Unconditional Quantile Regression with High-Dimensional Data

Yuya Sasaki¹ Takuya Ura² Yichong Zhang³

¹Vanderbilt University

²University of California, Davis

³Singapore Management University

ES North American Winter Meeting January 7, 2022 ▶ This paper provides a method of estimation and inference for unconditional quantile partial effects (UQPE) with high-dimensional covariates (X).

▶ Before talking about this paper, I will spend a minute on the background (UQPE & high-dimensional covariates).

UQPE

- ▶ Unconditional quantile regression (Firpo, Fortin, and Lemieux, 2009) measures heterogeneous counterfactual effects.
- ▶ Unconditional quantile partial effect (UQPE) in the unconditional quantile regression.
 - "[A] simple way of performing detailed decompositions" (Fortin, Lemieux, and Firpo, 2011, p. 76).
 - ▶ Popular.

Unconditional quantile regressions

Authors Sergio Firpo, Nicole M Fortin, Thomas Lemieux

Publication date 2009/5

Journal Econometrica

Volume 77

Issue 3

Pages 953-973

Publisher Blackwell Publishing Ltd

Description We propose a new regre

We propose a new regression method to evaluate the impact of changes in the distribution of the explanatory variables on quantiles of the unconditional (marginal) distribution of an outcome variable. The proposed method consists of running a regression of the (recentered) influence function (RIF) of the unconditional quantile on the explanatory variables. The influence function, a widely used tool in robust estimation, is easily computed for quantiles, as well as for other distributional statistics. Our approach, thus, can be readily generalized to other distributional statistics.

Total citations Cited by 2241

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 202

Scholar articles

Unconditional quantile regressions

S Firpo, NM Fortin, T Lemieux - Econometrica, 2009 Cited by 2241 Related articles All 34 versions

High-Dimensional Covariates

- \triangleright Oaxaca-Blinder decomposition of F_Y into:
 - structural heterogeneity $(F_{Y|X})$ +
 - ightharpoonup distributional heterogeneity (F_X)

see Fortin et al. (2011).

► Causal interpretation under conditional exogeneity (Chernozhukov, Fernández-Val, and Melly, 2013, Sec. 2.3).

We want to use high-dimensional covariates X.

UQPE and High-Dimensional Covariates

Robust Score and Estimation

Estimation Procedure

Bootstrap Inference

Asymptotic Theory

Simulation Studies

Heterogeneous Counterfactual Effects of Job Corps Training

Summary

UQPE

- ightharpoonup Y =observed outcome.
- X =observed covariates.
- ▶ The counterfactual distribution of Y when X_1 changed by ε is

$$F_Y^{\varepsilon}(y) = \int F_{Y|X=(x_1+\varepsilon,x_{-1})} dF_X(x).$$

▶ The UQPE with respect to the first coordinate, X_1 , of X is

$$UQPE(\tau) = \frac{\partial}{\partial \varepsilon} (F_Y^{\varepsilon})^{-1}(\tau) \bigg|_{\varepsilon=0}$$
.

UQPE with High-Dimensional Covariates

- ▶ Three steps of the traditional estimation technique:
 - 1. Estimate unconditional quantiles
 - 2. Estimate the Re-centered Influence Function (RIF) regression
 - 3. Integrate the RIF regression estimates
- ▶ To allow for high-dimensional covariates, X, we need some regularized estimator (a.k.a. machine learner) in the 2^{nd} step.

 \Downarrow

The traditional method to incorporate estimation errors from the 2^{nd} step to the 3^{rd} step no longer applies.

We propose a locally robust score.

UQPE and High-Dimensional Covariates

Robust Score and Estimation

Estimation Procedure

Bootstrap Inference

Asymptotic Theory

Simulation Studies

Heterogeneous Counterfactual Effects of Job Corps Training

Summary

Traditional Score

► Following Firpo et al. (2009), rewrite the UQPE in terms of identifiable parameters:

$$UQPE(\tau) = -\frac{\theta(\tau)}{f_Y(q_\tau)},$$

where q_{τ} is the τ -th quantile of Y and

$$\theta(\tau) = \int \frac{\partial F_{Y|X=x}(q_{\tau})}{\partial x_1} dF_X(x).$$

ightharpoonup Large bias & variance in estimation if X is high-dimensional.

Doubly and Locally Robust Score

▶ We therefore estimate another representation:

$$\theta(\tau) = \int \frac{\partial F_{Y|X=x}(q_{\tau})}{\partial x_{1}} dF_{X}(x)$$

$$- \underbrace{\int \omega(x) (1\{y \leq q_{\tau}\} - m_{0}(x, q_{\tau})) dF_{Y,X}(y, x)}_{\text{Adjustment for estimation of } m_{1}(x, q_{\tau}) = \frac{\partial F_{Y|X=x}(q_{\tau})}{\partial x_{1}}}$$

$$= \int m_{1}(x, q_{\tau}) - \omega(x) (1\{y \leq q_{\tau}\} - m_{0}(x, q_{\tau})) dF_{Y,X}(y, x),$$

where

$$\omega(x) = \frac{\partial}{\partial x_1} \log f_{X_1|X_{-1} = x_{-1}}(x_1),$$

•
$$m_0(x,q) = F_{Y|X=x}(q)$$
, and

► Key insight: Newey (1994).

