� Our classi�cation method in macroeconomics is analogous to the
above image-recognition analysis.

� For example, we use a deep neural network to parameterize the
probabilities of being full-time employed, part-time employed and
unemployed.

� The machine is given a collection of employment choices conditional
on state and is trained to maximize the likelihood function that
those choices are optimal.

� The same idea can be applied for analyzing the models with
retirement, default, house purchase, etc.

Remark:

� The earlier literature on indivisible labor (e.g., Rogerson (1996) and
Hansen (1994)) construct discrete choice by introducing lotteries.

� Our probabilities have totally di�erent meaning: they indicate which
discrete choices is most likely to be optimal and hence, is selected.

Problems with high dimensionality

� The DLC classi�cation solution method we propose can be used to
solve small-scale representative agent models.

� However, the power of deep learning consists in its ability to solve
large-scale applications that are intractable with conventional
solution methods.

� To illustrate these remarkable capacities of the DLC method, we
solve Krusell and Smith's (1998) model in which the agents face
indivisible labor choices.

The literature on heterogeneous agent models

� Krusell and Smith's (1998) model is computationally challenging
even in the absence of discrete choices.

� The state space may include thousands of state variables of
heterogenous agents and is prohibitively large.

� To make the model tractable, Krusell and Smith (1998) replace
distributions with few aggregate moments but that approach does
not always work.

� Several recent papers use linearization and perturbation to simplify
the analysis of equilibrium in heterogeneous-agent models, including
Reiter (2010), McKay and Reis (2016), Childers (2016), Boppart et
al. (2018), Mertens and Judd (2017), Ahn et al (2018), Winberry
(2018), Bayer and Luetticke (2020)

� Reiter (2019) provides for a thoughtful discussion of that literature.

DLC method

� A distinctive feature of our DLC method is that it does not rely on
moments, linearization, perturbation or any other pre-designed
reduction of the state space.

� It works with the actual state space consisting of all individual and
aggregate state variables { we let deep neural network to choose
how to condense large sets of state variables into much smaller sets
of features.

� Our code is written using Google's TensorFlow platform { deep
learning software that led to many ground breaking applications in
data science { and is it tractable in models with thousands of state
variables.

Relation to the literature on deep learning in economics

� Our DLC method is related to recent papers on deep learning,
including Duarte (2018), Villa and Valaitis (2019),
Fern�andez-Villaverde, Hurtado, and Nu~no (2019), Azinovi�c, Luca
and Scheidegger (2019), Lepetyuk, Maliar and Maliar (2020) and
especially, Maliar, Maliar and Winant (2018, 2019, 2021).

� However, this literature does not analyze models with discrete
choices, which is the main subject of the present paper.

Relation to the literature on discrete choices

� There are numerous methods in econometrics for estimating
discrete-choice models but these methods are limited to statistic
applications; see Train (2009) for a review.

� The macro literature with discrete choices includes Chang and Kim
(2007) and Chang, Kim, Kwon and Rogerson (2019) who solve a
similar model by using Krusell and Smith (1998) analysis.

� Iskhakov, J�rgensen, Rust and Schjerning (2017) developed an
endogenous grid method with taste shocks that is designed to deal
with discrete choices in dynamic environment.

� In the context of Carroll's (2005) analysis, that paper suggests to
apply logistic smoothing to the kinks by transferring the problem
into the choice probability space via the taste shocks.

� In contrast, we do not attempt to smooth the kinks but instead to
accurately approximate such kinks by using the-state-of-the-art deep
learning classi�cation method.

Applications: Krusell and Smith's (1998) model

� a version of Krusell and Smith's (1998) model with continuous
choices (i.e., divisible labor);

� an indivisible-labor version with 2 discrete labor states (employed
and unemployed);

� an indivisible-labor version with 3 discrete labor states (employed,
unemployed and part-time employed agent).

The model

� Heterogeneous agents i = 1; :::; `. Each agent i solves

max
fcit;kit+1;nitg1t=0

E0

" 1X
t=0

�tu
�
cit; n

i

t

�#
s.t. cit + k

i
t+1 = Rtk

i
t +Wtv

i
tn
i
t;

nt 2 N;
ln vit+1 = �v ln v

i
t + �v�

i
t with �

i
t � N (0; 1) ;

kit+1 � k;

where cit, n
i
t, k

i
t and v

i
t are consumption, hours worked, capital and

idiosynratic labor productivity; � 2 (0; 1) is the discount factor;
�v 2 (�1; 1) and �v � 0; and initial condition

�
ki0; v

i
0

�
is given. The

capital choice is restricted by a borrowing limit k � 0.
� The three di�erent versions of the model are distinguished by the set
of allowable labor choices N .

Production side

� The production side of the economy is described by a Cobb-Douglas
production function exp (zt) k

��1
t h1��t , where kt =

P`
i=1 k

i
t is

aggregate capital, ht =
P`

i=1 v
i
tn
i
t is aggregate e�ciency labor, and

zt is an aggregate productivity shock following a �rst-order
autoregressive process,

ln zt+1 = �z ln zt + �z�t with �t � N (0; 1) ;

where �z 2 (�1; 1) and �z � 0.
� The interest rate Rt and wage Wt are given by

Rt = 1� d+ zt�k��1t h1��t and Wt = zt (1� �) k�t h��t ;

where d 2 (0; 1] is the depreciation rate.

