Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	0000	000	00	0	0

The Diminishing Impact of Monetary Policy on Asset Prices Around Non-FOMC Macroeconomic Announcements

Zohair Alam

University of Toronto

December 30, 2021

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	0000	000	00	0	0

Outline

Data 2

Results 4

5 Further Investigation

6 Simple Model

Extension G

Conclusion

Intro ●000	Data o	Identification	Results 0000	Further Investigation	Simple Model	Extension O	Conclusion O
Motiva	ation						

- Fed adjusts interest rates to fulfill its dual mandate: maximum employment; price stability.
- ► Fed actions directly impact financial markets:
 - Determine the discount rate which directly affect asset prices.
 - Impact yield curve & firm borrowing costs.
- Monetary policy is most effective when markets correctly anticipate it (Blinder et al, 2001).
- ► This paper focuses on quantifying these *expectations*.

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	0000	000	00	0	0
Motiv	ation						

Conventional (pre-GFC): Fed sets Fed Funds Rate (FFR). Predictable by simple functions (e.g. Taylor Rule)

 $FFR_t = r^* + 2\% + 1.5(infl_t - 2\%) + (GDP_t - GDP^*)$

- Unconventional (post-GFC): Involve forward guidance; QE. Standard rules irrelevant » Complicate forecasting Fed actions.
- "When policy is transparent and effective, people in the economy and financial markets respond to the data, not to the policymakers." (Cecchetti and Schoenholtz, 2019).

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	0000	000	00	0	0
Motiv	ation						

Conventional (pre-GFC): Fed sets Fed Funds Rate (FFR). Predictable by simple functions (e.g. Taylor Rule)

 $FFR_t = r^* + 2\% + 1.5(infl_t - 2\%) + (GDP_t - GDP^*)$

- Unconventional (post-GFC): Involve forward guidance; QE. Standard rules irrelevant » Complicate forecasting Fed actions.
- "When policy is transparent and effective, people in the economy and financial markets respond to the data, not to the policymakers." (Cecchetti and Schoenholtz, 2019).

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	0000	000	00	0	0
Motiv	ation						

Conventional (pre-GFC): Fed sets Fed Funds Rate (FFR). Predictable by simple functions (e.g. Taylor Rule)

 $FFR_t = r^* + 2\% + 1.5(infl_t - 2\%) + (GDP_t - GDP^*)$

- Unconventional (post-GFC): Involve forward guidance; QE. Standard rules irrelevant » Complicate forecasting Fed actions.
- "When policy is transparent and effective, people in the economy and financial markets respond to the data, not to the policymakers." (Cecchetti and Schoenholtz, 2019).

Intro 00●0	Data o	Identification	Results 0000	Further Investigation	Simple Model	Extension 0	Conclusion 0
My Pap	er						

- In contrast to the literature, I focus on the expectation of policy (not its announcement). Thus, I examine non-FOMC announcements relevant to monetary policy.
- Exploit stock-bond covariance to identify monetary news on these events.
- Main Result: Find impacts around non-FOMC announcements fall post-GFC; similar around FOMC announcements » Overall impact of MP on asset prices decreases post-GFC.

Intro 000●	Data 0	Identification	Results 0000	Further Investigation	Simple Model	Extension O	Conclusion O
Contrib	outions						

- Extant Lit. on Monetary Policy and Asset Prices does not find impacts decreased post-GFC (e.g. Gilchrist et al, 2015; Swanson, 2018; Ferrari et al, 2016). I focus on *expectations* of monetary policy and find these impacts reduced post-GFC.
- Propose a simple method to measure monetary news on non-FOMC days. Standard MP surprise measures in the literature don't "work" on non-FOMC announcements.
- Policy Implication: Inadvertent by-product of unconventional policies is the market's reduced ability to anticipate central bank actions, which may have implications on MP's transmission

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	•	00	0000	000	00	0	0

Sample Description

- Assets under investigation: Equity Prices (S&P 500), Nominal Effective Exchange Rate (NEER), Corporate Bond Yields (AAA, A, BBB, BAA), USTs (2y - 30y), Financial Conditions Index (FCI).
- ▶ NonFOMC Announcements: GDP, CPI, Unemployment, Industrial Production.
 - O Dual mandate: i) maximum employment; ii) price stability.
 - ODP part of all major policy rules.
 - IP statistics released by Fed.
- Sample Period: 1996 2019
 - ▶ Pre-GFC (CMP): 1996 Jun 2008
 - Post-GFC (UMP): Jul 2009 onward
- Sources: FRED and Bloomberg Terminal.