Double Robustness

► This representation

$$\theta(\tau) = \int (m_1(x, q_\tau) - \omega(x)(1\{y \le q_\tau\} - m_0(x, q_\tau))) dF_{Y,X}(y, x)$$

is doubly robust in the sense that

$$\theta(\tau) = \int \left(\tilde{m}_{1}(x, q_{\tau}) - \omega(x) (1\{y \le q_{\tau}\} - \tilde{m}_{0}(x, q_{\tau})) \right) dF_{Y,X}(y, x)$$

and

$$\theta(\tau) = \int (m_1(x, q_\tau) - \tilde{\omega}(x) (1\{y \le q_\tau\} - m_0(x, q_\tau))) dF_{Y,X}(y, x)$$

hold for a set of values that $(\tilde{\omega}, \tilde{m}_0, \tilde{m}_1)$ takes.

Local Robustness

► This representation

$$\theta(\tau) = \int (m_1(x, q_\tau) - \omega(x)(1\{y \le q_\tau\} - m_0(x, q_\tau))) dF_{Y,X}(y, x)$$

is also locally robust in the sense that

$$\theta(\tau) \approx \int \left(\tilde{\mathbf{m}}_1(x, q_\tau) - \tilde{\boldsymbol{\omega}}(x) (1\{y \le q_\tau\} - \tilde{\mathbf{m}}_0(x, q_\tau)) \right) dF_{Y,X}(y, x)$$

holds for a set of values that $(\tilde{\omega}, \tilde{m}_0, \tilde{m}_1)$ takes under conditions to be statd ahead.

UQPE and High-Dimensional Covariates

Robust Score and Estimation

Estimation Procedure

Bootstrap Inference

Asymptotic Theory

Simulation Studies

Heterogeneous Counterfactual Effects of Job Corps Training

Summary

Estimation Procedure

1. Let \hat{q}_{τ} = the τ -th empirical quantile of Y.

2.
$$\hat{f}_{Y}(y) = \sum_{i=1}^{N} \frac{1}{Nh_{1}} K_{1}\left(\frac{Y_{i-y}}{h_{1}}\right)$$
.

3. Construct an estimator $(\hat{\omega}(x), \hat{m}_0(x,q), \hat{m}_1(x,q))$ – see below.

4.
$$\hat{\theta}(\tau) = \frac{1}{N} \sum_{i \in [N]} \left[\hat{\mathbf{m}}_1(X_i, \hat{q}_\tau) - \hat{\boldsymbol{\omega}}(X_i) (1\{Y_i \leq \hat{q}_\tau\} - \hat{\mathbf{m}}_0(X_i, \hat{q}_\tau)) \right].$$

5.
$$\widehat{UQPE}(\tau) = -\frac{\widehat{\theta}(\tau)}{\widehat{f}_{Y}(\widehat{g}_{\tau})}$$
.

Estimation: \hat{m}_0 and \hat{m}_1

- ► Follow the Lasso logistic regression (Belloni, Chernozhukov, Fernández-Val, and Hansen, 2017).
- ► Approximately sparse logistic regression model

$$m_0(X,q) = \Lambda(b(X)^{\top}\beta_q) + r_m(X,q).$$

1. Lasso penalized logistic regression

$$\tilde{\beta}_q = \operatorname*{arg\,min}_{\beta} \frac{1}{N} \sum_{i \in [N]} M(1\{Y_i \le q\}, b(X_i); \beta) + \frac{\lambda}{N} ||\Psi_q \beta||_1,$$

Estimation: \hat{m}_0 and \hat{m}_1 , Continued

2. Post-Lasso estimator for β_q defined by

$$\hat{\beta}_q = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p: \operatorname{Supp}(\beta) \subset \operatorname{Supp}(\tilde{\beta}_q) \cup S_1} \frac{1}{N} \sum_{i \in [N]} M(1\{Y_i \leq q\}, b(X_i); \beta).$$

3.
$$\hat{\boldsymbol{m}}_{0}(x,q) = \Lambda(b(x)^{\top}\hat{\beta}_{q}).$$

4.
$$\hat{\mathbf{m}}_{1}(x,q) = \frac{\partial}{\partial x_{1}} \hat{\mathbf{m}}_{0}(x,q)$$
.

