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Abstract 

We adapt a machine learning method to provide new estimates for land valuation in the United 

States, pairing this approach with “big data” from Zillow. Because this data includes detailed 

information from hundreds of millions of property transactions covering much of the US, the 

heterogeneous nature of this data serves as fertile ground for highlighting some of the practical 

limitations of linear hedonic regression techniques for land valuation, a common method for mass 

appraisal of land. We first construct traditional hedonic estimates of land value at the parcel-level 

for most of the US as a baseline, focusing on single-family residential properties in our initial 

analysis. We then modify the hedonic approach by using a machine learning method, gradient 

boosting trees, for comparison. The results demonstrate how a machine learning approach can 

more effectively address issues of sparse data with spatial controls or thin cells at fine levels of 

geography (like census tracts or block groups). Our initial estimates also show that the machine 

learning method offers a substantial improvement in prediction of single-family sale prices (i.e., a 

75% reduction in RMSE, on average) and great potential for further applications in constructing 

aggregate measures of land value beyond the cases we pilot here.  
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“…the commodities which compose the whole annual produce of the labour of every country, 

taken complexly, must resolve itself into the same three parts, and be parceled out among different 

inhabitants of the country, either as the wages of their labour, the profits of their stock, or the rent 

of their land…Wages, profit, and rent, are the three original sources of all revenue as well as of 

all exchangeable value.” –Adam Smith (1776, The Wealth of Nations – Book 1, Chapter VI)  

“Buy land – they’re not making it anymore.” -Mark Twain*  

1. For what it’s worth: Introduction 

 Land is, quite literally, a foundational asset for any economy. Economists, extending back 

to at least Adam Smith (1776), have long understood that for households and firms the value of 

the land underlying their structure is often a substantial portion of the overall value of their 

property; and, in some cases (especially with agricultural land) it constitutes nearly the entire asset 

value or flow of rents. Recent research has estimated that, in aggregate, not only is land a 

substantial asset in its own right,1 but the fluctuations in its value can play a pivotal role in the 

business cycle, as illustrated by the real estate boom and bust that coincided with the Great 

Recession in 2007-2009. Some literature has pointed out that the infamous housing boom and bust 

of the 2000s if often mischaracterized, instead suggesting that it would more aptly called a land 

boom and bust (Davis et al 2017; Davis et al 2021), citing evidence that much of the fluctuation in 

value of residential property can be attributed to the underlying price of land (see also Kuminoff 

and Pope 2013). Given both its economic significance and the diversity of approaches used in the 

literature to investigate the value of this asset, the purpose of this paper is to revisit a timeless 

question using new methods and new data: how much is land worth? More specifically, can 

modern machine learning (ML) methods using “Big Data” from across the United States deliver 

significant advantages over prior approaches and provide new insights into this question?  

 We show that ML methods indeed can; and, by employing this approach using microdata 

from a national dataset like Zillow’s ZTRAX data, we provide a tractable way to construct national 

and subnational estimates of land value that solves several critical issues that arise with commonly 

used methods. In addition to several contributions to the academic literature, which we discuss in 

more detail below, this research marks a step toward filling a critical gap in the national economic 

                                                           
* Like many sayings attributed to Mark Twain, this one is likely apocryphal, but variations of this statement have been 

attributed to him for decades. Variations of this quote have also been attributed to Will Rogers. The original source 

for this particular version of the quote is unknown, but attributing it to Mark Twain sounds better. 
1 Wentland et al (2020) estimated that the value of private land in the contiguous 48 US states was approximately $25 

trillion in 2015. Using a different approach, Larson (2015) estimated land in the US to be worth $23 trillion.    
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accounts. Despite the significance of land as an asset, there is virtually no available information 

directly quantifying the aggregate value of land itself in the national accounts (either in the US or 

the vast majority of countries around the world).2 This fact might be surprising to classical 

economists like Adam Smith, who mention land explicitly in his early writings on national output, 

as well as modern day economists and decision-makers who use aggregate data from the national 

income and product accounts (NIPA) like gross domestic product (GDP) to understand a wide 

variety of national economic phenomena. Because land is described as a “non-produced, non-

financial asset” (a category Mark Twain might appreciate) on a country’s balance sheet in the 

System of National Accounts (also known as the SNA – the statistical standard governing national 

income accounting), countries rarely provide direct aggregate estimates of this particular line item 

on a national scale.3 Instead, statistics developed in the 20th century have traditionally focused their 

accounts on goods and services and the produced capital assets related to their production.  

 In the 21st century, however, there has been broad international interest in expanding the 

scope of the national accounts to include more non-produced capital or “natural capital” with 

environmental economic accounts that quantify the value of our natural resources (Boyd et al 

2018), including land, along with a greater interest in information on land prices in particular 

(Coomes et al. 2018). In fact, the UN has recently reported that over 90 countries produce at least 

one SEEA-based environmental economic account as of 2020.4 Yet, the US does not currently 

produce any formal environmental economic accounts. Given that land is an asset at the 

intersection of the traditional national accounts as described by the SNA and environmental 

accounts proposed in the System of Environmental-Economic Accounting (SEEA), valuing land 

presents a logical starting point for expanding the scope of what the national accounts explicitly 

                                                           
2 This is not to suggest that the value of land is omitted from our national accounts entirely. There are, however, 

indirect ways land enters into the accounts. For example, in GDP, the value of land (while not separately estimated) 

is in rent paid for some types of land or as part of an intermediate input/component of final housing services or business 

spending on fixed assets. The Integrated Macro Accounts, which house the national balance sheet of assets, includes 

real estate among household nonfinancial assets, but does not separately break out structure versus land value 

specifically. In the US, these balance sheets generally exclude land from corporate and government assets. 
3 There are some exceptions to this, as a handful of countries provide some information about the value of land in their 

accounts, including Australia, South Korea, U.K., and Canada (Wentland et al. 2020). But these accounts are either 

limited in scope or, as of the writing of this paper, they have coarser estimates that do not use “big data” 

methodological approaches like the one outlined in this paper.  
4 For more information on environmental economic accounts and the corresponding statistical standards countries use 

to implement them (System of Environmental-Economic Accounting (SEEA) Central Framework and Ecosystem 

Services Accounts), see https://seea.un.org/content/frequently-asked-questions. 
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measure in the US.5 Thus, one of the primary objectives of this paper is to cultivate a new method 

to decouple land value from structure value, using single family residential (SFR) properties as a 

pilot case, which could then be readily applied to a national data set that could be used to construct 

aggregate estimates of land value in a formal account.  

 To measure the aggregate value of land, we begin small. Conceptually, we are interested 

in unpacking the structure and land values from an individual property’s value, as the most 

common type of real estate transaction we observe is one that couples the structure with the 

underlying land. Given that individual property’s total value or price is what we most commonly 

observe,6 our method here draws on fine-grained data from Zillow’s ZTRAX dataset, which 

contains detailed information on hundreds of millions of property transactions over the last couple 

decades across the US. It also contains detailed property characteristic information for a large 

percentage of the universe of properties in the US, including information about the land itself (like 

its acreage and land use type) along with structure characteristics (like number of bedrooms, 

bathrooms, rooms, square footage of the living area, and much more). Methodologically, we use 

the variation in this rich data to estimate the value of land at the property-level using an ML method 

and a common hedonic approach, which both deconstruct the total transaction value of each 

property based on the estimated value of its components. The core idea of our approach is to use 

detailed market transaction data to estimate what the value of the land is by subtracting the 

marginal value of the components associated with the structure (as if the structure was “zeroed 

out”). While we discuss the specifics of each method in the proceeding sections, we should 

emphasize at the outset that because we estimate land value at such a micro level, this approach is 

flexible enough to aggregate to any geographic level, including, of course, to state and national 

levels. Given that large national datasets are becoming more commonly used in the most recent 

literature (e.g., Davis et al 2021, Nolte 2020, Wentland et al 2020), we interpret this micro-to-

macro approach to be the new standard in the land valuation literature. Moreover, this approach is 

consistent with a broader movement toward exploring the utility of “big data” for constructing 

official national statistics, which is a recent trend adopted by statistical agencies (see, for example, 

                                                           
5 See Wentland et al (2020) for further discussion of the SNA, SEEA, and the nuances of how land is defined and 

measured in the statistical manuals.   
6 In the next section, we will discuss the market for vacant land and how studies have used vacant land sales to 

generalize land value to improved land with structures. For various reason that we discuss later, our focus in this 

version of the working paper is on improved land with structures. 
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Moyer and Dunn (2020) and Abraham et al. (2019) for summaries of recent applications 

throughout the US government). 

 While our goal is to eventually build out a full accounting of land value across residential, 

commercial, industrial, and agricultural land in the US, our initial focus in this paper is on single 

family homes for two reasons. First, in aggregate, the land underlying single family residential 

(SFR) property is by far the most valuable land use category in the US (Wentland et al 2020). 

Methodological improvements to accurately measure this type of land thus contribute the most to 

accurately measuring the value of all privately owned land collectively. This is also one reason 

why SFR land is the focus of much of the land valuation literature to which we are drawing 

comparisons with our new ML approach (e.g., Davis et al. 2021, Davis et al. 2017, Kuminoff and 

Pope 2013). Thus, the second reason why our initial focus is on SFR land is that most of our 

analysis is in drawing comparisons to methods in this literature (and to the hedonic approach in 

particular, as used by Kuminoff and Pope (2013) and Wentland et al. (2020), for example). If we 

can demonstrate significant advantages for our approach on this particular type of property, it 

motivates broader use of this method where the literature is thinner and comparisons are less direct. 