Kuhn-Tucker condition

� The Kuhn-Tucker condition with respect to capital is

�it�
i
t = 0;

where �it � kit+1 � k � 0 is the distance to the borrowing limit, and
�it � 0 is the Lagrange multiplier

�it � u1

�
cit; n

i

t

�
� �Et

h
u1

�
cit+1; n

i

t+1

�
Rt+1

i
;

where u1 denotes a �rst-order partial derivative of function u with
respect to the �rst argument.

� Whenever �it > 0, the agent is not at the borrowing limit, i.e.,
kit+1 > k, so the Euler equation must hold with equality leading to
�it = 0, and whenever the Euler equation does not hold with equality,
it must be that the agent is at the borrowing constraint �it = 0

Three di�erent version of the model

We consider three versions of the model that di�er in the set of allowable
labor choices nt 2 N :

i) divisible labor model N = [0; L] ;
ii) indivisible labor model N = f0; ng ;
iii) three-state employment model N = f0; n; ng ;

Divisible labor model

� To characterize labor choice, we assume that the utility function
takes the form

u (c; n) =
c1�
 � 1
1�
 +B

(L� n)1�� � 1
1� � ;

where
, � > 0 and L is the total time endowment.

� We normalize time to L instead of the conventional normalization to
1 because it helps to calibrate the divisible and indivisible labor
models to the same steady state.

� The labor choice is characterized by a FOC

nit = L�
"
c�
i Wtv

i
t

B

#�1=�
:

Indivisible labor model with 2 states

The agent chooses to be employed (nit = n) or unemployed (n
i
t = 0)

depending on which of the two choices leads to a higher continuation
value, i.e.,

nit = n if V E = max
�
V E ; V U

	
nit = 0 otherwise.

where V E and V U denote value functions of the agent in the employed
and unemployed states, respectively.

Indivisible labor model with 3 states

The three employment states, nit = n, n
i
t = n and n

i
t = 0, correspond to

full-time unemployment, part-time employment and unemployment,
respectively,

nit = n if V FT = max
�
V U ; V FT ; V PT

	
nit = n if V PT = max

�
V U ; V FT ; V PT

	
nit = 0 otherwise

where V FT , V PT and V U denote value functions of full-time employed,
part-time employed and unemployed agents, respectively.

Deep learning method for divisible labor model

Deep learning method for divisible labor model
The state space of Krusell and Smith's (1998) model has 2`+ 1 state
variables; for example, with ` = 1; 000, the state space has 2; 001 state
variables. To deal with so large dimensionality, we rely on a combination
of techniques introduced in Maliar et al. (2018, 2019, 2021), including:

1. stochastic simulation that allows us to restrict attention to the
ergodic set in which the solution "lives";

2. multilayer neural networks that perform model reduction and help
deal with multicollinearity;

3. a (batch) stochastic gradient descent method that reduces the
number of function evaluations by operating on random grids;

4. a Fischer-Burmeister function that e�ectively approximates the kink;

5. most importantly, "all-in-one expectation operator" that allows us to
approximate high-dimensional integrals with just 2 random draws (or
batches) on each iteration.

6. TensorFlow { a Google data science platform that is used to
facilitate the remarkable data-science applications such as image and
speech recognition, self driving cars, etc.

Stochastic simulation - ergodic set domain
� Under normally distributed shocks, stochastic simulation typically
have a shape of a hypersphere (hyperoval)

Figure 1. Hypercube versus
hypersphere.

� The ratio of a volume of a hypersphere to that of an enclosing
hypercube is an in�nitesimally small number in high-dimensional
applications; for example, for a 30-dimensional case, it is 10�14; see
Judd, Maliar and Maliar (2011) for a discussion.

Neural networks
We use neural networks for parameterizing decision and value functions
instead of more conventional approximation families like polynomial
functions:

Figure 2a. Arti�cial neuron. Figure 2b. Neural network.

In Figure 1a, the circle represents an arti�cial neuron that receives 3
signals (inputs) x1, x2 and x3. In Figure 1b, we combine multiple
neurons into a neural network.

Activation functions
The activation function that we use in our benchmark experiments is a
sigmoid function �(z) = 1

1+e�z =
1

1+e��0+�1x1+�2x2+:::+�nxn
.

Figure 3. Sigmoid function.

The sigmoid function has two properties: First, its derivative can be
inferred from the function itself �0(x) = �(x)(1� �(x)). Second, it maps
a real line into a unit interval � : Rn ! [0; 1] which makes it bounded
between 0 and 1.

Parameterization of decision functions
� We solve for two decision functions{hours worked nit

L and the

fraction of wealth that goes to consumption
cit
wit
which we

parameterized by a sigmoid function

�
�
�0 + '

�
kit; v

i
t;
�
kit; v

i
t

	`
i=1

; zt; �
��
;

where ' (�) is a multilayer neural network parameterized by a vector
of coe�cients � (weights and biases), � (z) = 1

1+e�z is a sigmoid
function and �0 is a constant term.

� In addition, we parameterize the Lagrange multiplier �it associated
with the borrowing constraint using an exponential activation
function

exp
�
�0 + '

�
kit; v

i
t;
�
kit; v

i
t

	`
i=1

; zt; �
��
:

The exponential activation function ensures that the Lagrange
multiplier is always non-negative.

� Since the agents are identical in fundamentals, the above three
2`+ 1{dimensional decision functions are su�cient to characterize
the choices of all ` heterogeneous agents.

