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I derive a novel occupation(-industry) level panel of skill demands from
the near-universe of tagged online job postings in the US for the last decade
(2010-2020). I use this data to study how the skill demands of occupa-
tions have changed and how these changes affect the market returns to skills.
Low- and medium-wage occupations’ skill demands changed more than those
of high-wage ones. Thus, lower-wage workers face not only higher risks of di-
rect technological displacement but also increased risks of reskilling in order
to stay productive. I show that routine-biased technological change (RBTC)
due to automation technologies such as ML can explain some these results,
while skill-biased and (endogenously) directed technological change cannot.
Technical skills, such as ML, Business, Software, and Data Skills have partic-
ularly high implied market values, as do Social Skills and Creativity. These
therefore represent lucrative (re-)skill investment opportunities for workers
unlike non-cognitive skills. Finally, there is significant heterogeneity by in-
dustry with positive returns to the Utilities, Mining and IT Industries and
negative ones for the Food and Retail industries, even after controlling for
skills.

1 Introduction
Which skills should workers invest in to get jobs and increase their earnings?
Skills are intangible investment assets, which have value, face unexpected
future returns, and may incur risk of depreciation. After all, skills are also
referred to as human capital (Becker (1964)). The social sciences have a
long history of studying the returns to skills, albeit through proxy variables
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such as years of schooling and college attendance (Mincer (1974); Goldin and
Katz (2008, 2009); Michaels et al. (2014); Beaudry et al. (2015), wages Autor
and Dorn (2013), or ability test scores Hanushek et al. (2015)). Such mea-
sures are static, highly aggregated, supply-side based and generally unable
to capture dynamic short-term changes in the value of the actual skills that
workers consider investing time, money, and effort in. With the rapid adop-
tion of novel risk factors, such as artificial intelligence, robotics, and machine
learning, uncertainty over which are the ’right’ skills has increased.

ML’s vast improvements to prediction tasks enables it to substitute, com-
plement, and expand demand for occupations or skills within them (Agrawal
et al. (2019)). In particular, ML’s ability to learn from large amounts of
data make it exceptionally suitable to substitute for routine skills and com-
plement non-routine skills (Goos et al. (2014); Brynjolfsson et al. (2018))
- it is a form of Routine-Biased Technological Change (RBTC). Thus, the
widespread adoption of ML may lead to a skill mismatch between the skill
demands of jobs and workers’ current skills and may lead to technological
unemployment (Restrepo (2015)). Many firms plan to adopt ML capabil-
ities to leverage data-driven decision-making but a large number lacks the
necessary complements, including skilled workers, to do so (Brynjolfsson and
McElheran (2016a)).
While the adoption of ML has naturally led to a rise in the implied mar-
ket value for ML-related skills, there has also been a depreciation of the
value of routine skills. Thus, the relatively higher prevalence of routine
skills in medium-wage occupations makes these jobs more susceptible to
ML, such that ML may have been an important factor for occupational
wage-polarization (Autor and Dorn (2013)). This polarization has led to
a considerable rise in the service industry, in particular for workers in health
services or last-mile services such as transporting people and packages (Au-
tor (2019)). ML also increased the demand for ’ghost’ workers who help to
generate the massive labeled datasets necessary to train ML models (Gray
and Suri (2019)).
In this paper I study the interactions between the implied market value of
skills, changes in occupational skill demands, and ML by leveraging a novel
panel dataset of occupation-level skill demands, which I derive from the near-
universe of US online job postings of the last decade. Besides estimating re-
turns to skills from this skill demand-side dataset, I also use it to understand
what is driving the recent changes in occupational skill demands and which
of the three leading theories of technological change can best explain them.
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The paper proceeds as follows: section (2) gives an overview of the returns
to skills and technological change and automation literature while section
(3) explains our data and methodology that allows us to go from annotated
job postings to yearly skill shares of occupation-industry cells. In the results
section I first show that occupational skill demands are indeed changing and
that low and medium-wage occupation-industry cells’ skill shares changed
more between 2010 and 2018 than those of high-wage ones. Then I present
the results from our skill panel regression. As a robustness check I use two
different types of skill classifications and show different sets of fixed effects
models. Finally, I show the results (4) of our occupational change regression
on proxy variables for each of the three leading technological change theories.
Section (5) concludes.

2 Literature

2.1 Returns to Skills

Estimating the returns to skills goes back at least 70 years to Jacob Mincer’s
famous ’Mincer Earnings Regressions’ (Mincer (1958)). In his seminal work
he estimates:

𝑙𝑛𝑤(𝑠, 𝑥) = 𝛼0 + 𝜌𝑠𝑠+ 𝛽0𝑥+ 𝛽1𝑥
2 + 𝜖 (1)

where w(s, x) is the wage at schooling level s and work experience x 1.
While the Mincer model was a work horse in the past, it has an important
shortcoming which is incompatible with the increasing polarization of the
wage distribution since the 1980s (Firpo et al. (2011); Lemieux (2006); Autor
and Dorn (2013)). In the canonical Mincer model, changes in wages can only
occur due to changes in skill prices. Furthermore, conditional on skills, wages
would be identical across occupations, which is unrealistic.