We return to this point in the last section of the paper as we discuss further applications and how 

this approach could be used to construct land accounts broader in scope.  

 This paper makes a number of contributions to the literature. Methodologically, this is the 

first paper to apply on a national scale a particular machine learning approach, gradient boosting 

trees, to land valuation in a way that conceptually mirrors a hedonic method. We find that this ML 

approach delivers a number of specific advantages over land valuation using hedonic models like 

those used by Kuminoff and Pope (2013), Diewert et al. (2015), Wentland et al. (2020), and 

numerous others. On average, the ML approach models the sale price outcome far better than a 

linear (OLS) hedonic model, as evidenced by a substantial reduction (about 75%) in RMSE in the 

price prediction. Since the structure and land value are essentially decomposed from the 

coefficients that predict sale price, any error in the model’s sale price prediction is likely to be 

reflected in the error of its components, and thus the land value estimate. That is, a substantial 

improvement in the models predictive accuracy builds confidence in the decomposed land value 

by reducing the scope for large error on the outcome (on average).  
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 A second contribution is that we provide a tractable alternative to geographic/location fixed 

effects (like census tracts/block groups/blocks, zip codes, etc.) that could be useful for numerous 

applications of large datasets like we use. From a modeling standpoint, a benefit of spatial fixed 

effects like census tracts or blocks is that they can account for fine location-specific heterogeneity, 

like neighborhood-specific amenities, which are critical determinants of property values. Recent 

work by Davis et al. (2020) employ zip code fixed effects, for example, where the initial data 

includes 18,322 zip codes nationally, and other studies use census tracts or block groups with even 

finer spatial granularity. However, there is a well-known tradeoff here, econometrically. As the 

level of fixed effects becomes more fine-grained (i.e., the number goes up), there are fewer 

observations per group in the sample. At some point there may be very few sales in a given census 

tract, for example, resulting in many of the usual overfitting problems. Davis et al. (2020) and 

Wentland et al. (2020) sidestep this issue by establishing some arbitrary cutoff that eliminates 

geographies that include fewer than 50 sales, for example. However, deciding what this cutoff 

should be is inevitably ad hoc and can have a substantial impact on the results. We propose a more 

systematic approach here. Instead of relying on preset geographic boundaries and arbitrary 

thresholds for sale counts, we employ a k-means clustering approach that generates clusters within 

our sample that minimize not only latitude/longitude distance but also characteristics of the home 

(like bedrooms, bathrooms, number of rooms) that are important for determining the outcome (i.e., 

sale price). This allows our ML model to use fewer fixed effects (or clusters) in order to avoid the 

small N problems among small geographic areas, while preserving high performance for model fit 

(as shown by our RMSE statistics) by grouping more homogenous homes across greater 

dimensions than geography alone. In an era where big datasets and large numbers of fixed effects 

(and interactions) are the norm, a key contribution we would like to highlight is how this approach 

can employ fixed effects more effectively.  

        Finally, although the initial focus of this working paper is to explore the advantages of a 

new ML approach in comparison to a hedonic approach to land valuation, a broader goal of this 

project is to generate aggregate land value estimates using novel data that could be used to generate 

new values for the national economic accounts and/or complementary satellite accounts based on 

SEEA accounting standards. While we build on Wentland et al. (2020) and others by employing 

an ML method that has tangible advantages, like reducing the ad hoc modeling decisions involved 

in fixed effects, we should also emphasize a broader point is that reducing the ad hoc decisions in 
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the process of producing official statistics is a meaningful goal. A more systematic, transparent 

approach to modeling can provide more confidence in the results by the public; and, if the same 

method is used across countries for national accounts, for example, it would facilitate 

comparability of the resulting statistics (minimizing arbitrary decisions that go into modeling). In 

the final section of this paper, we return to this point, discussing potential next steps for this work. 

In addition to potentially building a national account based on these estimates for macro 

applications, like Davis et al. (2021), once published, we intend to make all of our land value 

estimates available at a variety of subnational levels (tract, zip, county, state levels) like FHFA to 

all who would find them useful in their research or decision-making.   

2. Measuring land value: Conceptual background, literature, and the hedonic approach 

2.A. How is land valued? Some background and discussion of recent literature  

 Broadly speaking, there are two ways to value land using market data. One approach might 

be to directly measure land value by observing what land (without a structure) sells for on the open 

market and use the market prices and quantities we observe to total an aggregate value of land, 

much like one would tabulate the aggregate value of any commodity, good, or service. But, for a 

number of reasons, using price and quantity data alone will not suffice in a vast majority of 

circumstances. In the case of agricultural land, where this approach might seem most reasonable 

given that many of the transactions will not include a structure of any kind, price and quantity 

alone might not be enough information to generate a reasonable estimate because of the problem 

that not all land sells in a given period, and thus the market sample may not be representative of 

the land off the market. Further, there is still significant heterogeneity even among agricultural 

land in terms of soil quality, geographic proximity to markets and infrastructure, and numerous 

other factors that require more than simply prices and quantities.7 Thus, these core problems (i.e., 

the fact that not all land sells in a given period and that the land that does sell is typically bundled 

with a structure) has spawned a deep literature in using additional information to get at the 

underlying value of land in a more sophisticated way.  

                                                           
7 The 2015 Eurostat-OECD Compilation Guide on Land Estimation includes a variety of caveats when discussing this 

method, even in nearly ideal conditions. It states: “the direct method is normally preferred by countries for the 

valuation of agricultural land on which no buildings or structures are situated…[however] since the value of land is 

highly dependent on several factors e.g., location, land use and the presence of nearby facilities, such information 

should be incorporated in the land price data” (p. 60).  
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 The more common approach to land valuation can be described then as an indirect method, 

which refers to a set of approaches that use additional information to estimate the value of land 

from some other value (like a total property value containing both the structure and land) or an 

extrapolation from vacant land sales (to similar properties with structures, for example). According 

to the 2015 Eurostat-OECD Compilation Guide on Land Estimation, these include the residual, 

land‑to‑structure ratio (also called land leverage), and hedonic approaches. These indirect 

approaches reasonably assume that the value of the property is the value of the bundled 

components of the land and associated structure(s). Conceptually, land and the structure(s) are 

assumed to be separable assets, and the values of these bundled components do not necessarily 

move together (Bostic et al. 2007). That is, land is often found to be an appreciating asset over 

long periods of time while the associated structure is found to be a depreciating asset over time 

(with some exceptions, e.g., historic structures). In its simplest form, we might think of this as a 

linear and additive model where the selling price of a property V, the value of the structure psS, 

and the value of the plot of land pLL can be written as:  

V = psS + pLL 

where S is the size of the structure, L is the land area, and ps and pL are the prices of a unit of S 

and L, respectively. The challenge then is how best to determine either ps or pL, given that we have 

information on V, L, and S in real estate sales data, or we might be able to infer structure value in 

other ways (e.g., construction cost data). 

 The different indirect methods differ primarily on how land value is decoupled from the 

property’s total value. The residual approach (or some variation thereof) is often used by both 

governments and academics. Residual methods typically rely on construction or builder’s costs as 

replacement costs (e.g., Davis and Heathcoat 2007, Davis and Palumbo 2008) or demolition costs 

factored into “teardowns,” which are near substitutes for vacant land (e.g., Rosenthal and Helsley 

1994, Dye and McMillen 2007). Davis et al. (2021) employ a novel cost-based residual approach 

using very detailed appraisal records. Their dataset constitutes a very large portion of single-family 

homes in the U.S. and they provide land value results for various geographies, which we use later 

in the paper for comparison purposes.  

 There are a number of other novel approaches to land valuations that may use vacant land 

transactions to extrapolate to those with structures (or the approach may not neatly fit into these 
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categories, as they use a hybrid approach). Several examples that use vacant land transactions in 

various ways include Nolte (2020), Albouy, Ehrlich, and Shin (2018), Barr et al (2018), Turner et 

al. (2014), Nichols et al. (2013), Combes et al. (2019), and Haughwout et al. (2008). While these 

studies take a number of sophisticated approaches to try to address various drawbacks to using 

vacant land, a fundamental issue with using vacant land transactions is that vacant land may suffer 

from important systematic selection issues and unobservable differences. Vacant land is often land 

that was previously selected over for development for various difficult-to-observe reasons; or, 

geographically it is more likely to be on the outskirts of developed core areas of metropolitan areas; 

or, it may have unobservable differences like whether water or sewer lines are in place.  A recent 

working paper by Larson and Shui (2021) takes a novel approach adapted from Davis et al. (2020) 

by using Kriging, a spatial interpolation approach using data from Maricopa County, Arizona. 

Though our review here may not be exhaustive, we should acknowledge here that a key takeaway 

from the literature is that there are numerous reasonable approaches to land valuation that exploit 

different types of data to get at this fundamentally difficult question to pin down with precision: 

what is land worth? In fact, the Eurostat-OECD manual on best practices for land valuation (2015 

Compilation Guide on Land Estimation), acknowledges that no method is perfect, and states that, 

“there is no ‘best’ method; which of these approaches should be used, heavily depends on the 

available data sources” (p. 66).  