Model reduction
� Our DLC solution method aims at solving models with thousands of
state variables by using model reduction.

� It condenses the information from a large number of inputs into a
smaller number of neurons in the hidden layers, making it
progressively more abstract and compact.

� This procedure is similar to a photo compression or principal
component transformation when a large dataset is condensed into a
smaller set of principal components without losing essential
information; see Judd, Maliar and Maliar (2011) for a discussion of
model reduction using principal-component analysis.

� Krusell and Smith (1998) proposed one speci�c model reduction
method, namely, they approximate the distribution with just one
moment { the mean.

� If Krusell and Smith's (1998) analysis is the most e�cient
representation of the state space, the neural network will also �nd it.

� However, the neural network will consider many other possible ways
of extracting the information from the distributions and condensing
it in a relatively small set of hidden layers trying to �nd the best one.

Objective function for deep learning
� The objective is to minimize the squared residuals in three model's
conditions:

�(�) � E(Kt;Yt;zt)

(�
	FB

�
1� cit

wit
; 1� �it

��2

+$n

24nit�
0@L� "�cit��
Wtv

i
t

B

#�1=�1A352

+ $�

24�E(�t+1;�t+1)
h�
cit+1

��

Rt+1

����t+1; �t+1i�
cit
��
 � �it

352
9>=>; ;

where K �
�
k1; :::; k`

�
and Y �

�
v1; :::; v`

�
are state variables; zt is

aggregate productivity; �t+1 �
�
�1t+1; :::; �

`
t+1

�
the individual

productivity shocks; �t+1 is the aggregate productivity shock; and

	FB (a; b) = a+ b�
p
a2 + b2;

is a 	FB (a; b) = 0 is a Fisher-Burmeister objective function is
equivalent to Kuhn Tucker conditions.

All in one expectation operator
� The constructed objective function �(�) is not convenient because it
contains a square of expectation

�
E(�t+1;�t+1) [�]

�2
nested inside

another expectation E(Kt;Yt;zt) [�].
� Constructing two nested expectation operators is costly because the
inner expectation operator E(�t+1;�t+1) [�] has high dimensionality; if
` = 1; 000, it is 1; 001-dimensional integral.

� This task would be simpli�ed enormously if we could combine the
two expectation operators but it is not possible

E(Kt;Yt;zt)

h�
E(�t+1;�t+1) [�]

�2i 6= E(Kt;Yt;zt)E(�t+1;�t+1)

h
[�]2
i
.

� Maliar et al. (2021) propose a simple but powerful technique, called
all-in-one (AiO) expectation operator, that can merge the two
expectation operators into one.

� They replace the squared expectation function
�
E(�t+1;�t+1) [�]

�2
under one random draw (�t+1; �t+1) with a product of two

expectation functions
h
E(�0t+1;�0t+1)

[�]
i
�
h
E(�00t+1;�00t+1)

[�]
i
under

two uncorrelated random draws
�
�0t+1; �

0
t+1

�
and

�
�00t+1; �

00
t+1

�
.

� Since the two random draws are uncorrelated, the expectation
operator can be taken outside of the expectation function.

The objective function under AiO expectation operator

�(�) � E(Kt;Yt;zt;�0t+1;�
0
t+1;�

00
t+1;�

00
t+1)

(�
	FB

�
1� c

i
t

wit
; 1� �it

��2

+$n

24nit�
0@L� "�cit��
Wtv

i
t

B

#�1=�1A352 +$��

+

24�
h�
cit+1

��

Rt+1

����0t+1; �0t+1i�
cit
��
 ��it

3524�
h�
cit+1

��

Rt+1

����00t+1; �00t+1i�
cit
��
 ��it

359=; :
Thus, we are able to represent the studied model as an expectation
function across a vector of random variables�
Kt; Yt; zt;�

0
t+1; �

0
t+1;�

00
t+1; �

00
t+1

�
; see Maliar et al. (2021) for a

discussion and further applications of the AiO expectation operator.

Training: gradient descent, batches and parallel computing
� Given that AiO is an expectation function, we can bring the gradient
operator inside by writing r��(�) = r�E [� (!; �)] = E [r�� (!; �)],
where r� is a gradient operator.

� The latter expectation function can be approximated by a simple
average across Monte Carlo random draws
E [r�� (!; �)] � 1

N

PN
n=1r�� (!n; �), where !n denotes a speci�c

realization of the vector of random variables.

� Thus, the gradient descent method can be implemented as

� � � �r��(�) with r��(�) �
1

N

NX
n=1

r�� (!n; �) ;

where � and � are the parameter vector and learning rate,
respectively.

� Thus, we implement a cheap computation of the gradient of the
integrand instead of computing far more expensive gradient of the
expectation function. TensorFlow and PyTorch can compute such a
gradient using a symbolic di�erentiation, which facilitates an the
implementation of parallel computation.

Dealing with multicollinearity

� In the arguments of approximating functions, the state variables of
agent i appear twice '

�
kit; v

i
t;
�
kit; v

i
t

	`
i=1

; zt; �
�
because they enter

both as variables of agent i and as an element of the distribution.

� This repetition implies perfect collinearity in explanatory variables,
so that the inverse problem is not well de�ned.

� Such a multicollinearity would break down a conventional
least-squares method which solves the inverse problem (since an
inverse of a matrix with linearly dependent rows or columns does not
exist).