Another model, by Welch (1969) allows for the skill supply to be bundled,
within workers, such that worker i’s wage, 𝑤𝑖𝑡 can be estimated as:

𝑤𝑖𝑡 = 𝜃𝑡 +
𝐾∑︁
𝑘=1

𝑟𝑘𝑡𝑆𝑖𝑘 + 𝑢𝑖𝑡 (2)

1See (Heckman et al. (2003)) for an excellent overview.
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, where 𝑆𝑖𝑘 are the skill components of worker i, and 𝑟𝑘𝑡 are the desired returns
to skills coefficients. However, as discussed in Firpo et al. (2011), this model
still cannot account for unequal wages for identical skill bundles in different
occupations - it requires that workers’ skill bundles could be unbundled,
which is not the case (Gibbons et al. (2005)). To allow for wages to differ
across occupations for similar skill bundles, Firpo et al. (2011) estimate the
following Welch-inspired model for wages of worker i in occupation j:

𝑤𝑖𝑗𝑡 = 𝜃𝑡 +
𝐾∑︁
𝑘=1

𝑟𝑗𝑘𝑡𝑆𝑖𝑘 + 𝑢𝑖𝑗𝑡 (3)

This model is now general enough to account for technological change as well
as offshoring. However, it still does not take industries into account, even
though there is strong evidence for industry fixed effects.
Estimating the returns to skills from the skill supply side, i.e. from workers,
is very challenging as the skill components of workers are generally latent.
Schooling was the earliest proxy variable used by Mincer as well as Becker.
However, with the significant rise in college-educated workers, measuring the
return to an additional year of school, their proxy for the returns to skills,
is no longer relevant. While the definition of the word skill is still hard to
pin down, it has certainly moved away from being equivalent to attaining a
college degree. Even test scores may only be poor indicators of skill. Thus,
the more recent returns to skills estimates, which leverage the Programme
for the International Assessment of Adult Competencies (PIAAC) test scores
Hanushek et al. (2015) may not be reliable either. Even if the test accurately
measured skills around the time of test-taking, it becomes a worse skill mea-
sure the longer ago an individual took the test. In addition, there are other
confounding hard-to-measure variables, such as grit Duckworth and Gross
(2014), or latent, idiosyncratic preferences.
Due to the issues discussed above, I move away from skill supply side es-
timations and propose a skill demand side estimation in a similar style to
Firpo et al. (2011). Thus, instead of estimating the returns that a worker
gets from his skill bundle, I estimate how the market values skill bundles,
by decomposing wages for each occupation into returns to the skills that are
demanded for that occupation. By leveraging a large, and novel dataset of
nearly all online US job postings of the last decade, I am able to gain addi-
tional data granularity and estimate not only an occupation-level panel but
also an occupation-industry-level panel, thereby allowing for the theorized

4



industry-fixed effects.

2.2 Technological Change and Automation

Artificial Intelligence is widely believed to be the next big General Purpose
Technology (Brynjolfsson et al., 2018). Automation, more generally, has the
capacity to make labor more productive (labor-augmenting automation), to
make automation itself more productive (automation at the intensive mar-
gin), to introduce new skills into the economy, or to displace a wider range of
tasks (automation at the extensive margin)(Acemoglu and Restrepo, 2019).
This race between man and machine may lead to a rise of technological unem-
ployment (Acemoglu and Restrepo, 2018). No matter whether automation
or (task) innovation ’wins’, both forces lead to changes in occupations’ un-
derlying skill requirements and force workers to reskill to remain productive.
However, given that automation and other IT capital are relative substitutes
for workers who perform routine manual and cognitive tasks, but relative
complements for workers who perform non-routine cognitive tasks, low-wage
workers will face the brunt of the these changes (Autor et al., 2003; Michaels
et al., 2014).

In fact, some of these changes have already manifested themselves. Some
argue that the terms routine and non-routine characterize the relationship
between tasks/skills and information technology (IT) and find that occupa-
tions have shifted towards requiring more analytical and interactive tasks
and away from requiring cognitive-routine and manual-routine tasks (Spitz-
Oener, 2006). Skills, as a form of task-specific human capital, are an impor-
tant source of individual wage growth (Gathmann and Schoenberg, 2010).
Thus, the relative loss of productivity of routine skills translates to lower
wages and an overall more polarized wage and employment share distribu-
tion (Autor and Dorn, 2013).

However, medium- and high-wage occupations are not immune to oc-
cupational change either. Occupations that heavily rely on IT skills have
been shown to change faster due to rapid software innovation (Hershbein
and Kahn, 2018). These fast obsoletion rates of specific software skills lead
to relatively flatter earnings profiles for STEM workers (Deming and Noray,
2018). Some have argued for a ’great reversal’ in demand for cognitive skill
and shown that more educated workers have begun to crowd out less edu-
cated workers, due to sorting and changes in relative productivity of workers
and capital (Beaudry et al., 2015). Automation and IT capital, such as Data-
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Driven Decision Making (DDD), have been rapidly adopted and have made
plants more productive and efficient, requiring managers and other high-wage
occupations to adapt to stay productive (Brynjolfsson and McElheran, 2016b;
Bartel et al., 2007). These results suggest that reskilling is both necessary as
well as costly, in particular for low-wage workers, and that the dnynamics of
occupational skill demands are an important phenomenon to study. This is
especially true in light of IT enabling faster rates of technological adoption
due to low margin costs and scalability.

In this paper I study the effects of skill demands and automation on
three occupational outcomes: changes in (i) wages, (ii) employment shares,
and (iii) occupational skill demands. In particular, I focus on occupational
change and leverage a novel large data set of online job postings between 2010
and 2019 from which I derive a panel of occupational skill share vectors.

Our main results show that AI has multiple negative consequences for
low and medium-wage occupations: not only do occupations that are highly
susceptible to automation correlate with decreased employment shares, they
also face much higher occupational change in terms of skills demanded. Thus,
the ’lucky’ low- and medium-wage workers that do manage to keep their
job, still have to reskill relatively more in order to keep it. Notably, an
occupation’s suitability for machine learning (SML) does not correlate with
decreased wages, perhaps due to workers being highly forward-looking and
abandoning obsolete skills (Horton and Tambe, 2019).