2.B  The hedonic approach – a relatively simple baseline method suited to “Big Data” 

 As we discuss in more detail in the next section, our data contains very detailed information 

about transactions and property characteristics. Generally, this type of data is well-suited to a 

hedonic approach to estimate land value.8 This approach uses detailed information on by 

regressing sales prices of properties on a variety of characteristics of the land and structure, which 

yields an estimate of the market value of the structure (not just its cost) using variation in the data 

from comparable structures and properties. One recent study by Rambaldi and Tan (2019) 

observed that a key advantage of the hedonic method is that “it is a revealed preference method 

that estimates the contribution of each characteristic to the overall price” (Rambaldi and Tan 2019, 

p. 5) as the coefficients each represent an incremental or marginal contribution to the price based 

                                                           
8 In addition to Wentland et al. (2020) and Kuminoff and Pope (2013) mentioned above, there are a number of other 

instructive hedonic studies, including for example Gong and Haan (2018), Burnett-Issacs et al. (2016), Rambaldi et 

al. (2015), and Diewert et al. (2015).  
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on available data. This allows for a nuanced, location-specific estimate based on observed market 

prices as opposed to costs.9  

 We adapt and tweak the hedonic approach used in Wentland et al. (2020) to establish a 

baseline approach for comparison to our ML approach that is both common in the land valuation 

literature and well suited to the data. The hedonic approach generally relies on a standard ordinarily 

least squares (OLS) regression model and is generally less intricate than more advanced machine 

learning techniques used by Zillow’s proprietary automated valuation model or our machine 

learning variant. For residential properties, we first estimated the following hedonic model for 

each time period (3 year overlapping window) and state separately:  

𝑙𝑜𝑔(𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑆𝑎𝑙𝑒 𝑃𝑟𝑖𝑐𝑒𝑖𝑗𝑡) =  𝛼 + ∑ 𝛽 𝑋𝑖 + 𝛾𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁𝑗 

+ ∑ 𝛿 𝑠𝑞. 𝑓𝑡.𝑖∗ 𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁𝑗 + ∑ 𝜑 log (𝑎𝑐𝑟𝑒𝑎𝑔𝑒𝑖) ∗ 𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁𝑗 + 𝜌𝑌𝐸𝐴𝑅𝑡 +  휀 

where X is a set of physical characteristics (number of total rooms; bedrooms; bathrooms; floors; 

the structure’s year built in relation to the median; living area measured by square feet; natural log 

of the lot size measured by acreage; and separate indicators equal to 1 if the home had a pool, had 

a basement, or had a porch or had a missing value for each of these variables); LOCATION 

represents location (census tract, county, or state depending on number of sales at location level) 

fixed effects; and YEAR includes year-by-quarter time fixed effects for single family homes (or 

simply year fixed effects for the other property types due to fewer sales observations) to account 

for time-varying heterogeneity.10  

 We interact the location fixed effects with structure square footage and logged acreage, 

respectively. For practical reasons, we initially use census tract fixed effects, although we obtained 

                                                           
9 The hedonic valuation fits with the idea of land value put forth in the 2015 Guide stating that: “on the balance sheet 

land should be valued at its current market price (SNA 2008 paragraph 13.16, ESA 2010 paragraph 7.33)…When 

market prices for transactions are not observable, valuation according to market‑price‑equivalents provides an 

approximation to market prices. For example, if the market price of a certain piece of land is not available, prices of 

land with a comparable use and location could be used” (p. 25).  
10 The Zillow ZTRAX dataset contains quite a bit more information about individual properties that would help with 

valuation, but we chose the variables with extensive coverage across all states in the dataset. When compared to a 

fuller model that includes many more home characteristics than we end up using, the marginal gain in precision was 

small compared to the potential loss in observations due to missing data in states/localities that do not regularly report 

certain variables. In some cases, where a key variable like the structure’s square footage is not reported widely in a 

particular state or municipality, we ran the regression without this variable separately.  
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similar estimates using finer-level geographic fixed effects like census block groups.11 Although 

this approach is intensive for processing, it allows the valuation of structure square footage and 

acreage to vary by a finer geography than typically available. This is key, as the valuation of these 

attributes can vary widely across areas within a state. For example, an additional tenth of an acre 

for a property in New York City, will be valued much differently than the same amount of space 

in Albany, which this model with interactions allows for this coefficient to be different by 

location.12  

 Within each state and period, we then used these coefficients to compute a land price 

prediction for each property in each year, using each three-year overlapping window. Our model 

generates a total price prediction for each individual property based on its characteristics. We used 

the value of the property’s location and acreage to obtain the underlying nominal land value of 

each property, based on the following calculation:13  

𝑅𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑖𝑎𝑙 𝐿𝑎𝑛𝑑 𝑉𝑎𝑙𝑢𝑒𝑖𝑗𝑡 = 𝑒𝛼+𝛾𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁𝑗+∑ 𝜑log (𝑎𝑐𝑟𝑒𝑎𝑔𝑒𝑖)∗𝐿𝑂𝐶𝐴𝑇𝐼𝑂𝑁𝑗+𝜌𝑇𝐼𝑀𝐸𝑡 × 𝑒
1
2

𝑒𝑅𝑀𝑆𝐸2

 

Because we used relatively fine (spatially small) location fixed effects, all time-invariant local 

amenities within each tract (and within the period of estimation), including land-cover types (and 

by extension corresponding ecosystem services associated with each land-cover type) will be 

incorporated into the tract coefficients valuing location. Thus, each land value we estimated for 

each property will account for net market value of location-specific amenities  

 Due to the nature of the data, several issues arise with the hedonic model that prompt ad 

hoc decisions to rectify. One issue in the hedonic estimation of land value is that the tails of the 

distribution can often produce extreme values, particularly when there are thin cells (i.e., states 

and years with land-use categories having few sales and some extreme sales), from which the 

                                                           
11 Smaller geographic units like block groups and blocks have fewer sales, so the advantages of finer location controls 

need to be balanced with thinness of sales within these areas (which can create some noisiness in the estimates). The 

interactions also become problematic for estimation of too many fixed effects in most statistical software packages, 

however. We have also explored a variety of other specifications to improve model fit and predictions, including a 

semi-log specification, where sale price is logged, but these models produced similar results overall. 
12 This approach is used commonly in the hedonic valuation literature for housing and land (e.g., Kuminoff and Pope 

2013). As we discuss in more detail below, we require a minimum number of transactions to occur within a location 

(e.g., tract) over a given period, pooling observations that do not meet this threshold at a higher geographic level (e.g., 

county) in a separate regression.  
13 Note that since the outcome variable is logged, we have smeared the prediction following Duan (1983).  
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model generates a (semi-log) linear prediction. To avoid making predictions for thin cells, like 

Davis et al. (2021), we establish a threshold under which we do not allow observations to be 

modeled using that fine-grained of a fixed effect. Specifically, we specified that a given tract have 

at least 30 sales in the three year window for each model. If this condition was not met within a 

given tract a period, we iteratively estimated models with higher-level geographic fixed effects 

(i.e., the same model only using county (FIPS)-level fixed effects and a separate model using the 

entire state). Moreover, one reason why we use a three-year running window is that a single year 

of data will often yield noisier prediction results for hedonic models using fine fixed-effects, 

making this threshold of N a more binding constraint for more of the dataset.   

 Because there may be leftover noisy predictions for areas with sales marginally above these 

thresholds, we made adjustments to outliers in the following ways. First, we create our land value 

measure using the predicted land value from the model using census tract fixed effects. We then 

replace any missing or outlier predictions by first replacing those in the extreme ends of the 

distribution (less than the 1st percentile or above the 99th percentile – a prior version of our model 

followed Davis et al. 2021 using a hard-coded threshold of $200 price per acre) with the predictions 

from a county fixed effects model. Any further missing predictions are taken from the state-level 

model. This tiered fixed effect approach ensures we are not systematically throwing away data 

from rural areas, for example, where the number of sales over a particular time window may fall 

underneath our threshold. Finally, we then cull any outliers above the 1st percentile or above the 

99th percentile. These adjustments ensured that model coefficients were not driven by erroneous 

or mis-measured data, small samples, or outliers.14 Nonetheless, a key takeaway from how we deal 

with these problems, the thin cell problem and outlier problems, should be that we (and many 

others), if we are to be transparent about our method and design choices, must communicate a 

lengthy description of the nuances and arbitrary thresholds have to establish to run these models 

and get reliable, reasonable results. We return to this point as a potential problem that data-driven 

methods like machine learning can help solve in less arbitrary, more systematic ways.  

                                                           
14 One potential issue with the hedonic approach, or any prediction-based multivariate method, is multicollinearity, 

where the acreage of a property could be highly correlated with the size of the structure (square footage), particularly 

for land in dense urban areas. This could produce bias or imprecise estimates of land value if there is a mechanical 

relation between these two variables such that value is not meaningfully separable. In untabulated analysis, we 

examined the correlations between acreage and square footage of the structure in our data, finding the correlation was 

not high in the U.S. (usually falling within 0.2-0.4).   
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Figure 1. Census Regions and Divisions of the United States (Source: U.S. Census), showing 

states with and without Zillow data. 