� However, neural networks are trained by using the gradient-descent
method that avoids solving an inverse problem. As a result, neural
networks can learn to ignore redundant colinear variables; see Maliar
et al. (2021) for numerical illustrations and a discussion.

Algorithm 1: Deep learning for divisible labor model

Algorithm 1: Deep learning for divisible labor model.

Step 0: (Initialization).

Construct initial state of the economy
��
ki0; v

i
0

	`
i=1

; z0

�
and parameterize three

decision functions by a neural network with three outputsn
nit
L ;

cit
wit

o
= �

�
�0 + '

�
kit; v

i
t;
�
kit; v

i
t

	`
i=1

; zt; �
��
;

�it=exp
�
�0 + '

�
kit; v

i
t;
�
kit; v

i
t

	`
i=1

; zt; �
��
;

where wit � Rtkit +Wtv
i
tn
i
t is wealth; �

i
t is Lagrange multiplier associated with

the borrowing constraint; ' (�) is a neural network; � (z) = 1
1+e�z is a sigmoid

(logistic) function; �0 is a constant; � is a vector of coe�cients.

Algorithm 1: Deep learning for divisible labor model (cont)

Algorithm 1: Deep learning for divisible labor model.

Step 1: (Evaluation of decision functions).

Given state
�
kit; v

i
t;
�
kit; v

i
t

	`
i=1

; zt

�
� sit, compute nit, �it,

cit
wit
from the neural

networks, �nd the prices Rt and Wt; and �nd k
i
t+1 from the budget

constraint for all agents i = 1; :::; `.

Step 2: (Construction of Euler residuals).

Draw two random sets of individual productivity shocks �1 =
�
�11; :::; �

`
1

�
,

�2 =
�
�12; :::; �

`
2

�
and two aggregate shocks �1;, �2, and construct Euler residuals

�(�) =

�h
	FB

�
1� cit

wit
; 1� �it

�i2
+$n

"
nit �

L�

�
(cit)

�

Wtv

i
t

B

��1=�!#2
+ $�

�
�
h
(cit+1)

�

Rt+1

����0t+1;�0t+1i
(cit)

�
 � �it
� �

�
h
(cit+1)

�

Rt+1

����00t+1;�00t+1i
(cit)

�
 � �it
��
;

where $n, $� are given weights and 	
FB (a; b) = a+ b�

p
a2 + b2

is a Fischer-Burmeister function.

Algorithm: Deep learning for divisible labor model (cont.)

Algorithm 1: Deep learning for divisible labor model.

Step 3: (Training).

Train the neural network coe�cients � to minimize the residual function �(�)
by using a stochastic gradient descent method � � � �r��(�) with
r��(�) � 1

N

PN
n=1r�� (!n; �), where n = 1; :::; N denotes batches.

Step 4: (Simulation).

Move to t+ 1 by using endogenous and exogenous variables of Step 3 under

�1 =
�
�11; :::; �

`
1

�
and �1 as a next-period state

��
kit+1; v

i
t

	`
i=1

; zt+1

�
.

Calibration

� For our numerical analysis, we assume � = 0:36; d = 0:08;
� = 0:96; � = 0:9; � = 0:1; �z = 0:9; �z = 0:21; and k = 0 { these
values are in line with the literature, e.g., Chang and Kim (2007),
Reiter (2010, 2019), Chang et al. (2019).

� We perform training using the ADAM stochastic gradient descent
method with the batch size of 100 and the learning rate of 0:001.

� We �x the number of iterations (which is also a simulation length)
to be K = 100; 000.

� The choice of these parameters must ensure both convergence and
low running time and it re
ects our experience in constructing deep
learning approximations.

� Finally, we study numerically the role of the elasticities
 and � of
the utility function by performing a sensitivity analysis..

Training errors and running time

Figure 4. Training errors and running time for divisible labor model.

The solution for divisible labor model

Figure 5. Solution to divisible labor mode.

Deep learning method for indivisible labor model

Logistic regression
Let us consider a typical classi�cation problem. We have a collection of `

data points
�
Xi; yi

	`
i=1

where Xi �
�
1; xi1; x

i
2; :::

�
is a collection of

dependent variables (features) and yi is a categorical independent
variable (label) that takes values 0 and 1. The goal is to construct a
dashed line that separates the known examples of the two types.

Figure 6. Examples of binary classi�cation.

We restrict attention to one technique { logistic regression { which is
simple, general and can be conveniently combined with our deep learning
analysis.

A hypothesis

As a �rst step, we form a hypothesis about the functional form of the
separating line. For the left panel, it is su�cient to assume that the
separating line is linear

H0 : �0 + �1x1 + �2x2 = 0;

but for the right panel, we must use a su�ciently
exible nonlinear
separating function such as a higher-order polynomial function,

H0 : �0 + �1x1 + �2x2 + �3x
2
1 + �4x1x2 + �5x

2
2 + ::: = 0;

where (�0; �1; :::) � � are the polynomial coe�cients. When
X� � �0 + �1x1 + �2x2 + ::: > 0, we conclude that y belongs to class 1
and otherwise, we conclude that it is from class 0.