Estimation: $\hat{\omega}$

- ► Follow the Riesz representer approach (Chernozhukov, Newey, and Singh, 2021a,b)
- Suppose

$$\omega(x) = h(x)^{\top} \overline{\rho} + (\text{approximation error}).$$

Since $\omega(x) = \frac{\partial}{\partial x_1} \log f_{X_1|X_{-1}=x_{-1}}(x_1)$, the integration by parts yields $\mathbb{E}h(X)\omega(X) = -\mathbb{E}\partial_{x_1}h(X).$

• Approximating
$$\omega(x)$$
 by $h(x)^{\top}\overline{\rho}$, we have

$$\mathbb{E}[h(X)h(X)^{\top}]\overline{\rho} = -\mathbb{E}\partial_x h(X) + \text{(approximation error)}.$$

Estimation: $\hat{\omega}$, Continued

▶ From the previous slide, we have

$$\mathbb{E}[h(X)h(X)^{\top}]\overline{\rho} = -\mathbb{E}\partial_{x_1}h(X) + (\text{approximation error}).$$

- $\bar{\rho} \approx \arg\min_{\rho} \left(-2M^{\top}\rho + \rho G\rho + 2\lambda_L |\rho|_1 \right),$ where $G = \mathbb{P}h(X)h(X)^{\top}$ and $M = -\mathbb{P}\partial_{x_1}h(X).$
- 1. $\hat{\rho} = \arg\min_{\rho} \left(-2\hat{M}_l^{\top} \rho + \rho^{\top} \hat{G}_l \rho + 2\lambda_L |\rho|_1 \right)$, where $\hat{G} = \frac{1}{N} \sum_{i \in [N]} h(X_i) h(X_i)^{\top}$ and $\hat{M} = -\frac{1}{N} \sum_{i \in [N]} \partial_{x_1} h(X_i)$.
- $2. \ \hat{\boldsymbol{\omega}}(x) = h(x)^{\top} \hat{\rho}$

UQPE and High-Dimensional Covariates

Robust Score and Estimation

Estimation Procedure

Bootstrap Inference

Asymptotic Theory

Simulation Studies

Heterogeneous Counterfactual Effects of Job Corps Training

Summary

Bootstrap Procedure

▶ Steps to compute the boostrap estimator $\widehat{UQPE}^*(\tau)$:

- 1. Draw $\eta_i \stackrel{\text{i.i.d.}}{\sim} N(0,1)$ independently from data.
- 2. $r_N^* = \text{the integer part of } 1 + \sum_{i=1}^N (\tau + \eta_i(\tau \mathbf{1}\{Y_i \leq \hat{q}_\tau\})).$
- 3. $\hat{q}_{\tau}^* = \text{the } r_N^* \text{-th order statistic of } Y_i$.
- 4. $\hat{f}_Y^*(y) = \sum_{i=1}^N \frac{(\eta_i + 1)}{\sum_{i=1}^N (\eta_i + 1)} \frac{1}{h_1} K_1\left(\frac{Y_i y}{h_1}\right)$.

Bootstrap Procedure, Cotinued

5. $\hat{\theta}^*(\tau)$:

$$\hat{\theta}^*(\tau) = \frac{1}{\sum_{i \in [N]} (\eta_i + 1)} \sum_{i \in [N]} (\eta_i + 1) \times \left[\hat{m}_1(X_i, \hat{q}_{\tau}^*) - \hat{\omega}(X_i) (1\{Y_i < \hat{q}_{\tau}^*\} - \hat{m}_0(X_i, \hat{q}_{\tau}^*)) \right].$$

6.
$$\widehat{UQPE}^*(\tau)$$
:

$$\widehat{UQPE}^*(\tau) = -\frac{\hat{\theta}^*(\tau)}{\hat{f}_V^*(\hat{q}_\tau^*)}.$$

Inference

- ▶ Uniform confidence band for $\{UQPE(\tau) : \tau \in \Upsilon\}$:
 - Let $c_{\Upsilon}(1-\alpha)$ = the $(1-\alpha)$ quantile of

$$\sup_{\tau \in \Upsilon} \left| \widehat{(UQPE}^*(\tau) - \widehat{UQPE}(\tau)) / \widehat{\sigma}(\tau) \right|$$

where

$$\hat{\sigma}(\tau) = \frac{Q_{\widehat{UQPE}^*(\tau)}(0.75) - Q_{\widehat{UQPE}^*(\tau)}(0.25)}{1.34896}.$$

▶ Bounds of CB_{Υ} on Υ are $\widehat{UQPE}(\tau) \pm \hat{\sigma}(\tau)c_{\Upsilon}(1-\alpha), \tau \in \Upsilon$.

UQPE and High-Dimensional Covariates

Robust Score and Estimation

Estimation Procedure

Bootstrap Inference

Asymptotic Theory

Simulation Studies

Heterogeneous Counterfactual Effects of Job Corps Training

Summary

Assumption (Primitive Model Restrictions)

- 1. For every $\tau \in \Upsilon$, $F_Y^{\varepsilon}(q)$ is differentiable with respect to ε in a neighborhood of zero for every q in a neighborhood of q_{τ} , and $Q_{\tau}(F_Y^{\varepsilon})$ is well defined and is differentiable with respect to ε in a neighborhood of zero.
- 2. $\int \left[\sup_{q\in\mathcal{Q}^{\delta}} |m_1(x,q)|\right]^{2+d} dF_X(x)$ and $\int |\omega(x)|^{2+d} dF_X(x)$ are finite for some constant d>0.
- 3. For every x_{-1} in the support of X_{-1} , the conditional distribution of X_1 given $X_{-1} = x_{-1}$ has a probability density function, denoted by $f_{X_1|X_{-1}}$, which is continuously differentiable everywhere and is zero on the boundary of the support of the conditional distribution of X_1 .
- 4. $m_1(x,q)$ and $m_0(x,q)$ are differentiable with respect to q for $q \in \mathcal{Q}^{\delta}$, and the derivatives are bounded in absolute value uniformly over $x \in \operatorname{Supp}(X)$ and $q \in \mathcal{Q}^{\delta}$.
- 5. $f_Y(y)$ is three times differentiable on \mathcal{Q}^{δ} with all the derivatives uniformly bounded. $f_Y(q_{\tau}) > 0$ for every $\tau \in \Upsilon$.