 

3. …in the era of big data…: Data description 

 As we alluded to in the introduction and prior section, one of the novelties of this study 

and only a few very recent studies like Davis et al. (2021), Nolte (2020), and Wentland et al. (2020) 

is that we leverage very fine, property-specific microdata to generate national estimates from 

millions of data points that span much of the US. Specifically, our study uses the Zillow 

Transaction and Assessment Dataset (ZTRAX) dataset that has been recently made available to 

researchers in academia and government for a limited period of time (through September 2023). It 

contains market transaction data as well as a large set of individual property characteristics for 

sales recorded in local tax assessor’s data.15 Coverage is generally representative of the United 

States’ national market, initially comprising 374 million detailed transaction records across more 

                                                           
15 Data are provided by Zillow through the Zillow Transaction and Assessment Dataset (ZTRAX). More information 

on accessing the data can be found at http://www.zillow.com/ztrax. The results and opinions do not reflect the position 

of Zillow Group. Nonproprietary code used to generate the results for this paper is available upon request to the 

authors. 
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than 2,750 counties (i.e., 91.5% of U.S. counties). Not all U.S. states require disclosure of sale 

prices, so while our data cover a large portion of the country, the price data in particular have some 

limitations in coverage, specifically for 13 (mostly rural) states.16 The data include detailed 

information on each individual home’s sale price, sale date, mortgage information, foreclosure 

status, and other information commonly disclosed by a local tax assessor’s office for each real 

estate transaction.  

 We join each transaction to each property’s characteristics into a single dataset to be used 

for our analysis, so that each transaction has the corresponding property characteristic data from 

the assessment dataset. Specifically, the assessment data include a number of characteristics found 

on Zillow’s website or a local tax assessor’s office describing a property: the size of the structure 

on the property (in square feet), lot size (in acres), number of rooms, bedrooms and bathrooms, 

year built, and various other characteristics.17 A key aspect of these data is that it contains detailed 

information about each property’s location (address and latitude-longitude) such that this fine-

level spatial data can be linked to any level of geography commonly used in hedonic property 

analysis.  

 The data from Zillow is originally packaged in a somewhat raw form. As a result, we 

scrutinized missing data and extreme values as part of our initial culling of outliers and general 

cleaning. Some outliers may arise because they are either foreclosures or non-arm’s length 

transactions (which we omit using variables such as the document type), but others are typos in 

the source data (e.g., where a municipality records the number of bathrooms as 40), or the property 

itself is unusual enough that it would not be an appropriate fit for a model (e.g., if the home did, 

in fact, have 40 bathrooms, it is unlikely that each bathroom is valued in the same way as other, 

more typical properties). Or, this might signal a misclassification of a property, where a building 

with 40 bathrooms may actually be a commercial office building. Hence, we dropped extreme 

                                                           
16 Because some states do not require mandatory disclosure of the sale price, we currently do not have price data for 

the following states: Idaho, Indiana, Kansas, Mississippi, Montana, New Mexico, North Dakota, South Dakota, Texas, 

Utah, and Wyoming. In addition, some states like Louisiana, Maine, and Vermont have substantial missing data in 

our current sample, and we omit these states as well.  
17 Zillow’s ZTRAX data contain separate transaction files by state, where all transactions need to be linked to 

corresponding assessment records. With guidance from Zillow, we were able to merge the bulk of the data, but not 

without some data loss (which figures into the size of our final sample).  
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values for price and home characteristics for our analysis, which is a common practice for recent 

research using this particular data.18  

 For this analysis we retain single family residences with non-zero acreage, then cull those 

with acreage less than the 2.5th percentile of acreage and above 2.5 acres.19 We removed properties 

that had a structure smaller than 50 square feet and a price lower than $1,000. We then culled by 

price at the 2.5th and 97.5th percentile by year and county. We culled homes with square footage (a 

home’s living area) above the 97.5th percentile and year built (we use year built – median year 

built so that the intercept is for a home built in the median year) below the 2.5th percentile. Homes 

were also winsorized using total rooms at 11, bedrooms at five, bathrooms at four, and number of 

floors at three, thus confining the influence of outliers in our hedonic model. We remove from our 

model any indicators for the presence of a porch, basement, and garage if less than 5 percent or 

more than 95 percent of properties in the land-use type and period had the amenity (we use 1 and 

99 percent for presence of a pool). We remove variables if more than 75 percent of properties in 

the land-use type and period were missing and recode to the average if less than 5 percent were 

missing. Lastly, we remove from our sample any residential properties that do not provide some 

form of structure size (either square footage, bedrooms and bathrooms, or total number of rooms). 

While the Zillow dataset contains a vast number of property characteristics, we primarily relied on 

the variables above, which have the most coverage nationally to limit how much data we discarded 

in our initial analysis.20 We limited the sample years to 2002 through 2015, as data for those years 

are most complete for the vast majority of the states in our sample and, for our baselines hedonic 

model we use a rolling three year window of sales to estimate land value for each year. One 

advantage of this time period is that it provides a lot of variation in the data, as this period includes 

the intense periods of boom, bust, and recovery in the U.S. real estate market.  

 

                                                           
18 See Nolte et al. (2021) for a broad discussion of best practices using the Zillow ZTRAX data, which cites some of 

our prior work using this data (e.g., Gindelsky et al. (2019)). This is a very useful guide to using the Zillow data; and, 

while some of the precise thresholds and cutoffs may differ, we follow many of the general suggestions of this paper 

makes.  
19 Homes with more than 2.5 acres are classified as rural residential and will be considered in a future version of this 

paper. 
20 In untabulated regressions, we conducted a sensitivity analysis for subsets of the sample that employed more 

property characteristics to determine whether the results are sensitive to omitted variables for which we can control. 

Our results were generally robust to omitting variables that have more limited coverage.  
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4. …and machine learning: Methodology 

4.A. Gradient boosting trees and k-means clustering – a machine learning approach to land 

valuation 

 At its core, the hedonic valuation of land necessitates some form of prediction for the 

overall price of the property (land + structure) and its components. Recall that once we decompose 

the price of a property into its constituent parts, the idea is that we can evaluate the marginal effect 

of changes to the property (e.g., an extra bathroom), or rather extrapolate what the price would be 

in the absence of a structure altogether. We do this as a baseline in our traditional hedonic model 

described above, as our objective is to isolate the value of the land from the remaining elements. 

Because not all properties sell in a given period, we project a predictive model from single family 

homes that sell onto the assessment data which contains the near universe of houses, most of which 

are not observed on the market in the periods observed (or may never be on the market). Thus, we 

turn to Gradient Boosted Machines to help predict the price of both homes on the market and 

homes which have not, and may not ever, see the market (Friedman, et al., 2000; Friedman, 2001; 

Friedman, 2002). The motivation for doing this is that because the hedonic approach relies on a 

prediction model to generate land value estimates, if we can predict the overall price more 

accurately, as measured by a loss function such as root-mean-squared-error or root-mean-absolute 

error, we might have better insight into the relative value of land for each property. This is precisely 

a strength of machine learning approaches like gradient boosting. 

 Gradient boosting is a learning algorithm which combines individual weak learners 

[decision trees] through iterative construction such that each subsequent tree attempts to correct 

the mistakes of its predecessor.  The gradient being evaluated depends on the loss function chosen 

given the context of the modeling. In this case we have chosen the L2 loss function (least squares), 

1

2
(𝑦𝑖 − 𝑓(𝑥𝑖))

2
, with gradient −δ𝐿(𝑦𝑖, 𝑓(𝑥𝑖))/δ𝑓(𝑥𝑖) = 𝑦𝑖 − 𝑓(𝑥𝑖). In each iteration, a tree is 

built on a random sub-sample of the data and this tree is of fixed depth. In our case we have chosen 

an interaction depth of four to limit the possibility of overfitting for each individual tree. Note that 

for each iteration the target is not the sales price of each individual home but rather the residuals 

of the previous iteration. The learning rate, or how big of a step along the gradient, is limited for 

each tree to the default parameter of γ =  .1. In the Algorithm 1 table below, we have outlined the 

generic framework of a gradient tree boosting algorithm. 
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Algorithm 1: Gradient Tree Boosting Algorithm                            (Hastie, et al., 2017 pp. 361) 

 1. Initialize 𝑓0(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛γ ∑ 𝐿(𝑦𝑖 , 𝛾)𝑁
𝑖=1  

 2. For 𝑚 =  1 𝑡𝑜 𝑀: 

 (a) For 𝑖 =  1, … , 𝑁 compute 

𝑟𝑖𝑚 = − [
−𝛿𝐿(𝑦𝑖 , 𝑓(𝑥𝑖))

𝛿𝑓(𝑥𝑖)
]

𝑓=𝑓𝑚−1

 

 (b) Fit a regression tree to the targets 𝑟𝑖𝑚 giving terminal regions 𝑅𝑗𝑚, 𝑗 = 1, … , 𝐽𝑚. 

 (c) For 𝑗 = 1, … , 𝐽𝑚 compute 

γ𝑗𝑚 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 ∑ 𝐿(𝑦𝑖 , 𝑓𝑚−1(𝑥𝑖) + γ)

𝑥𝑖∈𝑅𝑗𝑚

 

 (d) Update 𝑓𝑚(𝑥) = 𝑓𝑚−1(𝑥) + ∑ γ𝑗𝑚 𝐼(𝑥 ∈ 𝑅𝑗𝑚)
𝐽𝑚
𝑗=1  

 3. Output 𝑓(𝑥) = 𝑓𝑀(𝑥). 

 

 Recall that we are not particularly interested in drawing causal inferences on the marginal 

effect of adding an additional bathroom, rather we are first interested in minimizing the error on 

our predicted price. We would like to be able to easily strip the predicted price of the overall 

contribution made by the structure itself conditional upon the observable characteristics. The 

choice of features then becomes very important because we would like to avoid splitting on 

elements such as number of bathrooms in the housing unit. Additionally, it is well known that the 

first second and third most important elements of home price are: location, location, and location.  