Estimation
� Our next step is to estimate � coe�cients. Since y is a categorical
variable y 2 f0; 1g, we cannot use ordinary least-squares estimator,
i.e., we cannot regress y on X�. Instead, we form a logistic
regression

H0 : log
p

1� p = X�;

where p is the probability that a data point with characteristics
X �

�
1; x1; x2; x

2
1; :::

�
belongs to class 1, and

� � (�0; �1; :::; �m; :::; �M) is a coe�cient vector.
� The logistic function is an excellent choice for approximating
probability:

� First, it ensures that p = 1
1+exp(�X�) 2 (0; 1) for any � and X, and

hence p and (1� p) can be interpreted as probabilities that a data
point belongs to classes 1 and 0, respectively.

� Second, p = 1
2
corresponds to the separation line X� = 0. Hence,

when p > 1
2
, the data point is "above" the separating line X�, and

thus, belongs to the class 1 and if p < 1
2
, the opposite is true.

� Finally, when X� ! �1 and X� ! +1, we have that p! 0 and
p! 1, respectively.

Probability of an observation

The logistic regression provides a convenient way to estimate the decision
boundary coe�cients � by using a maximum likelihood estimator. A
probability that the data point i belongs to classes 0 and 1 can be
represented with a single formula by

Prob (y j X; �) = py (1� p)1�y :

Indeed, if y = 1, we have Prob(y = 1 j X; �) = (p)1 (1� p)0 = p; and if
y = 0, we have Prob(y = 0 j X; �) = (p)0 (1� p)1 = 1� p.

Likelihood function

We search for the coe�cient vector � that maximizes the (log)likelihood

of the event such that a given matrix of features
�
Xi
	`
i=1

produces the

given output realizations
�
yi
	`
i=1
, i.e.,

max
�
lnL (�) = ln

Ỳ
i=1

�
p
�
Xi; �

��yi �
1� p

�
Xi; �

��1�yi
=

X̀
i=1

�
yi ln

�
p
�
Xi; �

��
+
�
1� yi

�
ln
�
1� p

�
Xi; �

���
,

where the probability p
�
Xi; �

�
� 1

1+exp(�Xi�) is given by a logistic

function.

Constructing a maximizer

To �nd the maximizer, we compute the �rst-order conditions with respect
to all coe�cients �m for m = 0; :::;M ,

@ lnL (�)

@�m
=
X̀
i=1

"
yi

p (Xi; �)

@p
�
Xi; �

�
@�m

�
�
1� yi

�
(1� p (Xi; �))

@p
�
Xi; �

�
@�m

#

=
X̀
i=1

�
yixim

�
1� p

�
Xi; �

��
�
�
1� yi

�
ximp

�
Xi; �

��
=
X̀
i=1

�
yi � p

�
Xi; �

��
xim;

where xim is the feature m of agent i.

The constructed gradient r lnL� (�) �
h
@ lnL(�)
@�1

; :::; @ lnL(�)@�M

i0
can be

used for implementing the gradient descent-style method
� � � �r lnL� (�).

Decisions in divisible versus indivisible labor

� In the divisible labor model, we construct a policy function that
determines the hours worked

nit
L .

� In the indivisible labor model studied here, we construct a decision
boundary '

�
sit; �

�
= 0 that separates the employment and

unemployment choices conditional on state

sit �
�
kit; v

i
t;
�
kit; v

i
t

	`
i=1

; zt

�
.

� Whenever '
�
sit; �

�
� 0, the agent is employed nit = n and

otherwise, the agent is unemployed nit = 0.

� Let us show how such a decision boundary can be constructed by
using the logistic regression classi�cation method.

Decisions in divisible versus indivisible labor
� Since our model has a large number of explanatory variables (state
variables) as well as a highly nonlinear decision boundary, we use
neural networks for approximating such boundary (instead of the
polynomial function).

� We estimate the coe�cients of the neural network (weights and
biases) by formulating a logistic regression,

H0 : log
p

1� p = ' (s; �) :

� We parameterize the decision functions pit and
cit
wit
by a sigmoid

function in the indivisible labor model:

�
�
�0 + '

�
kit; v

i
t;
�
kit; v

i
t

	`
i=1

; zt; �
��
;

where ' (�) is a multilayer neural network parameterized by a vector
of coe�cients � (weights and biases), � (z) = 1

1+e�z is a sigmoid

function which ensures that
cit
wit
and pit are bounded in the interval

[0; 1], respectively, and �0 is a constant term. (Here, we also
parameterize the Lagrange multiplier.

Decisions in divisible versus indivisible labor

� The function pit, allows us to infer the indivisible labor choice
directly, speci�cally, an agent is employed nit = n whenever p

i
t � 1

2
and is unemployed otherwise nit = 0.

� We can then compute ht =
P`

i=1 v
i
tn
i and �nd Wt and Rt restore

the remaining individual and aggregate variables.

� Our next goal is to check if the constructed labor choices are
consistent with the individual optimality conditions.

� We use the decision functions pit,
cit
wit
and �it to restore the value

functions for the employed and unemployed agents V E
�
sit; �

E
�
and

V U
�
sit; �

U
�
:

� We next construct the labor choice bnit implied by these two value
functions bnit = � n if V E = max

�
V E ; V U

	
;

0 otherwise.

Decisions in divisible versus indivisible labor

In the solution, the labor choice bnit implied by the value functions must
coincide with the labor choice nit produced by our decision function for all
i and t. If this is not the case, we proceed with training our classi�er. To
this purpose, we construct the categorical variable yit 2 f0; 1g such that

yit =

�
1 if bnit = n,
0 otherwise,

and we use it to form the (log)likelihood function

lnL (�) =
1

`

X̀
i=1

�
yit ln

�
p
�
sit; �

��
+
�
1� yit

�
ln
�
1� p

�
sit; �

���
.