I also find that certain skill groups correlate particularly strongly with
occupational change. These include ’Information Technology’ and ’Engi-
neering’, consistent with prior findings on the fast obsoletion rates of specific
software skills in STEM occupations (Deming and Noray, 2018), as well as
’Maintenance and Repair’ and ’Environment’ skills, which is consistent with
automation and IT displacing routine non-cognitive skills relatively more
easily (RBTC) (Goos et al., 2014; Michaels et al., 2014).

3 Data and Methodology
Our methodology relies on several different data sources:

∙ Burning Glass Technologies (BGT),

∙ an analytics software company that scrapes and annotates job postings
from nearly all online job posting sites and employment search engines,
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∙ The US Bureau of Labor Statistics (BLS) Occupational Employment
Survey (OES), which provides historic wages and employment shares
at the occupation and occupation-industry level

∙ Automation-related proxies from several recent papers: Suitability for
Machine Learning (SML) from (Brynjolfsson et al., 2018), AI Progress
Scores from (Felten et al., 2018), Cognitive Skill Fractions from (Alab-
dulkreem et al., 2018), and the AI, Software, and Robot Indices created
by (Webb, 2019).

I will first describe these data sources in more detail before delving more
into the methodology of going from job postings to yearly skill panels at the
occupation and occupation-industry levels.

3.1 Millions of Annotated Job Postings

The BGT data covers about 200 million online job vacancy postings posted
on over 40,000 distinct online job platforms in the United States between
2010 and 2018 and arguably covers the near-universe of job postings (Figure
1). Each vacancy posting is parsed, deduplicated, and annotated with the
posting date, the SOC occupational code, the NAICS industry code, and
which skills were demanded among several other variables. The skills data is
annotated via BGT’s industry-leading skill parser, which is rule-based and
employs string searches as well as disambiguation rules. It maps each job
postings’ skills into a detailed skills taxonomy, which consists of 3 levels of
granularity.

At the most detailed level, the BGT taxonomy includes ≈ 16,000 skills
- these are nested within 658 skill clusters, which are nested within 28 skill
cluster families. For example, Python is a skill within the Scripting Lan-
guages skill cluster, which itself falls into the Information Technology skill
cluster family. The taxonomy was initially assembled from online resumes
and is continuously updated through client feedback, research, and forums.
K-Means clustering along with additional qualitative checks were employed
to create meaningful skill clusters. Whenever new skills are added to the
taxonomy, the labels are refit to the entire history of job postings data. This
minimizes potential biases which may arise through BGT’s time-varying abil-
ity to capture new skills.

Notably, this taxonomy is significantly more detailed than other skill
taxonomies, such as the Bureau of Labor Statistics (BLS)’ O*Net skil taxon-
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omy, which contains just 2 levels, with 35 skills mapped into 6 skill groups.
Furthermore BGT job postings are scraped daily and are therefore able to
capture changes in skill demands at a much higher temporal granularity.
O*Net only undergoes yearly updates which generally only cover a subset of
occupations.

However, broader taxonomies are still useful as they can be more inter-
pretable, in particular in terms of the routine and non-routine skill distinction
of the RBTC theory. Since the BGT taxonomy does not directly map to the
O*Net taxonomy, I instead leverage the taxonomy built by Deming and No-
ray (2018) for additional robustness checks. Their taxonomy maps a subset
of the BGT skills into 20 interpretable skill groups, that contain ’social skills’,
’cognitive skills’, and ’management skills’ among others.

The BGT data is ideal for a panel study of occupational skill demands for
several reasons. Given that each job can be viewed as a ’bundle of skills’ (Re-
strepo, 2015; Deming and Kahn, 2018), each job posting represents a draw
from the ’ground-truth’ skill distribution of the job’s underlying occupation.
Hundreds of thousands of job postings can thus pin down a very tight distri-
bution of skill demands for a given occupation. However, some occupations
are notoriously underrepresented in online job platforms, and thus in BGT’s
data, in particular blue-collar jobs. I therefore remove occupations with very
few (< 1, 000) job postings per year which leaves us with TODO occupations.
To ensure that each aggregation cell contains enough job posting data points,
I use years, instead of months, as our temporary aggregation variable. This
also minimizes potential seasonality effects which may distort skill demands.
It furthermore allows us to aggregate to the occupation-industry level as well.
Since BGT also annotates job postings with 2-digit industry NAICS codes,
I am able to derive a skills demand panel at the SOC6-NAICS2 level with
enough job postings in each aggregation cell.

Besides the granularity enabled through its size, this data has another
important feature that may be advantageous to study the returns to skills.
Unlike most other papers which generally leverage a labor supply side panel
with a static skill proxy, I rely on aggregated job postings, which represent
the skill demand side. Previous studies face several significant sources of
omitted variable biases, such as grit Duckworth and Gross (2014), and id-
iosyncratic preferences for non-pecuniary benefits Katz and Autor (1999),
such as occupational choice, work hours, culture, among others.
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3.2 Wages and other Occupational Data

The Bureau of Labor Statistics (BLS) collects and publishes yearly data on
employment shares and wages at different levels of aggregation. The BLS
classifies occupations according to the Standard Occupational Classification
System, SOC codes. The 2010 version defines 840 distinct detailed occu-
pations, which are nested in 461 broad occupations, 97 minor groups, and
23 major groups. It also classifies industries according to the North Ameri-
can Industry Classification System, NAICS codes. The 2012 version defines
20 distinct industry sectors. I use their annual publications of wages and
employment shares at the SOC level as well as at the SOC6 x NAICS2 level.