 In a generic linear hedonic model this amounts to having location level fixed effects (e.g., 

census tract/block) interacted with observable features of the property including plot size, square 

footage, etc. This leads to a rapid expansion in the number of variables in the information set. For 

example, the hedonic model representing single family housing in California has approximately 

10,000 right hand side variables between observed elements of the structure, location fixed effects, 

time fixed effects, and included interaction terms. This introduces a fundamental problem with 

many fixed effects in linear models, which we discussed in some detail above. While tree 

algorithms are good at dealing with many features, conceptually, recall that our goal is to remove 

the structure all together. To do this we first cluster the data using a nearest-neighbors algorithm 

over a multi-dimensional space including latitude, longitude, number of bedrooms, number of 
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bathrooms, total rooms, the presence of a porch and/or basement, the presence of a garage, the 

number of stories in the structure, and the year the structure was built. This means that, within a 

given cluster, we are minimizing the variance of the properties over these dimensions.  

 Within a single cluster this process would generate a cluster that, for example, might have 

predominately three-bedroom, two-bathroom houses with a porch, basement, and garage all within 

a similar geographic location and built roughly in the same period. The implicit assumption using 

this method is that, within a confined geographic area, once we have a set of houses with nearly 

identical observable elements (e.g., number of bedrooms) then price is going to vary over two 

general dimensions: first, the size (measured in square footage of the house) and second, the land 

and location effects. Note that we did not include square footage in the clustering elements and 

thus, within the cluster, the model loads the price variation within that cluster for the structure 

specifically on the square footage of the house. Also note that we did not include acreage in the 

clustering elements and thus the types of plots these houses sit on is allowed to vary. 

  Conceptually, when we exclude land or the home square footage in the clustering 

algorithm, the within cluster variation is going come from the land itself (acreage) and the size of 

the structure, not its features (as we are already comparing homes with similar features within the 

cluster by design). So, while there is substantial heterogeneity in structure features in any given 

neighborhood, even in a development built by the same builder, a k-means clustering approach 

essential assembles geographic clusters of relatively homogenous homes that primarily vary on 

these other dimensions (size and acreage). For example, in California, the average standard 

deviation on the number of bedrooms within our k-means constructed clusters is less than ten 

percent that of the within cluster standard deviation of census blocks (0.065 versus 0.709), which 

we show in Table 1 below. For bathrooms, the generated clusters exhibit slightly more than ten 

percent of the average variation (0.065 versus 0.575). Thus, while characteristics like the numbers 

of bedrooms and bathrooms are common determinants of price differences, by reducing the 

variation along these dimensions and location, this approach allows for a more apples-to-apples 

comparison among properties within clusters than small geographic fixed effects like census tracts 

or block groups. One might think of this approach as similar to how a professional appraiser would 

select nearby “comparables” or “comps,” which may be outside one’s census tract, block, or even 

zipcode, but is still geographically close and contains very similar features.  
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 For each state-year we apply the gradient boosting algorithm above to the sales data with 

the estimating equation: 

𝑠𝑎𝑙𝑒𝑠𝑝𝑟𝑖𝑐𝑒 = 𝑓(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒, 𝑠𝑞𝑓𝑡, 𝑎𝑐𝑟𝑒𝑎𝑔𝑒, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 𝑦𝑒𝑎𝑟𝑏𝑢𝑖𝑙𝑡). 

Our location effects in this case are latitude, longitude, cluster, and year built; where year built is 

both an imperfect proxy for structure quality (depreciation) and potentially for the unobserved land 

amenities of the property (i.e., the flipside to the vacant land selection bias – land developed earlier, 

within a certain geographic location/cluster, likely has more positive unobservable amenities and 

infrastructure than properties built more recently in that area). While this is not strictly true as 

houses are rebuilt over time, thus resetting the development year, we think, on average, it is likely 

a reasonable proxy for these qualities.  

 To back out the structure value we then predict a new sales price based on a five percent 

increase in the square footage of the home and take the difference in prices to obtain the marginal 

value of the structure (conditional one being within a cluster of similarly featured homes). This 

price difference is then linearly extrapolated to the entire square footage of the property and the 

resulting structure value is subtracted from the sales price (predicted in the case of the assessment 

data). That is, 

𝑠𝑣𝑖 = 20(�̃�𝑖|𝑠𝑞𝑓𝑡+ − �̃�𝑖|𝑠𝑞𝑓𝑡) 

where 𝑠𝑣𝑖 is the structure value for the 𝑖𝑡ℎ property, �̃�𝑖|𝑠𝑞𝑓𝑡+ represents our predicted price with 

the marginal increase in square footage (holding all other features at their original values), and 

�̃�𝑖|𝑠𝑞𝑓𝑡 is the original predicted price based on observed square footage. This means that the land 

value is the difference between the original predicted price and the structure value, 𝑙𝑣𝑖 = �̃�𝑖|𝑠𝑞𝑓𝑡 −

𝑠𝑣𝑖.  To prevent negative land values, we-top coded the value of the structure at the full predicted 

price of the property.  

 To calculate the price-per-acre we divide the estimated land value, 𝑙𝑣𝑖, by the observed 

acreage for the property. For a property with land value 10,000 dollars that sits on 0.25 acres of 

land this would imply a price-per acre of $10,000/.25 𝑎𝑐𝑟𝑒𝑠 =  40,000 dollars per acre. We do 

this at an individual level so that we can then aggregate to any geographic level, 𝑗, by averaging 

over all properties in that unit, 𝑛𝑖∈𝑗
−1 ∑ 𝑝𝑝𝑎𝑖𝑖∈𝑗 . Since we formed our geographic fixed effects 
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through the k-means (data driven) process our clusters do not correspond to any fixed geographic 

unit (e.g., census tracts) and as a result within cluster measure of price-per-acre would not be 

comparable across standard geographies, this is the reason we have predicted price-per-acre at the 

individual property level. 

4.B  How do k-means clusters stack up against other spatial fixed effects?  

 While census tracts are designed with some geographic and population homogeneity in 

mind, the housing stock within these boundaries varies widely. Variation in data is not inherently 

a bad thing for price predictions; it is, however, problematic when there is a small number of sales. 

Specifically, in a given census tract or block group that has, for example, 50 sales in a given year 

– how many of those sales have precisely 4 bedrooms and 2.5 bathrooms (and have a pool, 

basement, etc.)? Thus, a census tract or block group, despite having “enough sales” may have only 

a couple good “comps” for appraisal/valuation purposes. A k-means cluster contains far more 

similar homes such that even if there are 50 sales in a given year, a much higher proportion of 

those homes will have very similar features. We see this in the data by comparing the standard 

deviation of a few important characteristics within our constructed clusters versus census block 

groups.   

 Table 1 shows that the average within cluster standard deviation of square footage for our 

constructed clusters is significantly less than that of the census tracts (two sample t-stat of -19.013) 

but is still substantial (i.e., we would expect there to be some correlation between the number of 

bedrooms or bathrooms and the overall square footage of the property, hence the decrease in 

variation).  This means that, while we have minimized the variation within cluster across elements 

such as number of bedrooms and bathrooms, we still have a significant amount of variation in the 

square footage of the structure to exploit to estimate the structure value in the gradient boosting 

model (within clusters). Additionally, Table 1 shows that the variation in acreage is larger in the 

generated clusters. This means that we are grouping houses with similar characteristics (number 

of bedrooms, bathrooms, etc.) across a wider range of plot and house sizes than one would find 

using traditional geographic fixed effects. Conditional upon the price predictions being better from 

the boosting approach, we might have more confidence the underlying decomposition of the 

components. 
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Table 1: Within Cluster Standard Deviation Summary Statistics (California Assessment Data) 

  Minimum First Quartile Median Mean Third Quartile Max 

Generated Clusters: Square Feet 206.9 328.8 451.1 440.7 526.4 812.2 

Generated Clusters: Acreage 0.052 0.178 0.242 0.256 0.340 0.548 

Generated Clusters: Bedrooms 0.000 0.035 0.245 0.264 0.425 0.857 

Generated Clusters: Bathrooms 0.000 0.104 0.212 0.237 0.370 0.840 

Census Block Group: Square Feet 0.000 346.6 441.1 474.4 578.5 1908.5 

Census Block Group: Acreage 0.000 0.030 0.057 0.132 0.156 1.311 

Census Block Group: Bedrooms 0.000 0.605 0.707 0.709 0.807 2.121 

Census Block Group: Bathrooms 0.000 0.458 0.571 0.575 0.683 2.121 

 

 Overall, this approach includes the individual characteristics and locational coordinates of 

each property in our feature set this clustering, which allows us to collapse the dimensionality and 

include only the cluster identifier. The assumption here is that within cluster variation from the 

omitted variables is very low and that the variation in price because of those characteristics is 

primarily captured in the between variation of the clusters. The number of clusters for each state 

is a function of the number of observations available in both the assessment and sales set and are 

time invariant. We explored several different numbers of clusters but settled on 𝑁1/3 number of 

clusters which gives us geographical units smaller than counties but larger than census tracts on 

average.21 The average number of clusters per state is 99 with the smallest number of clusters 

appearing in South Dakota (45) with the most appearing in California (184). The total number of 

clusters across all 36 states in the dataset is 3,574.22 The average number of properties in the 

average cluster (assessment set only) is 10,891. The centroids for each cluster are generated using 

a K-means algorithm (Kuhn & Johnson, 2013; Hastie, et al., 2017; and Chen et al., 2021 for a 

discussion). 