Conditions for \hat{m}_0 and \hat{m}_1

Assumption (Boundedness)

- 6. The following statements hold for positive constants $\delta, \bar{c}, \underline{c}$:
 - (i) $c \leq \mathbb{E}b_i(X)^2 \leq \overline{c}$ for every $j = 1, \dots, p$.
 - (ii) $\sup_{x \in \text{Supp}(X), q \in \mathcal{Q}^{\delta}} |m_1(x, q)| \leq \overline{c}.$
 - (iii) $\sup_{q \in \mathcal{O}^{\delta}} ||\frac{\partial}{\partial x_1} b(X)^{\top} \beta_q||_{\mathbb{P}, \infty} \leq \overline{c}.$

Conditions for \hat{m}_0 and \hat{m}_1

Assumption (Restricted Eigenvalue Condition)

7. There are positive constants $\overline{c}, \underline{c}$ and a sequence $m_N \to \infty$ such that, with probability approaching one,

$$\underline{c} \leq \inf_{\beta \neq 0, ||\beta||_0 \leq m_N} \frac{||b(X)^\top \beta||_{\mathbb{P}_n, 2}}{||\beta||_2} \leq \sup_{\beta \neq 0, ||\beta||_0 \leq m_N} \frac{||b(X)^\top \beta||_{\mathbb{P}_n, 2}}{||\beta||_2} \leq \overline{c},$$

$$\underline{c} \leq \inf_{\beta \neq 0, ||\beta||_0 \leq m_N} \frac{||\frac{\partial}{\partial x_1} b(X)^\top \beta||_{\mathbb{P}_n, 2}}{||\beta||_2} \leq \sup_{\beta \neq 0, ||\beta||_0 \leq m_N} \frac{||\frac{\partial}{\partial x_1} b(X)^\top \beta||_{\mathbb{P}_n, 2}}{||\beta||_2} \leq \overline{c},$$

$$\sup_{\beta \neq 0, ||\beta||_0 \leq m_N} \left| \frac{\left| \left| \frac{\partial}{\partial x_1} b(X)^\top \beta \right| \right|_{\mathbb{P}_{n,2}}}{\left| \left| \frac{\partial}{\partial x_1} b(X)^\top \beta \right| \right|_{\mathbb{P}_{n,2}}} - 1 \right| + \sup_{\beta \neq 0, ||\beta||_0 \leq m_N} \left| \frac{\left| \left| \frac{\partial}{\partial x_1} b(X)^\top \beta \right| \right|_{\mathbb{P}_{n,2}}}{\left| \left| \frac{\partial}{\partial x_1} b(X)^\top \beta \right| \right|_{\mathbb{P}_{n,2}}} - 1 \right| = o_P(1)$$

where $||v||_0$ denotes the the number of nonzero coordinates of vector v.

Conditions for \hat{m}_0 and \hat{m}_1

Assumption (Sparsity)

8. $\sup_{q \in \mathcal{Q}^{\delta}} ||\beta_q||_0 \le s_b$ for a sequence $s_b = s_{m,N}$ satisfying $s_b = o(m_N)$, $s_b \log(p_b) = o(N)$, where

$$\zeta_N = \max\left(||\max_{j=1,\dots,p_b}|b_j(X)|||_{\mathbb{P},\infty},||\max_{j=1,\dots,p_b}|\frac{\partial}{\partial x_1}b_j(X)|||_{\mathbb{P},\infty}\right).$$

Assumption (Approximation Error)

9.

$$\sup_{q \in \mathcal{Q}^{\delta}} \left\| \frac{\partial}{\partial x_1} r_m(X, q) \right\|_{\mathbb{P}, 2} = O((s_b \log(p_b)/N)^{1/2})$$

$$\sup_{q \in \mathcal{Q}^{\delta}} \left| \left| \frac{\partial}{\partial x_1} r_m(X, q) \right| \right|_{\mathbb{P}, \infty} = O((\log(p_b) s_b^2 \zeta_N^2/N)^{1/2}).$$

Asymptotic Properties of \hat{m}_0 and \hat{m}_1

Theorem

For i = 0 and 1,

$$\sup_{q \in \mathcal{Q}^{\delta}} \int \left| \hat{m}_j(x, q) - m_j(x, q) \right|^2 dF_X(x) = O_P \left(\frac{s_b \log(p_b)}{N} \right),$$

$$\sup_{q \in \mathcal{Q}^{\delta}, x \in Supp(X)} \left| \hat{m}_j(x, q) - m_j(x, q) \right| = O_P \left(\zeta_N s_b \sqrt{\frac{\log(p_b)}{N}} \right).$$

Conditions for $\hat{\omega}$

Assumption (Boundedness)

6. There is C such that with probability one, $\max_{1 \leq j < p_h} |h_j(X)| \leq C$.

Assumption (Approximation Error)

there is $\overline{\rho}$ with $||\overline{\rho}||_0 \leq s_h$ such that

7. Suppose $|\hat{G}_l - G|_{\infty} + |\hat{M}_l - M|_{\infty} = O_p\left(\sqrt{\frac{\log(p_h)}{N}}\right)$ where $|A|_{\infty} = \max_{ij} |A_{ij}|$ for a matrix A.