3.3 Occupational Automation

Besides these two main data sources I leverage several recent papers’ occupation-
level automation scores. I include automation as a proxy for the level of rou-
tineness of occupations, as routine tasks are more automatable (Autor and
Dorn, 2013). Routine tasks are particularly suitable for Machine Learning,
which is why our preferred measure is the Suitability for Machine Learning
(SML) metric from (Brynjolfsson et al., 2018). I consider additional mea-
sures in the appendix. These include the AI scores from (Felten et al., 2018),
which are based on the Electronic Frontier Foundation (EFF) AI Progress
report, as well as the O*Net-derived cognitive skill fraction as defined in (Al-
abdulkreem et al., 2018). Finally, I use the recent AI, software, and robot
indices created by (Webb, 2019) from patent data.

3.4 From Job Postings to a Panel of Occupational Skill
Demands

As previewed above, I aggregate the individual job postings to the occupation-
year level, thereby viewing each of the 600 million job ads as a draw from the
corresponding occupational skill distribution for occupation i in year t. While
the majority of the 840 different occupations listed in the SOC taxonomy are
present in our data, I remove military occupations and occupations with fewer
than 1,000 postings leaving us with 556 distinct occupations. I also noticed a
’buzzword bias’ which led to inflationary usage of certain popular skill words
within job postings, thereby misrepresenting actual skill demands. Thus, in
our preferred specification I work with the more meaningful skill clusters -
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this way mentions of the skills such as ’AWS’ and ’Azure’ within the same
posting are only counted once as the skill cluster ’Cloud Solutions’.

Since the total number of job postings increases from about 80 million in
2010 to 180 million in 2018, I normalize the raw skill cluster counts to derive
the skill share vectors for each of the 556×9 occupation-year cells.

𝑠𝑖𝑘𝑡 =
1∑︀𝑆

𝑗=1(𝑠𝑖,𝑡,𝑗)
(𝑠𝑖,𝑡,1, . . . 𝑠𝑖,𝑡,𝑆) (Skill Shares)

represents the share of skill k of all skill demands in occupation i at time t. To
illustrate, figures 4 and 5 show the skill demand shares for Data Scientists and
Lumberjacks, respectively, based on just the 30 most relevant skill clusters.
These top 30 skill clusters cover about 12% and 66% of all skill demands
for Data Scientist and Lumberjack occupations, respectively. The changes
in skill demands over the past decade are clearly visibly and suggest that
the implied market skills of skills vary considerably. This confirms that job
seekers indeed face considerable risk in terms of how their skills are valued
in the market but also that investment in the ’right’ skills, i.e. via reskilling,
may be very lucrative.

3.5 Measuring Changes in Occupational Skill Demands

To measure more rigorously how large these changes in occupational skill
shares are across time, I apply Cosine Distance between the earliest (2010)
and latest (2018) skill share vectors:

𝑑𝑐𝑜𝑠(𝑠𝑖,2010, 𝑠𝑖,2018) = 1− 𝑠𝑖,2010 · 𝑠𝑖,2018
||𝑠𝑖,2010|| ||𝑠𝑖,2018||

(Cosine Distance)

Notably, I calculate this distance over the entire skill share vectors and not
just for the top 30 skills. There are many other suitable distance and sim-
ilarity metrics to choose from (Cha, 2007), such as the Jensen-Shannon Di-
vergence. However, the Euclidean distance is not one of them as the curse
of dimensionality makes it meaningless in high dimensions, which is the case
here due to the large number (658) of skills clusters.

Cosine Distance is one of the most widely used distance measures as it
is fast to calculate and easy to interpret. It measures the angle between
two vectors, with a magnitude of 1 implying perfect alignment, 0 indicating
orthogonality, and -1 indicating perfectly opposite alignment. Occupational
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skill demands do not change by large magnitudes, such that none of the
observed cosine distances falls below 0. For example, the cosine similarity
between the 2010 and 2018 skill share vectors of the aforementioned Lum-
berjacks is 0.37 and is one of the larger changes in our data.

I calculate the Cosine Distance between the 2010 and 2018 skill share
vectors for each SOC occupation in our sample. As can be seen in Figure 6,
it appears that low wage and medium wage occupations changed significantly
more than high wage occupations between 2010 and 2018. This is consistent
with routine-biased technological change, as low and medium wage occupa-
tions tend to require more routine tasks. I will show the robustness of this
relationship with regressions in the results section. Due to the large size
of our data I can do the same for each occupation-industry combination,
i.e. for each SOC6-NAICS2 cell (Figure 7). I again observe a similar trend.
Low and medium-wage occupation-industry combinations changed more than
high-wage ones. However, with this additional data granularity there seems
to be an another point of inflection around the 70th wage percentile.

4 Estimation &Results

4.1 The Implied Market Values of Skills

The returns to skills literature has previously faced challenging data prob-
lems:

Firpo et al. (2011) "Ideally, we would like to estimate the skill
pricing parameters (𝑟𝑗𝑘𝑡) using repeated cross sections from a
large data set containing detailed information on wages, skills,
and occupations. We could then look at the contribution of
changes in occupational wage setting to the overall changes in
the wage structure [...]. Unfortunately, no such data set ex-
ists."