                                                           
21 For example, in California we have 184 clusters compared to 55 counties and 8057 census tracts. The top five 

clusters by sample size account for 706,869 observations out of a possible 6,402,740 in the assessment set. The top 

five largest clusters by geography account for a combined 165,441 acres while the five smallest account for 2028 

combined acres. The median acreage per cluster is 7,132.98 and the median number of properties within the cluster is 

29,071. 
22 For context, according to the U.S. Census Bureau there are 3,143 county and county equivalents in the 50 states and 

the District of Columbia (not including territories). Our data consists of 34 states and represents 1,855 of the possible 

3,143 counties.  There are 61,615 census tracts in the 34 states based on the 2010 census. 
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 To illustrate how our clusters compare to common geographic units we have plotted a 

county level map of Orange County, California in Figure 2. Orange County is as an example of a 

large county with a large variation in single family homes. The borders you see are those of the 

census tracts within Orange County, of which there are 582 (1,822 census block-groups). Note that 

in dense urban areas the census tracts are considerably smaller in surface area relative to suburban 

and rural tracts within the county. The points on the map represent the 530,533 unique single-

family residences in the county assessment data. These properties account for 92,035 acres of land 

out of the nearly 600,000 acres in the county.23 The points are colored according to their cluster 

membership, of which we have 47 clusters in the county. It is important to note that clusters are 

not confined to any individual tract and can be non-contiguous over the geography. Remember, 

we are minimizing distance over several attributes in the clustering matrix including latitude, 

longitude, total rooms, number of bedrooms, number of bathrooms, etc. and there is no requirement 

that the clusters remain contiguous in such a structure. In fact, the more alike the houses are within 

the cluster the larger the geographic range is allowed by the algorithm – which is not unlike how 

professional appraisers evaluate "comps.” Moreover, of the 47 clusters that appear in Orange 

County, a total of 46 of them have some observations in the cluster that appear outside Orange 

County. Despite their difference in location as measured by latitude and longitude the houses 

outside Orange County are highly like those inside.   

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
23 Note that we are focused exclusively on single family residences at this time. While we have data that covers other 

land types (e.g., commercial, dense urban dwellings, agricultural, etc.) those fall outside the purview of this study. 
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Figure 2: Clusters are not the same as tracts – an example from Orange County, CA 

 

Figure 2 Note: Here we have plotted a map of Orange County, CA with the corresponding census tracts. 

Each point on the map represents a property found in the assessment data set and it is color coded by 

assigned cluster. From this map it is easy to see that the data-generated clusters do not follow tract borders 

and often are overlapping, disjoint, and/or include multiple tracts. There are 47 clusters present in Orange 

County, CA as compared to 582 Census Tracts. 

   

5. Measuring Land Value in the Era of Big Data and Machine Learning: Some Results 

5.A. Comparing Gradient Boosted Trees to a Linear Hedonic Baseline - Evidence from RSME   

 Before we examine the resulting land values of these models, we first compare the accuracy 

of our prediction models by comparing the root-mean-square errors (RMSE) of our ML approach 

with our baseline hedonic approach adapted from Wentland et al (2020).24 In Figure 3 below, we 

have plotted the ratio of root-mean-square errors, 𝑒𝑡 = RMSEGBT,t/RMSELH,t  , produced by each 

model (Gradient Boosted Trees and Linear Hedonics respectively) for each state over a decade of 

data, from 2004 through 2015. This period covers much of the boom and bust in the US housing 

market, which provides tremendous variation in the data, which we view as a nice setting for this 

                                                           
24 There are a number of ways to compare models, but a common approach in this literature (e.g., Bencure et al 

(2019)) and the property appraisal literature more generally is to compare the RMSE.  
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kind of test. If 𝑒𝑡 = 1 then both models produce the same loss when predicting the sales price 

(though their predictions need not be the same at the individual). An 𝑒𝑡 > 1  implies that for the 

given state the linear hedonic model has lower loss in prediction than the gradient boosting 

alternative, and 𝑒𝑡 < 1 the opposite. The figure clearly shows that for all states in all time periods 

the predictions of the gradient boosted tree are better than that of the alternative (where, for an 

average state, the RMSE of the gradient boosted model was about a quarter of the hedonic model 

in most years). We view the clear and substantial improvement in RMSE for the ML model as a 

key result of the paper, documenting a particular advantage of the gradient boosting tree method 

for this key first step of land valuation.  

Figure 3. Gradient Boosted Trees Has Lower RMSE than Linear Hedonic Models 

 

Note: Here we have plotted the ratio 𝑅𝑀𝑆𝐸𝐺𝐵𝑇/𝑅𝑀𝑆𝐸𝐿𝐻 by state (dashed lines). The average ratio of 

RMSE across all states for each year is plotted by the solid black line. A value of one indicates that the two 

modeling methods produce the same loss on prediction. A value greater than one means that the Linear 

Hedonic model has a lower RMSE than that of the Gradient Boosted Trees while a value less than one 

indicates the opposite. 

 

5.B.  Comparing state-level results across methods 

 While we can aggregate to any level of geography using this approach, our initial analysis 

begins with states because, more practically, states are easy to compare in a single figure or table 

and they provide a quick sense of whether our models are on the right track because of the well-

known variation in property values (e.g., coastal states are generally higher valued, on average). 
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In Figure 4 we have plotted the resulting box plots showing the cross-state variation in each year 

for the price-per-acre estimate for the states in our dataset. Generally, for both methods, we see a 

familiar time-series pattern in the data over this time period, as the distribution of land values 

drifted upward in the boom of the mid-2000s and declined after 2007, coinciding with the real 

estate bust and subsequent recover into the 2010s.  

 We show the state-by-state values in the Appendix. Tables A and B in the Appendix include 

the land value for each state and year, measured as the price per acre, separately for the hedonic 

and machine learning models. Both models report significant variation in the estimated price per 

acre across the country. The estimates from the hedonic model range from low values in the 

$60,000s for Alabama to high values over $2 million for California. The machine learning 

estimates range from slightly smaller values in the $50,000s for Arkansas to almost $2 million in 

California. The estimates in both models reflect that state level trends in price per acre followed 

the boom and bust associated with the Great Recession. There is heterogeneity in how the price 

per acre adjusted along the business cycle, while states like Arizona, California, Florida, and 

Nevada experienced explosive growth up to 2007, followed by significant depreciation, other 

states like Kentucky, Missouri, and Pennsylvania were relatively flat in comparison.  

  Tables C and D contain the land value to home price ratios for each state and year from the 

hedonic and machine learning models. The value of land using the hedonic model is roughly half 

of the total price of the home. The ratio using the estimates from the machine learning model is a 

bit higher at 69 percent. Both of our estimates are considerably larger than the 32 percent average 

land value to price ratio in Davis et al (2021). Consistent with Davis et al (2021), it appears that 

land value is relatively more expensive during expansionary periods. For example, Florida, a 

posterchild for the housing bubble, experienced an almost 10 percentage point drop in the land to 

price ratio from 54 percent in 2006 to 44 percent in 2012 using the hedonic estimates and 15 

percentage point drop using the machine learning estimates (52 percent to 37 percent). Of the 

thirty-four states in the final sample, the state with the lowest average price-per-acre (as calculated 

using the GBT method) over the time periods available was Tennessee which has an average price-

per-acre of $79,517 ($6,443) while California provided the highest average price-per-acre at 

$1,189,564 ($287,360). In the linear hedonic model, the state with the lowest average price-per-

acre is Alabama at $71,487 ($8,731) though Tennessee is third at $82,247 ($8,710). California 



 

26 
 

again takes the top spot with an average price-price-acre of $1,728,107 ($340,856). The median 

state as measured by average price-per-acre over all the sample periods is Minnesota (using the 

GBT method) with a value of $342,981 ($51,629) and Nebraska (using the linear hedonic model) 

$224,961 ($32,244) respectively. 

Figure 1: Price-Per-Acre by Prediction Method at the State Level – Box Plot Distributions 

 

Note: This figure shows the distribution of the average price-per-acre at the state level over our 

sample period, comparing the land value results from machine learning method (blue) with the 

results from the baseline linear hedonic method (orange). 