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	•0	0000	000	00	0	0

One Method to Identify Monetary News on NonFOMC Days: Sign Restrictions

- Exploit different stock-bond reactions to monetary policy. (Matheson & Stavrev, 2014).
- Isolate movements in yields due to monetary news.
- However, raises set identification issue

Sign Restriction Assumptions								
	Yields	Equity Prices						
Expansionary Monetary Policy	-	+						
Good Non-Monetary News	+	+						

$$\begin{aligned} \text{Yield}_{t} &= \alpha_{0} + \alpha_{1} \text{Yield}_{t-1} + \alpha_{2} \text{Stock}_{t-1} + \epsilon_{t}^{Y} \\ \text{Stock}_{t} &= \delta_{0} + \delta_{1} \text{Yield}_{t-1} + \delta_{2} \text{Stock}_{t-1} + \epsilon_{t}^{S} \end{aligned}$$

$$\epsilon_{t}^{Y} = \alpha_{3}MPNews_{t} + \alpha_{4}NonMPNews_{t}$$
$$\epsilon_{t}^{S} = \delta_{3}MPNews_{t} + \delta_{4}NonMPNews_{t}$$

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	0•	0000	000	00	0	0

Alternative Method: PCA Based

- Extract two components that explain yield changes and equity returns on non-FOMC days
- Interpret components using same identifying assumptions
- ▶ High correlation no matter what bond yield is selected for identification purposes

	PC1	PC2	$\Delta 5 y UST$	Eq Return	Sign Shock
PC1	1.00				
PC2	0.00	1.00			
$\Delta 5 y UST$	0.78	0.61	1.00		
Eq Return	0.79	-0.60	0.26	1.00	
Sign Shock	0.04	0.99	0.65	-0.57	1.00

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	●000	000	00	0	0

Event Analysis: Impact Lower Post-GFC

 \blacktriangleright "*MPNews*_t" is the PCA based shock estimated using 5y USTs (and equity returns)

 $\Delta y_{i,t} = \alpha + \beta_{i,1} MPNews_t + \beta_{i,2} MPNews_t * PostGFC_t + \beta_{i,3} PostGFC_t + \epsilon_{i,t}$

	Eq Prices	10y UST	A-Rated Corp	NEER	FCI
MPNews ($\beta_{i,1}$)	-0.838***	4.796***	4.635***	0.146***	0.063***
	(-16.26)	(16.95)	(17.73)	(5.01)	(33.63)
MPNews $*$ GFC ($\beta_{i,2}$)	0.165**	-1.850***	-1.913***	0.073	-0.007**
	(2.01)	(-3.74)	(-5.10)	(1.46)	(-2.23)
Observations	944	944	925	944	944

Robust t-statistics in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	0000	000	00	0	0

Beyond Event-Day: Future Asset Price Changes Regressed on Same Shock

"*MPNews*_t" is the PCA based shock estimated using 5y USTs (and equity returns)

 $\Delta y_{t+h} = \alpha + \beta_{1,h} MPNews_t + \beta_{2,h} MPNews_t * PostGFC + PostGFC_t + \epsilon_{t+h}$

where for equities, NEER, FCI:

$$\Delta y_{t+h} = ((y_{t+h}/y_{t-1}) - 1) * 100$$

while for corporate bond yields:

$$\Delta y_{t+h} = y_{t+h} - y_{t-1}$$

and $h \in [0, 60]$

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	0000	000	00	0	0

Beyond Event-Day: Impacts Decay Quicker Post-GFC

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	0000	000	00	0	0

Main Results Summary

- Impacts significantly lower on event-day and decay quickly post-GFC.
- ► These results are robust across:
 - Shock identification method: PCA vs sign restriction
 - And asset choices in identification method (2y 30y)
 - Sample choices and GFC definition
 - Across assets (except NEER)
 - Across announcements (analyze individually; consider PCE instead of CPI)
- Non-FOMC announcements important as there are 4x12 = 48 non-FOMC vs. 8 FOMC announcements in a year.
- ▶ <u>Next:</u> Investigate how these announcements' relation to bond markets changed.
- <u>After That:</u> Try to understand the underlying economic forces explaining this difference using a simple information framework

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	0000	●00	00	0	0

Bond Premium Around Non-FOMC Announcements

- \blacktriangleright Savor and Wilson (2013) show high bond premium around various macro announcements.
- Bond premium on macro announcements exists only pre-GFC.

 $\Delta y_{i,t} = \alpha + \beta_1 \textit{NonFOMC}_t + \beta_2 \textit{NonFOMC}_t * \textit{PostGFC}_t + \beta_3 \textit{PostGFC}_t + \epsilon_{i,t}$

where $\Delta y_{i,t}$ is change in spread of bond of maturity "*i*" with 1m bill.