While this remains true for skill supply side estimations based on worker
panels, I believe that our panel data allows the estimation of skill pricing
parameters from the skill demand side. In particular, I estimate the following:

𝑤(𝑖𝑗𝑡) = 𝜃𝑖 + 𝜃𝑗 +
𝐾∑︁
𝑘=1

𝑟𝑖𝑗𝑘𝑠𝑖𝑗𝑘𝑡 + 𝑢𝑖𝑗𝑡,
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where 𝑤𝑖𝑗𝑡 is the wage of occupation i in industry j at time t, the 𝑟𝑖𝑗𝑘 are the
returns to each skill k in occupation i and industry j, the 𝑠𝑖𝑗𝑘𝑡 are the skill
shares of each skill k in occupation i and industry j at time t, and 𝜃𝑖 and 𝜃𝑗
are the occupation and industry-specific fixed effects, respectively. Roughly
speaking, by viewing each occupation as a bundle of skills, the wage paid to
occupation i in industry j can be decomposed as a weighted average of the
values of each skill and how much each skill is demanded for said occupation-
industry combination.
Since the skill shares, 𝑠𝑖𝑗𝑘𝑡 sum to one, the interpretation of the coefficients
𝑟𝑖𝑗𝑘 requires additional care. There are two issues, the first one being very
minor and having a simple fix, the second one being more severe and re-
quiring techniques developed for compositional data. In particular the first
problem is due to the skill shares, 𝑠𝑖𝑗𝑘𝑡, falling between zero and one. The
usual interpretation of coefficient 𝑟𝑖𝑗𝑘 is that a 1 unit change in 𝑠𝑖𝑗𝑘 results
in a 𝑟𝑖𝑗𝑘 unit in the outcome, 𝑤𝑖𝑗𝑡, ceteris paribus, or all else equal. However,
1 unit changes are impossible when each skill share is a proportion that lies
between 0 and 1. The easy fix involves considering 0.01 unit changes instead
of 1 unit changes. These smaller changes can then be interpreted as 1

100
𝑟𝑖𝑗𝑘

unit changes in Y. Conveniently, a 0.01 unit change is the same as a 1 per-
centage point change in the skill share.
The second issue is much more severe and is due to the all else equal part.
Compositional data, such as the skill shares here, always sum to one, such
that one cannot hold all other covariates constant when changing one. Geo-
metrically, each point as defined by the K-dimensional skill share vector, 𝑠𝑖𝑗
is bound to a K-dimensional simplex. In other words, the skill shares are per-
fectly multicollinear. It is therefore tempting to simply drop one of them and
rerun the regression - Stata and other statistical tools do this automatically.
However, in the context of compositional covariates, in which only relative
instead of absolute amounts matter, this severely biases the regression coef-
ficients and leads to misleading inference statistics ?. Instead, I follow the
compositional covariate methodology described by ?. To summarize, I first
use the isometric logratio (ILR) transformation to project the K-dimensional
skill shares into an orthonormal K-1 dimensional space. Even though the
bases in this space are uninterpretable, I can still interpret the first base,
by aligning it with one of the bases from the K dimensions. This procedure
is similar to the Gram-Schmidt orthogonalization technique, in which the
first vector only gets normalized, but still points in the same direction as the
original.
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I can thus iterate through each of the K bases, run the regression on the
K-1 bases from the ILR transform and only record the first coefficient.

I again run these regressions for both the BGT-provided skill cluster fam-
ilies, as well as for the skill groups provided by Deming (2018). The results
can be seen in tables (1) and (4). The corresponding industry-fixed effects
can be seen in tables (3) and (6). For the corresponding occupation-fixed
effects I only report the top 5 and bottom 5 in tables (2), and (5), as there
are over 600 occupations.

The implied market values for the BGT skill cluster families ’Economic
Policy’, ’Analysis’, and ’Design’ were the three highest with values of over
$100 for a marginal percentage point. While there is no direct correspondence
with the Deming skill groups, the BGT skill cluster families seem to roughly
correspond with the highest-valued Deming skill groups. Those were ’ML,
AI’ as well as ’Business Systems’, ’General Software’ and ’Creativity’.

4.2 What is driving Occupational Change?

Before looking at occupational changes in skill shares, I present evidence
for the (overall) demands for skills (Figure (2)) and, specifically for IT skills
(Figure (3)). I can immediately see that there is considerable variation in the
demands for different skills. For example, I can see the tremendous rise in
demand for ’Big Data’ and ’Artificial Intelligence’ in high-wage occupations
since about 2012, and 2016, respectively. These figures are on a log scale,
so the demand for these increased by a magnitude of over 1000. Other im-
portant IT skills for high-paid jobs include Java, Javascript, and SQL which
each made up almost 1 of every 1000 IT skills demanded in job postings.
Considering that IT skills made about 5%, i.e. 1 in every 20 skills demanded
in high-wage job postings, these skills appear to be particularly good invest-
ments. Another interesting observation, among others, is the shift of health
skills from medium-wage occupation to low-wage ones.

Going one level deeper into the aggregation, I can study more detailed skill
demands at the occupation level. Figures (4) and Figure (5) show the yearly
skill share distribution for data scientists and lumberjacks, respectively. In
each year column I can see the share that each skill made up of all skills
demanded in job postings associated with these occupations in that year.
Again, I can see the rise of ’Big Data’ (dark blue) and ’Data Science’ (blue)
starting in about 2012 for Data Scientists. Naturally, the occupation of
lumberjacks had very different skill demands, that include landscaping and,
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increasingly, agronomy and farming. It is apparent that the skill distribution
for this occupation seems to have changed between 2010 and 2018 and I can
measure this change with the aforementioned cosine distance.