We then maximize the likelihood function by using a conventional /
stochastic / batch stochastic gradient descent methods. We iterate on

the decision functions pit,
cit
wit
and �it until convergence.

Implementation di�erence in construction of divisible and
indivisible labor.

� There is an important implementation di�erence in the construction
of the labor choice in the divisible and indivisible labor models.

� In the former model, the optimal labor choice must satisfy FOC and
hence, it can be constructed by considering just the current period
variables.

� However, this is not true for the indivisible labor model in which the
agent chooses to be employed or unemployed depending on which of
the two continuation values is larger V E or V U .

Prescott et al. (2009): intensive and extensive margins

� Prescott et al. (2009) propose a cleaver approach to modeling the
indivisible labor choice under which such a choice can be
constructed from the current state variables without the need of
constructing value functions.

� They allow for intensive and extensive margins by "discretizing" the
FOC. To be speci�c, they assume that the labor choice is divisible as
long as it is above a given threshold nf but it jumps to zero
whenever the labor choice falls below nf (i.e., the agent becomes
unemployed):

bnit =
8<: L�

�
c�
i Wt exp(vit)

B

��1=�
� nf ;

0 otherwise.

Determining indivisible labor: value functions versus
"discretized" FOC

� We borrow from Prescott et al. (2009) the idea of discretizing the
FOCs of the divisible labor model, however, we go a step further and
we make the labor choice entirely indivisible by assuming that nit can
take just two values 0 (unemployed) and n (employed):

bnit =
8<: n if L�

�
c�
i Wt exp(vit)

B

��1=�
� nf ;

0 otherwise.

� The above approach can be a simple and e�ective alternative to
conventional methods that solve for indivisible labor by constructing
the value functions V E and V U explicitely.

Algorithm 2: Deep learning for indivisible labor model

Algorithm 2: Deep learning for the indivisible labor model.

Step 0: (Initialization).

Construct initial state
��
ki0; v

i
0

	`
i=1

; z0

�
and parameterize the decision functions byn

pit;
cit
wit

o
= �

�
�0 + '

�
kit; v

i
t;
�
kit; v

i
t

	`
i=1

; zt; �
��
;

�it=exp
�
�0 + '

�
kit; v

i
t;
�
kit; v

i
t

	`
i=1

; zt; �
��
;

where pit is the probability of being employed.

Algorithm 2: Deep learning for indivisible labor model
(cont.)

Algorithm 2: Deep learning for the indivisible labor model.

Step 1: (Evaluation of decision functions).

Given
�
kit; v

i
t;
�
kit; v

i
t

	`
i=1

; zt

�
; compute nit = n if p

i
t � 1

2 and n
i
t = 0 if p

i
t <

1
2 .

Compute wit and
cit
wit
,and �nd Rt and and Wt; and �nd k

i
t+1 from the budget

constraint for all agents i = 1; :::; `.

Option 1: Construct V E and V U and �nd bnit = � n if V E = max
�
V E ; V U

	
;

0 otherwise.

Option 2: Use the discretized FOC bnit =
8<: n if L�

�
c�
i Wt exp(vit)

B

��1=�
� nf ;

0 otherwise.

De�ne yit =

�
1 if bnit = n,
0 otherwise,

for each sit.

Algorithm 2: Deep learning for divisible labor model
(cont.)

Algorithm 2: Deep learning for the indivisible labor model.

Step 2: (Construction of Euler residuals).

Draw two random sets of individual productivity shocks �1 =
�
�11; :::; �

`
1

�
,

�2 =
�
�12; :::; �

`
2

�
and two aggregate shocks �1;, �2, to construct

�(�) =

�h
	FB

�
1� cit

wit
; 1� �it

�i2
+$n

�
yit ln

�
p
�
sit; �

��
+
�
1� yit

�
ln
�
1� p

�
sit; �

���2
+ $�

�
�
h
(cit+1)

�

Rt+1

����0t+1;�0t+1i
(cit)

�
 � �it
� �

�
h
(cit+1)

�

Rt+1

����00t+1;�00t+1i
(cit)

�
 � �it
��
;

where 	FB (a; b) = a+ b�
p
a2 + b2 is a Fischer-Burmeister function;

and $n, $� are given weights.

Step 3: (Training).

...

Step 4: (Simulation).

...

Training errors and running time

Figure 7. Training errors and running time for indivisible labor model.

The solution for divisible labor model

Figure 8. Solution to indivisible labor model under
 = 1 and
� = 1.

Deep learning method for the model with 3 states

Multiclass classi�cation problem
We again have a collection of ` data points

�
Xi; yi

	`
i=1

where

Xi �
�
1; xi1; x

i
2; :::

�
is composed of dependent variables (features) but

now yi is a categorical independent variable (label) that takes K values.
Our goal is to construct the lines that separate the classes 1, 2 and 3.

Figure 9. Examples of multiclass classi�cation.

From multiclass to binary classi�cation problem

� A popular approach in machine learning is to reformulate a
multiclass classi�cation problem as a collection of binary
classi�cation problems.

� The key assumption behind this approach is the hypothesis of an
independence of irrelevant alternatives.

� In our analysis, that means that the choice between f�g and f4g
is independent of the availability of fog, the choice between f4g
and fog is independent of the availability of f�g and the choice
between fog and f�g is independent of the availability of f4g.