Assumption (Sparsity)

$$|A|_{\infty} = \max_{ij} |A_{ij}|$$
 for a matrix A.

8. There exists C > 1, $\xi \ge 1/2$ such that for $s_h = C \left(\frac{\log(p_h)}{N}\right)^{-1/(1+2\xi)}$

here is
$$\overline{\rho}$$
 with $||\overline{\rho}||_0 \le s_h$ such that
$$\left(\int (\omega(x) - h(x)^{\top} \overline{\rho})^2 dF_X(x)\right)^{1/2} \le C(s_h)^{-\xi} \quad \text{and} \quad ||\omega(x) - h(x)^{\top} \overline{\rho}||_{\mathbb{P},\infty} = o(1).$$

Conditions for $\hat{\omega}$

Assumption (Restricted Eigenvalue Condition)

9. Suppose G is nonsingular and both G and \hat{G} 's eigenvalues are uniformly bounded in n, with probability approaching one. Also, there is $\kappa > 3$ such that for $\rho = \rho^*$ and $\overline{\rho}$,

$$\inf_{\Delta: \Delta \neq 0, \sum_{j \in \mathcal{J}_\rho^c} |\Delta_j| \leq \kappa \sum_{j \in \mathcal{J}_\rho} |\Delta_j|} \frac{\Delta' G \Delta}{\sum_{j \in \mathcal{J}_\rho} \Delta_j^2} > 0.$$

Assumption (Tuning Parameter)

10.
$$\lambda_L = \ell_n \sqrt{\log(p_h)/N}$$
, where $\ell_n = \log(\log(N))$.

Asymptotic Properties of $\hat{\omega}$

Theorem

$$\int \left[\hat{\omega}(x) - \omega(x)\right]^2 dF_X(x) = O_p(\ell_n^2 s_h \log(p_h)/N)$$

and

$$\sup_{x \in Supp(X)} |\hat{\omega}(x) - \omega(x)| = o_p(1).$$

Conditions for \hat{f}_Y

Assumption

- 1. $K_1(\cdot)$ is a second-order symmetric kernel function with a compact support.
- 2. $h_1 = c_1 N^{-H}$ for some positive constant c_1 and some $1/2 > H \ge 1/5$.

Asymptotic Properties of \widehat{UQPE}

Theorem

$$\widehat{UQPE}(\tau) - UQPE(\tau) = \frac{1}{N} \sum_{i=1}^{N} \mathrm{IF}_{i}(\tau) + \frac{\theta(\tau) f_{Y}^{(2)}(q_{\tau}) (\int u^{2} K_{1}(u) du) h_{1}^{2}}{2 f_{Y}^{2}(q_{\tau})} + R(\tau)$$

$$\widehat{UQPE}^{*}(\tau) - \widehat{UQPE}(\tau) = \frac{1}{N} \sum_{i=1}^{N} \eta_{i} \cdot \mathrm{IF}_{i}(\tau) + R^{*}(\tau),$$

where the residuals are $o_P((\log(N)Nh_1)^{-1/2})$ uniformly in τ .

The influence function is
$$\operatorname{IF}_i(\tau) = \frac{\theta(\tau)}{f_Y^2(q_\tau)h_1} K_1\left(\frac{Y_i - q_\tau}{h_1}\right)$$
.

UQPE and High-Dimensional Covariates

Robust Score and Estimation

Estimation Procedure

Bootstrap Inference

Asymptotic Theory

Simulation Studies

Heterogeneous Counterfactual Effects of Job Corps Training

Summar

Simulation Setting

► The outcome variable:

$$Y \mid X \sim N \left(g(X_1) + \sum_{j=2}^{p} \alpha_j X_j, 1 \right),$$

where

$$g(x) = x$$
 in DGP 1,
 $g(x) = x - 0.10 \cdot x^2$ in DGP 2, and
 $g(x) = x - 0.10 \cdot x^2 + 0.01 \cdot x^3$ in DGP 3.

Simulation Setting, Continued

▶ The high-dimensional controls $(X_1, ..., X_p)^T$:

$$X_1 \mid (X_2, ..., X_p) \sim N\left(\sum_{j=2}^p \gamma_j X_j, 1\right)$$
 and $(X_2, ..., X_p) \sim N(0, \Sigma_{p-1}),$

where Σ_{p-1} is the $(p-1) \times (p-1)$ variance-covariance matrix whose (r,c)-element is $0.5^{2(|r-c|+1)}$.