 When we compare the distributions of the results across methods, in most cases the 

interquartile ranges appear to be relatively similar in width however the location of the predictions 

from the GBM are consistently higher than that of the linear hedonic model. This is bolstered by 

the medians, the GBT median is generally higher than that of the linear hedonic model. The entire 

distribution produced by the GBT method is locationally to the right of that produced by the linear 

hedonic model though it is less skewed as the outliers (e.g., California) have a substantially lower 

average price-price-per acre.25 

                                                           
25 Our plan is to have an online appendix where individual states can be evaluated based on price-per-acre, land-value-

ratio, and other metrics of interest by any interested parties. This will be in the form of tables, some of which you will 

find in Appendix (indicator), and interactive dashboards via Shiny in R. 
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 In Figure 5 we have plotted the intersection of both methods with estimates (or 

“experimental dataset”) produced by the U.S. FHFA, which can be found on their website (Davis 

et al 2021).26 Overall, the interquartile range of Davis et al. (2021) is narrower than the alternatives 

we have presented here, and the median is on the low end of the hedonic model interquartile range, 

and in some cases outside the interquartile range produced by the GBT method. Additionally, this 

comes with a change in the outliers as well. For example, estimates provided by the FHFA 

researchers in Davis et al. (2021) show that New York is the most expensive state as measured by 

price-per-acre with an average in 2013 of $1,634,500 dollars. In contrast, the price-per-acre 

estimates are significantly lower for the GBT model ($389,850 for sales set) and linear hedonic 

model ($356,288 for sales set).27 

Figure 2: Price-Per-Acre at the State Level – Box Plot Distributions Comparing Three Methods 

 

Note: This figure shows the distribution of the average price-per-acre at the state level over the 4 

year sample period that overlaps with Davis et al. (2021), comparing the land value results from 

machine learning method (blue) with the results from the baseline linear hedonic method (orange) 

and the Davis et al. (2021) method (gray). 

                                                           
26 Their dataset can be found here: https://www.fhfa.gov/PolicyProgramsResearch/Research/PaperDocuments/Land-

Prices_DLOS_2019_9Oct.xlsx 
27 For the assessment set the estimates provided by both models are $458,071 and $353,270 respectively. This could 

imply that there is a sampling difference between the data we use here and that used by Davis et al. 2021. 
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 Finally, we turn to a single state example to illustrate some important differences across 

methods and samples, which are not readily apparent in comparing the distribution of the results 

in the box plots above. Within a single state, we can see more intuitively the differences and 

similarities in the results. Figure 6 shows the time series for the average price per acre in California 

over our sample period, comparing all three methods. At first glance, we can that both the ML and 

hedonic approach show the dramatic boom and bust in land prices, which was particularly 

pronounced in California (known as one of the “sand states,” with Arizona, Florida, and Nevada, 

that were hit particularly hard during the real estate boom and bust). Both models show a peak in 

land prices in California in 2006 and a steep drop through 2009 and recovery thereafter (with the 

gradient boosted model shifted lower than the hedonic in this example state). The estimates from 

FHFA researchers and co-authors in Davis et al. (2021) corresponds with the slope of the recovery 

in land prices in both of our models. As shown in our Appendix tables, we should note that it is 

not always the case that our gradient boosted model is shifted lower than the hedonic estimates. 

The ML estimates are, in fact, often higher. However, while the price levels are shifted, we should 

note that in Figure 7, where we graph the land leverage (land-to-price ratio) for each method in 

California, we find more similar and somewhat less volatile results, indicating that land leverage 

in California over this period was somewhat more stable than land prices. 

 The comparison in Figure 6 also highlights another issue and an important feature of this 

data. What we usually find when we compare results within states, which is illustrated in this 

example, is that the sample matters. Specifically, if we calculate a price per acre using only the 

properties in the sales or transactions dataset in a given year, then we find a significant difference 

as compared to the same calculation applied to the universe of properties in the assessment set. 

Recall that the assessment set consists of virtually the universe properties, whether or not they sold 

in that particular year. The results from California show a consistent pattern when we apply this 

comparison to other states, which is that we often see a disproportionate amount of high quality 

homes (in terms of having better property characteristics) not on the market in any given year. This 

results in the sales data set often being shifted lower than the assessment set, as shown in this 

example. And, the size of this shift is not uniform over the time-series, with this issue become 

more pronounced at various points in the boom-bust cycle. Thus, a key feature of this kind of data 

is that we can weight the results to fit the more appropriate full sample of data. 
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Figure 3: Price Per Acre across Methods and Samples: California 

 

Note: Here we have plotted the time series of price per acre for the state of California. The dashed line indicates price 

per acre derived completely from the sales set. The solid line represents the price per acre derived from the assessment 

set. The differences in both the GBT and LH models across the different sets is due to a compositional change between 

houses that were on the market versus the universe of houses in California. The grey solid line for 2012-2015 

represents estimates provided by the FHFA research in Davis et al. (2021). 

Figure 7: Land to Price Ratio: California 

 

Note: Here we have plotted the time series of the land-to-price ratio. This is derived by dividing the estimated land 

value for each property by its predicted price and then averaging overall properties within the year. Again, the dashed 

line indicates a ratio derived from the sales set and the solid lines indicate ratios which originate with the assessment 

set. Estimates provided by the FHFA in Davis et al. (2021) for 2012-2015 are represented by the grey solid line. 



 

30 
 

Figure 8: County Level Price-per-Acre Variation: California 

 

Note: Here we have plotted the average price per acre (log) by county in California to highlight the geographic 

variation produced by the two methods. On the left is the linear hedonic model which has a much wider distribution 

of predicted sales prices for the assessment set. This leads to a larger difference in price-per-acre by county as 

compared to the Gradient-Boosted-Trees method with data driven clustering.  

 

6. Discussion  

 The results from this paper show that a machine learning (ML) approach to land valuation, 

using gradient boosting trees and k-means clustering techniques, provides tangible advantages over 

a more traditional linear hedonic method, like the one used by Wentland et al. (2020) or Kuminoff 

and Pope (2013), for example. Specifically, we find that the ML method substantially reduces the 

RMSE of the model prediction by as much as 75% on average, resulting in a markedly more 

accurate model fit. Because the hedonic approach depends on decoupling land value and structure 

value from this model, the ML land value is less encumbered by overall model-specific error, often 

yielding very different results. Moreover, because we employ a k-means clustering approach to 

geographic-based fixed effects, we document a new avenue for future researchers for avoiding the 

pitfalls of overfitting and arbitrary decisions to exclude certain observations from the sample 

because of the small-N fixed effects problem. We show that the k-means approach creates clusters 
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of comparable properties or “comparables” in ways that substantially reduce the within-cluster 

variation of key characteristics (which market participants use as shorthand to compare homes like 

bedrooms and bathrooms) to a far greater extent than traditional geographic-based fixed effects 

like census tracts or block groups.    

 An additional benefit of this research is that we show a proof-of-concept demonstration 

that an ML approach like the one we employ here can be used to produce land value results at any 

geographic level, including state or national estimates of land value, provided that the data covered 

a this domain. Wentland et al. (2020) and Nolte et al (2021) document a number of drawbacks to 

the Zillow ZTRAX dataset for the purposes of land valuation at a national level, with the main 

drawback being the limited availability of sale price data in some states. However, given that this 

is the “Era of Big Data,” we are hopeful that proprietary sources will adapt to be able to fill these 

gaps. If this were the case, we can easily extend the ML approach here, which we applied to single 

family residential land as a pilot, more broadly to all types of land (as in Wentland et al. (2020)), 

building a national estimate of land value from national data. Alternatively, we could use this data 

as a national sample in order to establish more precise land leverage (land-to-price ratio) estimates, 

which we could then apply to existing values in the accounts for total real estate values that include 

both structure and land value. The possibilities that this kind of data brings to the fore, with land 

valuation and other applications, are virtually endless; but, as we show in this paper, ML 

approaches can provide helpful tools in shaping this data into meaningful statistics.  
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Table A: Price Per Acre by State – Hedonic Model 

State 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Alabama 67,661 78,513 86,874 88,607 76,781 71,774 71,092 64,551 67,540 65,213 64,163 64,165 

Arizona 398,642 544,188 642,711 619,836 500,136 395,098 392,107 344,928 378,479 432,774 471,420 517,849 

Arkansas 90,970 97,960 103,444 93,959 81,429 69,211 72,112 74,583 77,373 80,708 75,537 74,973 

California 1,762,692 2,059,673 2,116,231 1,947,605 1,436,938 1,292,281 1,381,109 1,313,976 1,359,117 1,646,481 1,862,106 2,067,508 

Colorado 492,702 502,330 511,508 496,006 448,326 427,116 414,150 391,712 420,608 466,331 519,570 594,002 

Connecticut 257,919 286,823 297,033 288,134 259,639 231,017 226,030 213,646 199,691 200,130 202,641 205,407 

Delaware 271,490 329,041 382,684 613,781 700,412 477,382 337,815 316,748 303,100 331,729 349,729 387,283 

Florida 519,032 679,603 731,325 629,178 421,916 305,563 278,548 261,095 278,669 332,573 370,733 418,236 

Georgia 115,291 125,182 132,463 133,211 116,804 100,510 96,199 83,090 82,112 91,964 100,754 110,681 

Illinois 536,571 596,855 635,814 616,801 506,599 394,952 363,983 315,946 301,244 324,055 353,991 376,594 

Iowa 191,428 196,960 196,316 194,469 185,582 177,544 173,480 173,370 180,891 189,175 197,752 201,115 

Kentucky 115,900 104,630 107,965 111,682 109,237 107,550 104,313 103,887 104,093 108,200 107,360 113,845 

Maryland 395,660 481,084 517,256 511,203 448,615 394,129 366,544 349,831 350,905 367,872 379,356 380,870 

Massachusetts 398,578 428,722 413,147 384,358 340,322 318,401 319,083 296,774 286,129 301,805 275,564 278,672 

Michigan 286,350 285,110 263,584 217,658 159,483 137,701 150,729 129,357 116,554 175,932 188,313 169,004 