I do not purport to know why, specifically, certain occupational skill de-
mands changed or appear to be high. A priori, I would not have expected the
occupation of lumberjacks to undergo such changes. Notably, these changes
cannot be due to the BGT skills parser classifying skills inconsistently across
time. If it indeed misclassified skill words, it would do so consistently across
time. Thus, sudden jumps in skill demands are due to actual changes in the
language of the underlying job postings, for example due to the increased
popularity of one word over its synonym. While these changes in language
may not represent changes in actual skill demands, they are still important
for workers as they can help them better match and be accepted for a job
posting. Moreover, by only counting skills within the same skill cluster once
instead of multiple times, I can at least partially account for some of these
worries, as, for example similar skills such as ’AWS’ and ’Azure’ are both
contained with the skill cluster ’Cloud’ skills.

In Figure (6), I plot the cosine distance between 2010 and 2018 skill share
vectors over the 2010 wage percentile (each point represents a different occu-
pation). In the literature, the wage percentile is also referred to as the skill
percentile, assuming that higher wage proxies higher skill Autor and Dorn
(2013). If this assumption holds, the figure supports the ’skill’-biased tech-
nological change theory. Lower-wage and medium-wage occupations incur
higher changes to their skill share distribution than higher wage ones. These
trends remain when the analyses are repeated at the occupation-industry
level. A similar positive association between wage and skill share change
can be see in Figure (7), which plots the same variables as Figure (6) but
each point represents an occupation-industry combination rather than an
occupation.

The above patterns support one leading theory of technological change
(SBTC). To also test for the implications of and discern multiple leading
theories of technical change, I turn to regression analyses. I regress the cosine
distance on proxy variables for each of the three leading technological change
theories: (1) SBTC, (2) RBTC, and (3) Directed Technological Change:

𝑑𝑐𝑜𝑠(𝑠𝑖,2010, 𝑠𝑖,2018) = 𝛽0 + 𝛽1𝑆𝑀𝐿𝑖 + 𝛽2𝑤𝑖,2010 + 𝛽3𝑤
2
𝑖,2010 + 𝛽4𝑤𝑎𝑔𝑒𝑏𝑖𝑙𝑙𝑖,2010 + 𝜖𝑖

(1) SBTC: To account for SBTC I follow the standard approach used for
example by Autor, Dorn (2013) and use real wages from the earliest period,
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in this case 2010. Given that wages are polarized, I include squared wages
in two of the columns of table (1). In the other columns I use wage tercile
dummies to allow for more flexibility in the model.
(2) RBTC: To account for RBTC, I use the SML scores from Brynjolfsson,
Mitchell, Rock (2018). The suitability for Machine Learning of an occupation
is a good measure for this, because routine tasks are exactly the tasks that
ML is particularly suitable for. I prefer this measure to the Routine Task
Intensity (RTI) scores from Autor, Dorn (2013) since the latter relies on 5
non-maintained measures from the former Dictionary of Occupational Titles
(now O*Net) 2.
(3) Directed Technological Change: According to Acemoglu (1998),
technological change happens endogenously and its direction is determined
by the size of the market for different inventions. Thus, if technological
change is assumed to happen at the occupation level, it should correspond
with the total wage bill of occupations, i.e. the product of wage and total
employment of that occupation.

The results are shown in table (1). Notably, the SML score, our measure
of RBTC, is positively correlated with occupational change, i.e. more rou-
tine occupations are associated with more changes in skill demands, ceteris
paribus. SBTC is not significant. It is somewhat puzzling that the wage bill
is significant but with a sign opposite of what Acemoglu (1998) would have
predicted. Perhaps, an additional factor for the direction of technological
change, besides the profitability of innovation, is the level of difficulty of in-
novation. This would be plausible if ideas are indeed getting harder to find,
the more progress has been made ?.

The fixed-effects models in columns (2) and (3) of table (1) show that
the implied market values of skills differ considerably. The coefficients can
be interpreted as the effective Dollar-amount associated with one additional
percentage point in the skill share distribution of an occupation-industry
cell. For example, an additional percentage point of ’Economics, Policy’
skills is associated with an increase in wage of more than $400. The fact that
some skills have negative coefficients implies that these skills are not a good
investment as the market does not value them. However, this does not mean
that they are useless - given the bundling of skills into occupations, they may

2Specifically, manual tasks are defined as the DOT score for ’eye-hand-foot coordina-
tion’, routine tasks are defined as the average of the ’Set limits, tolerances, and standards’
and ’finger dexterity’ DOT scores, and abstract tasks are defined as the average of ’direc-
tion control and planning’ and the ’GED Math’ score.
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still be required to perform those jobs.
I present alternative estimates relying on the Deming (2018) definition of
skills in table (4). The interpretation of these results is identical, except that
the skill categories differ. I can immediately see the high implied market
values for technical skills such as ’Machine Learning’, ’AI’, and ’General
Software’ skills. Conversely, non-cognitive skills are associated with negative
values. This is in line with the theory of RBTC, as these types of skills are
more routine and thus better relative substitutes for automation.

5 Conclusion
Technological change is essential to human progress. However, it also bears
risks for some who may be left behind and displaced. Thus, GPTs like
Machine Learning, which have the capability to drastically alter society and
bring about immense progress, also induce the largest risks. I have shown
that what is demanded of workers in terms of skills has changed over the past
decade. The fact that low and medium-wage occupations’ skill demands
changed more than high-wage ones means that besides getting paid less,
workers in the former also have to reskill more in order stay productive in and
attempt to keep their jobs. However, reskilling may also offer opportunities
for social mobility: some skills are highly valued by the market and may
well be worth the time and effort investment - in fact, Machine Learning is
one of them among other technical skills as well as creative and social skills.
Not everyone will be able to acquire or benefit from these skills. In fact, it
remains an open question which skills complement each other best in terms
of productivity as well as learning.