	1y	2у	5у	10y	30y	
NonFOMC	1.23** (2.10)	1.43** (2.28)	1.46** (2.29)	1.52** (2.39)	1.52** (2.36)	
NonFOMC*PostGFC	-1.11* (-1.85)	-1.36** (-2.05)	-1.55** (-2.21)	-1.61** (-2.29)	-1.54** (-2.17)	
Observations	5,787	5,787	5,787	5,787	5,782	
t-statistics computed via Newey-West regressions with 14 lags in parentheses *** p<0.01, ** p<0.05, * p<0.1						

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	0000	000	00	0	0

Interest Rate Uncertainty

- MOVE Index: Option implied vol. of UST yields (2y 30y)
- Implied volatility falls significantly less post-GFC (84.6 pre vs. 45.1 post-GFC; unconditonal avg. of index is 90.3).
- Similar findings for equity market uncertainty (VIX and VXO indices)

	Pre-GFC	Post-GFC				
FOMC	-2.18*** (-4.70)	-1.73*** (-3.96)				
Non-FOMC	-1.40*** (-6.63)	-0.65*** (-3.83)				
t-statistics via NW regressions (14 lags) *** p<0.01, ** p<0.05, * p<0.1						

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	0000	000	00	0	0

Interest Rate Uncertainty & Monetary Policy Uncertainty

- Inability to reduce interest rate uncertainty may raise monetary policy uncertainty (MPU) (Husted, Rogers & Sun, 2019).
- Lower implied volatility and MPU lead to higher investment, GDP, employment etc (Husted, Rogers & Sun, 2019; Cremers, Fleckenstein & Gandhi, 2020).
- Thus, non-FOMC announcements' inability to reduce interest-rate/MPU uncertainty can have real effects, as there are many more non-FOMC announcements vs. FOMC announcements each year (48 vs. 8).

ntro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	0000	000	•0	0	0

Model Setup: Standard as in Goldstein & Yang (2017)

- Informed (λ), uninformed (1 λ) and noise traders exchange a risky asset that has total supply of Q.
- **>** Both informed and uninformed have CARA preferences with risk aversion γ .

- Macro announcement released
- All receive public signal about Fed economic outlook (θ) .

-
$$n = \theta + \epsilon_n$$
; $\epsilon_n \sim N(0, \tau_n^{-1})$

- Informed receive private signal about implied Fed monetary policy (y).

-
$$m_i = y + \epsilon_{m,i}; \ \epsilon_{m,i} \sim N(0, \tau_m^{-1})$$

▶ Priors: $\theta \sim N(\mu_{\theta}, \tau_{\theta}^{-1})$; $y \sim N(\mu_{y}, \tau_{y}^{-1})$

▶ Noise traders demand x, where $x \sim N(0, \tau_x^{-1})$

- Fed announcement released.
- Asset payoff (v) influenced by Fed's outlook (θ) and monetary policy (y).

-
$$v = \theta + y$$

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	0000	000	00	0	0

Model Solution: How Price at t = 1 moves with Monetary Policy

Regressions of asset price changes against monetary news were essentially:

$$\frac{dP_1}{dy} = \frac{\lambda \tau_m + \rho^2 \tau_x}{\lambda \tau_m + \tau_n + \rho^2 \tau_x + \tau_y + \tau_\theta}$$

What explains a fall in this partial post-GFC?

(1) Fall in MP Signal Precision (τ_m) ? Perhaps. UMPs harder to predict than CMP

- **2** Rise in MP Prior Precision (τ_y) ? Probably not. MPU indices of Baker, Bloom & Davis (2016) and Husted, Rogers & Sun (2019) are higher post-GFC
- Solution Rise in Outlook Prior Precision (τ_{θ}) ? Probably not. Pre-GFC also overlaps with the "Great Moderation"
- **(a)** Rise in Outlook Signal Precision (τ_n) ? Probably not. Doesn't appear that announcements have become more precise

Intro	Data	Identification	Results	Further Investigation	Simple Model	Extension	Conclusion
0000	0	00	0000	000	00	•	0

Overall Impact of Monetary News on Asset Prices Falls Post-GFC Collectively Analyzing FOMC and NonFOMC Announcements

Intro 0000	Data 0	Identification	Results 0000	Further Investigation	Simple Model	Extension O	Conclusion ●
Conclusion							

- ► In this paper I:
 - ▶ Show effect of monetary news on *NonFOMC days* declines post-GFC
 - Discuss it seems to be driven by a declining ability of markets to anticipate Fed actions
 - Develop a PCA based shock and to answer my research question
- Main Takeaway: The *inadvertent* byproduct of Unconventional MPs is the reduced ability of non-FOMC announcements to provide guidance regarding Fed actions. This can in turn affect the way monetary policy transmits to asset prices, and perhaps even to the real economy