� Two binary reformulations of a multiclass classi�cation problems are
the one-versus-one and one-versus-rest (or one-versus-all) classi�ers,

ln p(�)p(o) = X�
(1) ln p(4)

p(o) = X�
(2) ln p(4)

p(�)= X�
(3);

ln p(�)
p(o)+p(4)= X�

(1) ln p(4)
p(o)+p(�)= X�

(2) ln p(o)
p(4)+p(�)= X�

(3);

where �(1), �(2) and �(3) are the regression coe�cients and X is the
matrix of features.

Training multi class classi�ers

� To train the constructed multiclass classi�ers, we may omit one of
three regressions by imposing the restriction that the probabilities
are added to one.

� For the one-versus-one classi�er, the �rst two regressions imply
p (�) = p (o) exp

�
X�(1)

�
and p (4) = p (o) exp

�
X�(2)

�
so that

p (o)
�
1 + exp

�
X�(1)

�
+ exp

�
X�(2)

��
= 1.

� In turn, for the one-versus-rest classi�er, in the �rst regression, we
replace p (o) + p (4) with 1� p (�) and in the second regression,
we replace p (o) + p (�) with 1� p (4).

Consequently, we can re-write two classi�ers as

p (�)= exp
�
X�(1)

�
p (o) ; p (4)= exp

�
X�(2)

�
p (o) ;

p (o)= 1

1+exp(X�(1))+exp(X�(2))
;

p (�)= 1
1+exp(�X�(1)) p (4)= 1

1+exp(�X�(2)) p (o)= 1� p (�)�p (4) :

Symmetric one-versus-rest classi�er
� Note that in the above expressions, we treat the normalizing class
fog di�erently from the other two classes f4;�g.

� There is also a symmetric version of the one-versus-rest method in
which all K classes are treated identically by estimating K
unnormalized one-versus-rest logistic regressions ln p (�) = X�(1),
ln p (4) = X�(2), ln p (o) = X�(3) and by normalizing the
exponential function ex-post by their sum.

� This classi�er is called softmax and it is a generalization of a logistic
function to multiple dimensions,

p (�)= 1
� exp

�
X�(1)

�
p (4)= 1

� exp
�
X�(2)

�
;

p (o)= 1
� exp

�
X�(3)

�
;

where � = exp
�
X�(1)

�
+ exp

�
X�(2)

�
+ exp

�
X�(3)

�
.

� The symmetric treatment is convenient in deep learning analysis
because it allows us to use a neural network with K symmetric
outputs.

Likelihood function for softmax classi�er

The log-likelihood function for the softmx classi�er is similar to the one
for the binary classi�er except that we also do a summation over K of
possible outcomes,

max
�1;:::;�K

lnL (�1; :::; �K)

=
1

K`

KX
k=1

X̀
i=1

h
yi;k ln

�
p
�
Xi; �k

��
+
�
1� yi;k

�
ln
�
1� p

�
Xi; �k

��i
,

where yi;k is a categorical variable constructed so that yi;k = 1 if
observation i belongs to class k and it is zero otherwise. Again, we
maximize the constructed likelihood function by using a gradient descent
style method, � � � �r lnL� (�).

Discrete choice in three state model

� We next extend our indivisible labor heterogeneous-agent model
with two employment choices f0; ng to three employment choices
f0; n; ng.

� We parameterize not one but three decision boundaries that separate
the three employment choices, so we use a sigmoid function to

parameterize four functions
pit(n)
� ;

pit(n)
� ;

pit(0)
� ;

cit
wit
, speci�cally:

�
�
�0 + '

�
kit; v

i
t;
�
kit; v

i
t

	`
i=1

; zt; �
��
;

where ' (�) is a multilayer neural network parameterized by a vector
of coe�cients � (weights and biases), � � pit (n) + pit (n) + pit (0)
normalizes the probabilities to one; � (z) = 1

1+e�z is a sigmoid

function which ensures that
cit
wit
and

pit(n)
� ;

pit(n)
� and

pit(0)
� are

bounded in the interval [0; 1], and �0 is a constant term. (In
addition, we also parameterize the Lagrange multiplier).

Verifying the optimality conditions
� Our next goal is to check if the constructed labor choices are
consistent with the individual optimality conditions.

� To validate the individual choices, we use the decision functions
pit(n)
� ;

pit(n)
� ;

pit(0)
� ;

cit
wit
and �it to recover the value functions for

employed, part-time employed and unemployed agents, V E , V PT

and V U , respectively, using the appropriately formulated Bellman
equations; see Chang and Kim (2007).

� We then construct the labor choice bnit implied by such value
functions,

bnit =
8<: n if V E = max

�
V E ; V PT ; V U

	
;

n if V PT = max
�
V E ; V FT ; V U

	
;

0 otherwise.

� In the solution, the labor choice implied by the value function bnit
must coincide with the labor choice produced by our decision
function nit for all i; t.

� If this is not the case, we proceed to training of our classi�er.

Training the model
� To this purpose, we construct the categorical variable
yit �

�
yi;1t ; y

i;2
t ; y

i;3
t

�
such that

yit =

8<: (1; 0; 0) if bnit = n;
(0; 1; 0) if bnit = n;
(0; 0; 1) otherwise.