There have been several theories on how technological innovation pro-
gresses - routine-biased (RBTC), wage-biased (SBTC), and endogenously-
directed technological change. As automation is becoming more ubiquitous,
the routineness of tasks seems so far to be one of the better indicators for
where technological progress will progress fastest and therefore where corre-
sponding changes in occupational skill demands will occur.
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Table 1: Panel Wage Regression - BGT Skills

Dependent variable:

Annual Wage
(1) (2) (3)

Economics Policy −586.46 (379.98) 129.18** (55.69) 437.15*** (49.96)
Analysis 1, 145.07*** (352.77) 329.34*** (31.89) 182.87*** (28.60)
Design −631.36* (347.01) −85.12*** (21.98) 136.06*** (19.92)
Marketing, PR −120.86 (340.70) −56.53*** (13.58) 66.50*** (12.29)
Manufacturing 89.30 (341.08) 42.02*** (11.46) 62.99*** (10.27)
Engineering −83.58 (346.34) −10.66 (19.57) 37.61** (17.54)
Business 181.00 (340.48) 56.20*** (11.01) 31.11*** (9.88)
Health Care 183.93 (339.47) −44.04*** (9.55) 19.88** (8.58)
Public Safety, Security −25.33 (343.28) −86.96*** (19.65) 14.06 (17.65)
Architecture, Construction 104.79 (340.95) −67.77*** (12.63) 8.57 (11.33)
HR 462.34 (340.93) 73.10*** (11.93) −2.18 (10.72)
Environment −9.29 (344.34) −139.32*** (21.09) −2.28 (18.92)
IT 135.16 (340.98) −72.05*** (11.43) −4.02 (10.26)
Agriculture −200.10 (350.44) −44.59** (17.63) −6.54 (15.80)
Energy, Utilities 10.42 (345.05) −57.59** (25.65) −6.84 (22.98)
Media, Writing −174.72 (349.68) −169.68*** (23.19) −7.24 (20.85)
Finance −211.76 (341.37) −90.02*** (11.59) −8.07 (10.41)
Customer/Client Support 218.25 (340.01) −43.08*** (8.68) −12.75 (7.79)
Supply Chain Logistics 311.72 (340.32) −44.34*** (8.87) −30.62*** (7.94)
Sales −6.32 (340.65) −97.50*** (11.00) −36.49*** (9.87)
Administration 342.65 (339.95) 3.02 (9.47) −39.95*** (8.49)
Maintenance, Repair 116.96 (340.79) −73.31*** (9.42) −46.06*** (8.44)
Personal Care 146.16 (340.16) −98.06*** (9.22) −56.67*** (8.28)
Industry Knowledge 90.68 (341.06) −114.13*** (12.98) −81.75*** (11.65)
Education, Training 286.93 (343.29) −186.47*** (14.07) −96.82*** (12.64)
Science, Research −373.19 (352.09) −169.87*** (23.56) −120.87*** (21.11)
Legal −43.74 (344.72) −222.45*** (20.71) −199.83*** (18.55)
Occupation-Fixed Effects 𝑁𝑜 𝑌 𝑒𝑠 𝑌 𝑒𝑠
Industry-Fixed Effects 𝑁𝑜 𝑌 𝑒𝑠 𝑌 𝑒𝑠
Time-Fixed Effects 𝑁𝑜 𝑁𝑜 𝑌 𝑒𝑠

Observations 6,658 58,678 58,678
Adjusted R2 0.99 0.97 0.98

Note: *p<0.1; **p<0.05; ***p<0.01
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Table 2: Top and Bottom 5 Occupation Fixed Effects from BGT Skills Wage
Panel Model 3.

SOC Title SOC6 Code FE Value

Anesthesiologists 291061 249400.56
Surgeons 291067 243323.18
Oral and maxillofacial surgeons 291022 228877.01
Obstetricians and gynecologists 291064 224534.88
Orthodontists 291023 212590.82
Tapers 472082 22616.72
Ushers, lobby attendants, and ticket takers 393031 22206.52
Food Processing Workers, All Other 513099 21755.97
Veterinary assistants and laboratory animal caretakers 319096 19933.28
Motion picture projectionists 393021 19456.70
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Table 3: Industry Fixed Effects from BGT Skills Wage Panel Model 3.

Industry Title NAICS2 Code FE Value

Utilities 22 13483.27
Mining 21 10903.34
Management of Companies and Enterprises 55 9880.43
Professional, Scientific, and Technical Services 54 8935.77
Information 51 8508.38
Finance and Insurance 52 7714.41
Transportation and Warehousing 48-49 4391.52
Manufacturing 31-33 4250.13
Wholesale Trade 42 4181.24
Construction 23 3294.98
Educational Services 61 0.00
Real Estate and Rental and Leasing 53 -318.61
Health Care and Social Assistance 62 -832.50
Admin, Support, Waste Management, Remediation Services 56 -919.16
Agriculture, Forestry, Fishing, and Hunting 11 -1016.43
Other Services (except Public Administration) 81 -2015.06
Arts, Entertainment, and Recreation 71 -2549.52
Retail Trade 44-45 -3711.92
Accomodation and Food Service 72 -4325.95

20



Table 4: Panel Wage Regression - Deming Skills

Dependent variable:

Annual Wage
(1) (2) (3)