Simulation Setting, Continued

► High-dimensional parameter vectors:

(i)
$$(\alpha_2, \dots, \alpha_p)^{\top} = (\gamma_2, \dots, \gamma_p)^{\top} = (0.5^2, 0.5^3, \dots, 0.5^p)^{\top}$$

(ii) $(\alpha_2, \dots, \alpha_p)^{\top} = (\gamma_2, \dots, \gamma_p)^{\top} = (0.5^2, 0.5^{5/2}, \dots, 0.5^{(p+2)/2})^{\top}$
(iii) $(\alpha_2, \dots, \alpha_p)^{\top} = (\gamma_2, \dots, \gamma_p)^{\top} = (0.5^2, 0.5^{7/3}, \dots, 0.5^{(p+4)/3})^{\top}$
(iv) $(\alpha_2, \dots, \alpha_p)^{\top} = (\gamma_2, \dots, \gamma_p)^{\top} = (0.5^2, 0.5^{9/4}, \dots, 0.5^{(p+6)/4})^{\top}$

▶ Focus on (i) in this presentation.

Additional Details on Simulations

- ▶ Lasso preliminary estimators.
- $h(x) = (x^T, (x^2)^T, (x^3)^T)^T$ for estimation of ω_l .
- ▶ $b(x) = (x^T, (x^2)^T, (x^3)^T)^T$ for estimation of m_0 and m_1 .
- ► $h_1 = 1.06\hat{\sigma}(Y)N^{-1/5-0.01}$ (the rule-of-thumb optimal choice undersmoothed)
- $\lambda_L = \log(\log(N)) \sqrt{\log(\dim(h(X))/N)}$ (following our assumption)
- N = 500.
- p = 100.

Simulation Results 1 – Our Proposed Method

				True	True Estimates			95% (Cover	
DGP	N	p	au	UQPE	Mean	Bias	RMSE	Point	Unif.	
			0.20	1.00	1.03	0.03	0.16	0.948		
1 (i)	500	100	0.40	1.00	1.02	0.02	0.13	0.948	0.956	
1 (1)	300	100	0.60	1.00	1.03	0.03	0.14	0.954		
			0.80	1.00	0.99	-0.01	0.16	0.948		
		100	0.20	1.12	1.14	0.02	0.18	0.952		
2 (;)	500		100	0.40	1.03	1.05	0.02	0.13	0.946	0.956
2 (i)	500			0.60	0.95	0.98	0.03	0.13	0.950	0.950
			0.80	0.87	0.88	0.00	0.15	0.950		
	500	100	0.20	1.14	1.17	0.03	0.18	0.950		
3 (i)			100	0.40	1.04	1.06	0.02	0.13	0.942	0.950
				0.60	0.97	1.00	0.03	0.13	0.944	0.950
			0.80	0.91	0.90	0.00	0.13	0.952		

Simulation Results 2 – Conventional RIF-Logit

				True]	Estimates		95% (Cover
DGP	N	p	τ	UQPE	Mean	Bias	RMSE	Point	Unif.
			0.20	1.00	1.05	0.05	0.17	0.872	0.902
	500	25	0.40	1.00	1.03	0.03	0.13	0.892	
	500	25	0.60	1.00	1.03	0.03	0.13	0.898	
1 (i)			0.80	1.00	1.05	0.05	0.17	0.886	
1 (1)			0.20	1.00	0.18	-0.82	1.32	0.008	
	500	50	0.40	1.00	1.33	0.33	0.63	0.500	0.000
	500	50	0.60	1.00	1.33	0.33	0.57	0.474	
			0.80	1.00	0.15	-0.85	1.06	0.010	
			0.20	1.12	1.19	0.07	0.20	0.876	0.906
	500	25	0.40	1.03	1.06	0.04	0.14	0.884	
			0.60	0.96	0.99	0.03	0.12	0.900	
2 (i)			0.80	0.88	0.92	0.04	0.15	0.878	
2 (1)			0.20	1.12	0.08	-1.03	1.28	0.006	0.000
	500	50	0.40	1.03	1.36	0.34	0.58	0.464	
	500	50	0.60	0.95	1.24	0.29	0.49	0.528	
			0.80	0.87	0.34	-0.53	1.04	0.020	
			0.20	1.14	1.22	0.07	0.21	0.886	
	500	25	0.40	1.04	1.08	0.04	0.14	0.892	0.912
	500	20	0.60	0.97	1.01	0.03	0.13	0.900	0.912
3 (i)			0.80	0.90	0.95	0.04	0.15	0.874	
3 (1)			0.20	1.14	0.04	-1.10	1.15	0.006	0.000
	500	50	0.40	1.04	1.41	0.37	0.64	0.444	
	500	50	0.60	0.97	1.28	0.31	0.52	0.502	0.000
			0.80	0.90	0.26	-0.65	0.98	0.016	

