# Discordant Relaxations of Misspecified Models

Désiré Kédagni\* , Lixiong Li<sup>†</sup> and Ismaël Mourifié<sup>‡</sup> December 20, 2021

Iowa State\*, Johns Hopkins $^{\dagger}$  and University of Toronto  $^{\ddagger}$ 

- Misspecification in partially identified models can lead to spuriously informative bounds
- Problem of Inference: misleading CI. Andrews and Kwon (2019), Molinari (2020)

This paper:

• Problem of Identification: misleading outer set

Often in practice, outer set  $\widetilde{\Theta}$  instead of  $\Theta_I$  is estimated:

- Blundell, Gosling, Ichimura and Meghir(2007)
- Ciliberto and Tamer(2009), Ciliberto, Murry and Tamer(2018)
- Aucejo, Bugni and Hotz(2017)
- Sheng(2018), de Paula, Richards-Shubik and Tamer(2018)
- Dickstein and Morales(2018)
- Chesher and Rosen(2020)
- ...

#### • Negative Result:

outer sets can be misleading / discordant if based on nonsharp id. restrictions.

#### • Positive Result:

outer sets may not be discordant under some conditions.

#### • Related Result:

ideas on how to summarize discordant results from different assumptions.

# **Discordant Outer Sets: an Example**

## $\mathbb{E}[\underline{Y}|Z] \leqslant \theta \leqslant \mathbb{E}[\overline{Y}|Z] \quad a.s.$

Example: heterogeneous treatment model

| $(Y_0, Y_1)$                          | potential outcome                                         |
|---------------------------------------|-----------------------------------------------------------|
| D                                     | binary treatment                                          |
| $Y = Y_D$                             | observed outcome                                          |
| Ζ                                     | instrument                                                |
| $\underline{Y}_d$                     | $\underline{y}\mathbb{1}(D \neq d) + Y\mathbb{1}(D = d))$ |
| $\overline{Y}_d$                      | $\overline{y}\mathbb{1}(D \neq d) + Y\mathbb{1}(D = d))$  |
| $\theta_d$                            | $\mathbb{E}[Y_d]$                                         |
| $\mathbb{E}[Y_d Z] = \mathbb{E}[Y_d]$ | mean independence                                         |
|                                       |                                                           |

$$\mathbb{E}[\underline{Y}|Z] \leqslant \theta \leqslant \mathbb{E}[\overline{Y}|Z] \quad a.s.$$

Then,

$$\theta \in [\underline{\gamma}, \overline{\gamma}] := \left[ \sup_{z} \mathbb{E}[\underline{Y}|Z = z], \inf_{z} \mathbb{E}[\overline{Y}|Z = z] \right]$$

it implies for any  $h(\cdot) \ge 0$ ,

$$\mathbb{E}[h(Z)(\underline{Y}-\theta)] \leq 0, \quad \mathbb{E}[h(Z)(\theta-\overline{Y})] \leq 0$$

its id. set  $\Theta_I(h)$ .

$$\operatorname{\mathsf{Recall}} \underline{\gamma} = \sup_{z} \mathbb{E}[\underline{Y}|Z = z] \quad \overline{\gamma} = \inf_{z} \mathbb{E}[\overline{Y}|Z = z] \; .$$

- when  $\underline{\gamma} \leqslant \overline{\gamma}$ ,  $[\underline{\gamma}, \overline{\gamma}] \subseteq \Theta_I(h)$
- when  $\underline{\gamma} > \overline{\gamma}$ ,  $[\underline{\gamma}, \overline{\gamma}] = \emptyset$ , what is  $\Theta_I(h)$  ?

#### Theorem

Suppose  $\mathbb{E}[\underline{Y}|Z] \leq \mathbb{E}[\overline{Y}|Z]$  a.s.

When full model refuted, i.e. when  $\gamma > \overline{\gamma}$  and  $[\gamma, \overline{\gamma}] = \emptyset$ ,

$$\forall \theta \in (\overline{\gamma}, \gamma), \ \exists h \ge 0, \ s.t. \ \Theta_I(h) = \{\theta\}$$

Takeaway: an outer set can be very tight but misleading

Here, when the model is refuted, outer sets are discordant: there exist  $h_1$ ,  $h_2$  such that  $\Theta_I(h_1) \neq \emptyset$ ,  $\Theta_I(h_2) \neq \emptyset$ ,

 $\Theta_I(h_1) \cap \Theta_I(h_2) = \emptyset$ 

Here, when the model is refuted, outer sets are discordant: there exist  $h_1$ ,  $h_2$  such that  $\Theta_I(h_1) \neq \emptyset$ ,  $\Theta_I(h_2) \neq \emptyset$ ,

 $\Theta_I(h_1) \cap \Theta_I(h_2) = \emptyset$ 

In general,

nonsharp id. restrictions  $\Rightarrow$  discordant outer sets examples including

- Artstein inequality on random set and Choquet capacity
- conditional moment inequality models

# Compatible Outer Sets: an Example

#### Potential Outcome Model:

- *D* binary treatment: college education or not
- Z instrument: max. years of education of parents
- *Y*<sub>dz</sub> potential outcome: potential wage
- $Y = Y_{DZ}$  observed outcome: observed wage

#### $\theta$ ATE

Assume mean independence:  $\forall (d, z), \mathbb{E}[Y_{dz}|Z] = \mathbb{E}[Y_{dz}].$ 

### Assumptions

exclusion restriction in Manski (1990) aexclude:

instruments z has no impact on potential outcome  $Y_{dz}$ 



Adaptive Monotone IV assumption *a<sub>k</sub>*:

 $Y_{dz}$  weakly increases with z then remain flat after  $z \ge k$ 



## **Outer Sets and Minimum Relaxation**

Note that

• assumptions are nested,

 $a_{\mathsf{exclude}} \Leftrightarrow a_1 \Rightarrow a_2 \Rightarrow \cdots \Rightarrow a_K$ 

• id. set  $\Theta_I(a_k)$  is an outer set of the id. set  $\Theta_I(a_{\text{exclude}})$ 

However,

• outer sets are compatible even if model *a<sub>exclude</sub>* is refuted

either  $\Theta_I(a_k) \subseteq \Theta_I(a_{k'})$  or  $\Theta_I(a_{k'}) \subseteq \Theta_I(a_k)$ 

• Importantly, data reveals the unique minimum relaxation needed to restore data-consistency.

In our paper,

- we derived the iff condition for the uniqueness of minimum data-consistent relaxation
- we also discussed what conclusion could be drawn if minimum data-consistent relaxations are not unique.