ML, AI 4, 048.60*** (258.86) 4, 187.47*** (123.14) 2, 760.06*** (111.45)
Business Systems −2, 017.18*** (182.91) 1, 101.32*** (50.38) 1, 295.10*** (45.31)
General Software 2, 957.46*** (301.68) 1, 049.75*** (90.69) 923.64*** (81.59)
Creativity −526.78*** (115.18) 25.85 (40.48) 214.09*** (36.50)
Data Analysis 1, 121.32*** (303.66) 622.56*** (88.50) 104.70 (79.67)
Admin, Support 55.19 (48.07) 164.37*** (14.51) 97.81*** (13.06)
Project Management 21.09 (72.82) 100.66*** (23.61) 79.81*** (21.23)
Social 88.11*** (25.19) 114.33*** (10.02) 69.39*** (9.05)
Customer Service −0.92 (24.80) 11.48 (7.74) 36.03*** (6.96)
Engineering −1, 000.81*** (117.25) −214.32*** (36.12) 22.31 (32.53)
Cognitive 309.49*** (50.36) 39.49** (15.72) −18.50 (14.16)
Finance −990.31*** (72.72) −108.17*** (17.36) −20.06 (15.63)
Database −355.12*** (126.67) −157.31*** (40.17) −79.58** (36.11)
Tech Support −1, 016.07*** (104.87) −436.37*** (35.78) −89.77*** (32.31)
Computer −291.76*** (45.65) −205.69*** (14.22) −90.39*** (12.82)
Product Marketing −43.47 (40.19) −117.47*** (15.14) −114.12*** (13.61)
Management −378.05*** (70.64) −214.38*** (26.33) −120.48*** (23.68)
Non Cognitive 525.45*** (35.44) 59.06*** (12.03) −135.84*** (10.95)
Writing −477.47*** (83.78) −329.63*** (27.82) −188.97*** (25.03)
Occupation-Fixed Effects 𝑁𝑜 𝑌 𝑒𝑠 𝑌 𝑒𝑠
Industry-Fixed Effects 𝑁𝑜 𝑌 𝑒𝑠 𝑌 𝑒𝑠
Time-Fixed Effects 𝑁𝑜 𝑁𝑜 𝑌 𝑒𝑠

Observations 6,662 58,873 58,873
Adjusted R2 0.99 0.97 0.98

Note: *p<0.1; **p<0.05; ***p<0.01
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Table 5: Top and Bottom 5 Occupation Fixed Effects from Deming Skills
Wage Panel Model 3.

SOC Title SOC6 Code FE Value

Anesthesiologists 291061 249296.67
Surgeons 291067 242321.03
Oral and maxillofacial surgeons 291022 229119.17
Obstetricians and gynecologists 291064 223188.11
Orthodontists 291023 212841.38
Sewing machine operators 516031 21772.52
Veterinary assistants and laboratory animal caretakers 319096 20673.60
Ushers, lobby attendants, and ticket takers 393031 20399.14
Motion picture projectionists 393021 18711.47
Food Processing Workers, All Other 513099 17230.07
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Table 6: Industry Fixed Effects from Deming Skills Wage Panel Model 3.

Industry Title NAICS2 Code FE Value

Utilities 22 13431.18
Mining 21 11152.31
Management of Companies and Enterprises 55 10096.24
Professional, Scientific, and Technical Services 54 8017.92
Information 51 7357.04
Finance and Insurance 52 7200.85
Manufacturing 31-33 5315.15
Transportation and Warehousing 48-49 5044.71
Wholesale Trade 42 4121.35
Construction 23 3364.98
Educational Services 61 0.00
Real Estate and Rental and Leasing 53 -99.76
Health Care and Social Assistance 62 -954.71
Agriculture, Forestry, Fishing, and Hunting 11 -990.07
Admin, Support, Waste Management, Remediation Services 56 -1055.74
Other Services (except Public Administration) 81 -1727.06
Arts, Entertainment, and Recreation 71 -2352.31
Retail Trade 44-45 -2873.29
Accomodation and Food Service 72 -4629.06
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Table 7: Occupational Change

Dependent variable:

Occupational (2010-2018) Skill Change
(1) (2) (3) (4)

SML Score 0.08*** (0.02) 0.10*** (0.03) 0.06*** (0.02) 0.08*** (0.03)
Log Wage 0.32 (0.23) 0.13 (0.30)
Log Wage2 −0.01 (0.01) −0.01 (0.01)
Medium Wage Tercile 0.02** (0.01) 0.01 (0.01)
High Wage Tercile 0.01 (0.01) −0.01 (0.01)
Wage Bill −0.00*** (0.00) −0.00*** (0.00) −0.00*** (0.00) −0.00*** (0.00)
Constant −1.96 (1.27) 0.21 (1.75) −0.10* (0.05) 0.96 (0.64)
Skill Fixed Effects 𝑁𝑜 𝑌 𝑒𝑠 𝑁𝑜 𝑌 𝑒𝑠

Observations 650 618 650 618
R2 0.11 0.20 0.10 0.20
Adjusted R2 0.10 0.16 0.10 0.16

Note: *p<0.1; **p<0.05; ***p<0.01
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Figure 1: Yearly Number of Job Postings scraped by BGT (2010-2018).
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Figure 2: Logged Overall Skill Shares by 2010 Wage Tercile, using the 28
BGT Skill Cluster Families.
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Figure 3: Logged Overall Skill Shares for Skill Clusters within the IT Skill
Cluster Family by 2010 Wage Tercile.
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Figure 4: The top 30 skill demand shares of Data Scientists (2010-2018).

Figure 5: The top 30 skill demand shares of Lumberjacks (2010-2018).
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Figure 6: Occupational Cosine Similarity between 2010 and 2018 skill share
vectors over 2010 wage percentile.
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Figure 7: Occupational Cosine Similarity between 2010 and 2018 skill share
vectors over 2010 wage percentile.
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