Simulation Results 3 – With & Without the Orthogonal Score

With the Doubly Robust Score							Without the Doubly Robust Score						
				95% Cover							95% Cover		
DGP	N	p	au	Point	Unif.		DGP	N	p	au	Point	Unif.	
			0.20	0.948	0.956					0.20	0.930		
1 (:)	E00	100	0.40	0.948			1 (i)	500	100	0.40	0.912	0.010	
1 (i)	500) 100	0.60	0.954				500	100	0.60	0.902	0.912	
			0.80	0.948						0.80	0.910		
		100	0.20	0.952	0.956		2 (i)			0.20	0.924	0.910	
2 (:)	E00		0.40	0.946				500	100	0.40	0.908		
2 (i)	500		0.60	0.950				300	100	0.60	0.906		
			0.80	0.950					0.80	0.916			
			0.20	0.950	0.950		9 (1)			0.20	0.932		
3 (i)	500	100	0.40	0.942				500	100	0.40	0.910	0.014	
	500	100	0.60	0.944			3 (i)	500 1	100	0.60	0.908	0.914	
			0.80	0.952						0.80	0.922		

UQPE and High-Dimensional Covariates

Robust Score and Estimation

Estimation Procedure

Bootstrap Inference

Asymptotic Theory

Simulation Studies

Heterogeneous Counterfactual Effects of Job Corps Training

Summary

Job Corps Training

- ▶ Largest training program for disadvantaged youth in the U.S.
- ► Interested in heterogeneous counterfactual marginal effects of the duration of the exposure to the program on hourly wages.
- ▶ 42 observed controls (and their powers).
- ▶ Different sets of observations are missing across different variables \Rightarrow Take the intersection of non-missing observations.
 - n = 347

		25th	M 15		75th	Non-
Outcome V	**	Percentile 4.750	Median 5.340	Mean 5.892	Percentile	Missing
	Hourly wage				6.500	7606
Freatment X_1	Days in Job Corps	54.0	129.0	153.4	237.0	4748
	Days taking classes	41.0	91.0	120.2	179.0	4207
Controls X_{-1}	Age	17.00	18.00	18.43	20.00	14653
	Female	0.000	0.000	0.396	1.000	14653
	White	0.000	0.000	0.303	1.000	14327
	Black	0.000	1.000	0.504	1.000	14327
	Hispanic origin	0.000	0.000	0.184	0.000	14288
	Native language is English	1.000	1.000	0.855	1.000	14327
	Years of education	9.00	10.00	10.24	11.00	14327
	Other job trainings	0.000	0.000	0.339	1.000	13500
	Mother's education	11.00	12.00	11.53	11.53	11599
	Mother worked	1.000	1.000	0.752	1.000	14223
	Father's education	11.00	12.00	11.50	12.00	8774
	Father worked	0.000	1.000	0.665	1.000	12906
	Received welfare	0.000	1.000	0.563	1.000	14327
	Head of household	0.000	0.000	0.123	0.000	14327
	Number of people in household	2.000	3.000	3.890	5.000	14327
	Married	0.000	0.000	0.021	0.000	14327
	Separated	0.000	0.000	0.017	0.000	14327
	Divorced	0.000	0.000	0.007	0.000	14327
	Living with spouse Child	0.000	0.000	0.014	0.000	14235
	Number of children	0.000	0.000	0.266	1.000	13500
		0.000	0.000	0.347	0.000	13500
	Past work experience	0.000	1.000	0.648	1.000	14327
	Past hours of work per week	0.000	24.00	25.15	40.00	14299
	Past hourly wage	4.250	5.000	5.142	5.500	7884
	Expected wage after training	7.000	9.000	9.910	11.000	6561
	Public housing or subsidy Own house	0.000	0.000	0.200	0.000	14327
		0.000	0.000	0.411 0.255	1.000	11457 13951
	Have contributed to mortgage Past AFDC	0.000	0.000			
	Past AFDC Past SSL or SSA	0.000	0.000	0.301	1.000	14327
	Past SSI or SSA Past food stamps	0.000	0.000	0.251 0.438	1.000	14327 14327
	Past food stamps Past family income > \$12K	0.000	0.000		1.000	
	Past family income ≥ \$12K In good health	0.000	1.000	0.576	1.000	14327
	In good health Physical or emotional problem	1.000	1.000	0.871	1.000	14327 14327
	Physical or emotional problem Smoke	0.000	0.000	0.049	0.000 1.000	14327
		0.000	1.000			
	Alcohol Marijuana or hashish	0.000	1.000	0.584	1.000	14327
	Marijuana or nasnish Cocaine	0.000	0.000	0.369	1.000	14327
		0.000	0.000	0.033	0.000	14327
	Heroin/opium/methadone LSD/peyote/psilocybin	0.000	0.000	0.012	0.000	14327
	LSD/peyote/psilocybin Arrested	0.000	0.000	0.055	0.000	14327
		0.000	0.000	0.266	1.000	14327
	Number of times arrested	0.000	0.000	0.537	1.000	14218