� We then formulate the (log)likelihood function

lnL
�
�(1); �(2); �(3)

�
=
1

3`

3X
k=1

X̀
i=1

hbyi;kt ln
�
p
�
sit; �

(k)
��
+
�
1� byi;kt � ln�1� p�sit; �(k)��i .

� We train the model to maximize the likelihood function by using a
conventional / stochastic / batch stochastic gradient descent
method.

� We iterate on the decision functions pit (n) ; pit (n) ; pit (0),
cit
wit
and �it

until convergence.

Determining three-state labor: value functions versus
"discretized" FOC

� Chang and Kim (2007) consider a related heterogeneous-agent
model with three states but they allow for intensive and extensive
margins.

� In contrast, we assume an entirely discrete choice between the three
employment states:

bnit =
8>>>>><>>>>>:
n if L�

�
c�
i Wt exp(vit)

B

��1=�
� nf

n if L�
�
c�
i Wt exp(vit)

B

��1=�
2 [np; nf]

0 otherwise

� Thus, we assume that the agent chooses full-time employment,
nit = n, whenever her labor choices implied by the FOC of the
divisible labor mode is above a threshold nf ; she chooses part-time
employment, nit = n, whenever it belongs to the interval [np; nf];
and she chooses unemployment whenever it falls below the part-time
employment threshold np.

Algorithm 3: Deep learning for model with full and
part-time employment

Algorithm 3: Deep learning for the model with full and partial employment.

Step 0: (Initialization).

Construct initial state
��
ki0; v

i
0

	`
i=1

; z0

�
and parameterize the decision functions byn

pit(n)
� ;

pit(n)
� ;

pit(0)
� ;

cit
wit

o
= �

�
�0 + '

�
kit; v

i
t;
�
kit; v

i
t

	`
i=1

; zt; �
��
;

where pit (n) ; p
i
t (n) and p

i
t (0) are the probabilities to be full- and part-time

employed and unemployed, respectively;

and � � pit (n) + pit (n) + pit (0) is a normalization of probability to one.

Algorithm 3: Deep learning for model with full and
part-time employment (cont.)

Algorithm 3: Deep learning for the model with full and partial employment.

Step 1: (Evaluation of decision functions).

Given state
�
kit; v

i
t;
�
kit; v

i
t

	`
i=1

; zt

�
; set nit = n, n

i
t = n and n

i
t = 0 depending on

on which probability pit (n) ; p
i
t (n) and p

i
t (0) is the largest. Compute w

i
t;

cit
wit
from

the decision rules and �nd kit+1 from the budget constraint for all agents i = 1; :::`:
Reconstruct V E ; V PT and V U , respectively.

Find bnit =
8<: n if V E = max

�
V E ; V PT ; V U

	
;

n if V PT = max
�
V E ; V FT ; V U

	
;

0 otherwise.

and de�ne yit =

8<: (1; 0; 0) if bnit = n;
(0; 1; 0) if bnit = n;
(0; 0; 1) otherwise.

for each sit.

Algorithm 3: Deep learning for model with full and
part-time employment (cont)

Algorithm 3: Deep learning for the model with full and partial employment.

Option 1: Construct V E ; V PT ; V U and bnit =
8<: n if V E = max

�
V E ; V PT ; V U

	
;

n if V PT = max
�
V E ; V FT ; V U

	
;

0 otherwise.

Option 2: From discretized FOC bnit =
8>>>>><>>>>>:
n if L�

�
c�
i Wt exp(vit)

B

��1=�
� nf

n if L�
�
c�
i Wt exp(vit)

B

��1=�
2 [np; nf]

0 otherwise

De�ne yit =

8<: (1; 0; 0) if bnit = n;
(0; 1; 0) if bnit = n;
(0; 0; 1) otherwise.

for each sit.

Algorithm 3: Deep learning for model with full and
part-time employment (cont)

Algorithm 3: Deep learning for the model with full and partial employment.

Step 2: (Construction of Euler residuals).

Draw two random sets of individual productivity shocks �1 =
�
�11; :::; �

`
1

�
,

�2 =
�
�12; :::; �

`
2

�
and two aggregate shocks �1;, �2, and construct the residuals

�(�) =

�h
	FB

�
1� cit

wit
; 1� �it

�i2
+$n

3

P3
k=1

hbyi;kt ln
�
p
�
sit; �

(k)
��
+
�
1� byi;kt � ln�1� p�sit; �(k)��i2

+ $�

�
�
h
(cit+1)

�

Rt+1

����0t+1;�0t+1i
(cit)

�
 � �it
� �

�
h
(cit+1)

�

Rt+1

����00t+1;�00t+1i
(cit)

�
 � �it
��
;

where 	FB (a; b) = a+ b�
p
a2 + b2 is a Fischer-Burmeister function;

and $n, $� are given weights.

Step 3: (Training).

...

Step 4: (Simulation).

...

Training errors and running time

Figure 10. Training errors and running time for three-state employment model.

The solution for divisible labor model

Figure 11. Solution to the three-state employment model.

Conclusion

� This paper shows how to use deep learning classi�cation approach
borrowed from data science for modeling discrete choices in dynamic
economic models.

� A combination of the state-of-the-art machine learning techniques
makes the proposed method tractable in problems with very high
dimensionality { hundreds and even thousands of heterogeneous
agents.

� We investigate just one example { discrete labor choice { but the
proposed deep learning classi�cation method has a variety of
potential applications such as sovereign default models, models with
retirement, and models with indivisible commodities, in particular,
housing.