Heterogeneous Counterfactual Marginal Effects

	Outcome	Treatment	τ	$\widehat{UQPE}(\tau)$	Pointwis	se 95% CI	Uniform	95% CB
(I)	Hourly	Days in	0.2	1.16	[0.79	1.54]	[0.30	2.03]
	wage	Job Corps	0.4	1.95	[1.52]	2.39]	[0.94]	2.97]
			0.6	1.60	[0.26]	2.94]	[0.11]	3.09
			0.8	4.56	[2.96]	6.16	[-0.67]	9.79]
(II)	Log	Days in	0.2	0.20	[0.13	0.27]	[0.02	0.38]
	hourly	Job Corps	0.4	0.50	[0.30]	0.69]	[-0.12]	1.11]
	wage		0.6	0.12	[-0.15]	0.38]	[-0.20]	0.43]
			0.8	0.66	[0.37]	0.96]	[-0.04]	1.37]
(III)	Hourly	Days in	0.2	2.69	[0.08	5.30]	[-19.06	24.44]
	wage	Job Corps	0.4	2.66	[2.07]	3.25]	[-0.48]	5.80]
		classes	0.6	1.14	[0.00]	2.29]	[-0.58]	2.87]
			0.8	5.30	[2.76]	7.84]	[-5.64]	16.25]
(IV)	Log	Days in	0.2	0.46	[0.01	0.90]	[-4.24	5.15]
	hourly	Job Corps	0.4	0.64	[0.38]	0.89]	[-1.38]	2.65]
	wage	classes	0.6	0.17	[-0.22]	0.55]	[-0.25]	0.58]
			0.8	0.77	[0.42]	1.13]	[-1.29	2.84]

Variables Selected at Different Quantiles

τ	0.2	0.4	0.6	0.8
	Intercept	Intercept	Intercept	Intercept
				Married
			Separated	Separated
				Living with spouse
			Education	Education
	Number of people	Number of people	Number of people	Number of people
	in household	in household	in household	in household

UQPE and High-Dimensional Covariates

Robust Score and Estimation

Estimation Procedure

Bootstrap Inference

Asymptotic Theory

Simulation Studies

Heterogeneous Counterfactual Effects of Job Corps Training

Summary

Summary

- ▶ UQPE (Firpo et al., 2009)
 - "a simple way of performing detailed decompositions"
 - ▶ Popular (many Google Scholar citations)
- ▶ High-dimensional $X \Rightarrow$ unconfoundedness is more plausible.
- ▶ Robust score.
- ► Lasso + Riesz representer.
- ▶ Bootstrap inference.
- Simulations
- ▶ Heterogeneous counterfactual marginal effects of Job Corps.

Doubly Robust Score: A Proof Sketch

```
\begin{split} &\int \left(\tilde{m}_{1}(x,q_{\tau}) - \omega(x)(1\{y \leq q_{\tau}\} - \tilde{m}_{0}(x,q_{\tau}))\right) dF_{Y,X}(y,x) \\ &= \int \tilde{m}_{1}(x,q_{\tau}) dF_{X}(x) - \iint \left(m_{0}(x,q_{\tau}) - \tilde{m}_{0}(x,q_{\tau})\right) \left(\frac{\partial}{\partial x_{1}} f_{X_{1}|X_{-1}=x_{-1}}(x_{1})\right) dx_{1} dF_{X_{-1}}(x_{-1}) \\ &= \int \tilde{m}_{1}(x,q_{\tau}) dF_{X}(x) + \iint \left(m_{1}(x,q_{\tau}) - \left(\frac{\partial}{\partial x_{1}} \tilde{m}_{0}(x,q_{\tau})\right)\right) \left(f_{X_{1}|X_{-1}=x_{-1}}(x_{1})\right) dx_{1} dF_{X_{-1}}(x_{-1}) \\ &= \int m_{1}(x,q_{\tau}) dF_{X}(x) \\ &= \theta(\tau) \end{split}
```

$$\begin{split} &\int \left(m_1(x,q_\tau) - \tilde{\omega}(x)(1\{y \leq q_\tau\} - m_0(x,q_\tau))\right) dF_{Y,X}(y,x) \\ &= \int m_1(x,q_\tau) dF_X(x) - \iint \tilde{\omega}(x)(m_0(x,q_\tau) - m_0(x,q_\tau)) f_{X_1|X_{-1} = x_{-1}} dx_1 dF_{X_{-1}}(x_{-1}) \\ &= \int m_1(x,q_\tau) dF_X(x) \\ &= \theta(\tau). \end{split}$$

- Belloni, A., V. Chernozhukov, I. Fernández-Val, and C. Hansen (2017): "Program Evaluation with High-dimensional Data," *Econometrica*, 85, 233–298.
- Chernozhukov, V., I. Fernández-Val, and B. Melly (2013): "Inference on counterfactual distributions," Econometrica, 81, 2205–2268.
- Chernozhukov, V., W. K. Newey, and R. Singh (2021a): "Automatic debiased machine learning of causal and structural effects," *Econometrica, forthcoming.*
- ———— (2021b): "Debiased Machine Learning of Global and Local Parameters Using Regularized Riesz Representers," Econometrics Journal, forthcoming.
- Firpo, S., N. M. Fortin, and T. Lemieux (2009): "Unconditional quantile regressions," *Econometrica*, 77, 953–973.
- Fortin, N., T. Lemieux, and S. Firpo (2011): "Decomposition methods in economics," in *Handbook of labor economics*, Elsevier, vol. 4, 1–102.
- Newey, W. K. (1994): "The asymptotic variance of semiparametric estimators," Econometrica, 1349-1382.