Minnesota 331,458 350,504 340,743 322,543 272,508 251,239 255,711 226,246 228,707 244,454 262,161 273,991 

Missouri 173,347 173,418 173,113 165,284 147,895 141,474 144,134 139,625 140,634 134,505 132,496 94,282 

Nebraska 264,487 279,979 186,202 185,650 177,147 212,641 206,701 210,979 224,583 228,676 240,974 251,973 

Nevada 943,303 1,156,121 1,044,245 930,945 680,932 525,338 502,971 431,045 437,633 628,813 660,709 696,212 

New Hampshire 174,058 186,307 184,634 176,263 154,271 137,567 135,385 129,026 134,599 135,543 139,380 151,855 

New Jersey 672,518 777,788 809,282 775,769 685,257 615,577 598,401 565,547 539,139 542,656 556,822 574,668 

New York 386,557 421,050 448,867 444,223 424,686 384,568 368,058 347,981 346,194 353,270 357,956 378,649 

North Carolina 109,939 125,363 138,999 148,649 140,097 130,240 117,448 113,275 113,399 123,537 129,361 137,632 

Ohio 169,961 172,666 167,761 152,688 129,094 123,177 117,232 104,956 103,673 107,089 113,919 116,451 

Oklahoma 100,037 123,140 142,610 151,300 149,652 144,395 131,493 130,004 142,291 146,970 160,168 161,673 

Oregon 372,910 443,761 520,317 542,400 502,488 437,272 416,797 386,070 383,821 420,665 447,893 492,129 

Pennsylvania 242,815 264,246 275,702 281,454 263,843 281,536 291,700 281,052 271,790 262,057 257,530 278,184 

Rhode Island 401,351 452,521 449,080 417,715 356,544 306,963 297,839 303,865 392,583 381,315 319,768 327,818 

South Carolina 117,790 130,176 129,535 118,855 108,091 97,610 89,280 77,748 89,361 99,819 105,366 103,367 

Tennessee 80,613 82,731 88,102 86,087 84,269 78,009 76,208 71,232 69,491 76,206 82,084 92,676 

Virginia 223,624 255,320 265,429 255,846 220,918 205,046 204,573 191,783 198,547 205,669 212,670 215,294 

Washington 401,048 470,249 545,507 563,033 514,253 447,977 426,711 383,135 387,486 409,254 442,843 472,462 

West Virginia 68,819 76,289 84,422 89,413 84,461 82,602 81,006 79,074 77,910 80,470 81,089 95,027 

Wisconsin 352,054 411,437 431,035 427,441 382,661 347,877 335,229 310,976 304,808 316,626 323,281 322,151 

 

Source: Zillow ZTRAX 

Notes: Estimated price per acre are calculated as the total land value from the hedonic model divided by the total SFR acreage in a given 

state/year.  
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Table B: Price Per Acre by State – Machine Learning Model 

State 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Alabama 94,265 102,652 104,488 97,990 * 83,809 * * * * * 82,245 

Arizona 353,318 499,882 592,405 568,575 436,841 351,782 314,388 283,735 316,855 346,377 379,111 422,865 

Arkansas 269,177 73,593 80,486 * 68,802 68,102 65,684 63,423 65,813 61,419 65,688 72,657 

California 1,232,957 1,453,698 1,529,099 1,489,088 954,586 810,719 911,471 830,229 941,995 1,191,358 1,381,994 1,547,576 

Colorado 565,486 550,610 599,142 600,011 528,381 520,717 530,411 516,321 559,906 601,071 687,517 784,546 

Connecticut 410,203 457,122 469,992 471,484 440,271 401,069 384,486 382,568 365,322 375,834 379,580 375,653 

Delaware 298,429 362,680 352,300 379,788 380,914 347,825 317,348 318,742 319,311 327,386 328,871 * 

Florida 357,946 447,000 481,620 459,532 348,339 233,498 221,837 212,457 198,239 250,881 267,669 322,637 

Georgia 135,455 144,426 142,886 138,554 122,100 111,929 106,552 91,659 92,204 115,762 124,891 128,513 

Illinois 607,710 675,773 697,098 683,757 563,145 462,828 462,286 403,300 407,266 441,702 470,530 503,335 

Iowa 198,662 207,107 204,456 200,681 216,137 204,740 215,219 201,497 218,723 218,237 212,443 216,896 

Kentucky 169,505 147,233 138,651 144,928 136,747 133,067 121,428 117,285 119,968 136,950 137,344 130,172 

Maryland 406,561 525,680 555,829 550,915 489,141 428,631 396,524 366,312 392,529 410,887 420,427 433,635 

Massachusetts 539,641 571,560 557,598 523,262 486,990 464,625 468,657 429,509 367,506 373,239 399,859 393,210 

Michigan 249,116 244,522 230,351 205,537 158,276 157,121 148,120 125,951 122,151 148,415 158,589 169,893 

Minnesota 386,191 424,104 402,261 393,631 337,420 295,134 292,710 266,717 284,641 323,919 347,568 361,478 

Missouri 209,870 228,538 234,794 215,469 216,339 218,162 193,171 184,848 197,657 185,177 194,183 161,381 

Nebraska 293,646 247,626 220,211 224,023 222,268 225,605 227,306 202,115 225,760 238,153 228,365 238,218 

Nevada 730,447 790,921 814,112 729,788 537,406 399,103 360,973 324,971 320,454 387,599 453,916 522,347 

New Hampshire 212,893 227,609 229,242 207,513 185,927 169,749 174,852 157,583 168,083 172,323 189,562 205,041 

New Jersey 534,488 608,002 581,551 573,602 520,569 498,640 451,397 437,928 423,983 400,542 * 444,126 

New York 384,033 432,691 468,417 465,997 449,116 395,086 417,583 379,165 406,437 396,020 426,327 429,378 

North Carolina 117,506 142,710 144,416 142,179 133,018 129,243 116,109 116,404 122,294 132,242 130,346 134,495 

Ohio 168,021 175,262 158,721 151,761 137,580 133,907 120,843 118,344 108,176 111,783 117,575 124,793 

Oklahoma 109,160 120,339 126,426 121,945 113,308 111,614 109,842 120,965 109,847 105,871 118,078 107,029 

Oregon 415,979 490,205 573,937 585,527 526,985 472,079 435,657 416,207 422,523 458,817 506,153 565,826 

Pennsylvania 239,448 262,641 294,350 299,038 317,931 278,538 278,874 220,409 208,998 213,633 212,325 226,530 

Rhode Island 460,908 513,766 526,490 519,857 431,134 362,398 387,249 347,527 361,055 364,555 372,273 392,897 

South Carolina 132,221 144,548 148,209 148,552 128,650 132,533 127,558 119,406 122,562 127,218 130,433 148,404 

Tennessee 77,276 82,921 91,886 87,147 78,886 74,772 78,788 70,746 73,435 73,527 77,994 86,823 

Virginia 318,225 377,755 371,783 354,321 327,633 328,487 294,722 300,704 * 316,203 328,599 346,144 

Washington 418,180 561,043 746,451 580,712 518,697 439,725 427,594 390,423 * 446,029 465,635 548,575 

West Virginia 146,952 139,262 144,533 148,925 139,760 134,649 118,294 119,936 119,331 123,197 127,453 165,410 

Wisconsin 411,739 422,002 402,166 410,443 371,308 358,068 347,862 287,756 281,325 324,789 324,466 343,195 

 

Source: Zillow ZTRAX 

Notes: Estimated price per acre are calculated as the total land value from the machine learning model divided by the total SFR acreage in a given 

state/year. * represents omitted, outlier estimates that are based on small cells or erroneous data (as the ML approach was not culled with the same 

filter as the linear hedonic estimates). 
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Table C: Land Value to Price Ratio by State – Hedonic Model 

State 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Alabama 51% 43% 42% 40% 37% 36% 36% 36% 35% 30% 32% 33% 

Arizona 51% 53% 54% 56% 58% 58% 57% 55% 54% 52% 54% 57% 

Arkansas 58% 64% 58% 51% 46% 45% 58% 58% 63% 55% 58% 40% 

California 65% 65% 65% 65% 63% 63% 62% 61% 60% 60% 60% 61% 

Colorado 57% 57% 55% 54% 52% 50% 49% 48% 49% 49% 50% 51% 

Connecticut 50% 50% 50% 49% 47% 45% 44% 43% 41% 40% 41% 41% 

Delaware 35% 62% 60% 61% 62% 65% 60% 61% 58% 58% 59% 61% 

Florida 53% 54% 54% 53% 50% 47% 45% 45% 44% 46% 45% 46% 

Georgia 40% 48% 46% 45% 44% 43% 42% 41% 39% 39% 40% 40% 

Illinois 55% 58% 58% 56% 53% 50% 47% 44% 43% 42% 42% 43% 

Iowa 42% 61% 56% 54% 52% 50% 49% 49% 48% 48% 48% 47% 

Kentucky 48% 43% 46% 48% 44% 43% 43% 42% 40% 40% 38% 39% 

Maryland 59% 60% 60% 66% 60% 59% 58% 56% 55% 54% 54% 54% 

Massachusetts 55% 55% 54% 53% 51% 50% 50% 48% 47% 41% 56% 59% 

Michigan 66% 63% 60% 56% 53% 49% 46% 43% 43% 44% 43% 41% 

Minnesota 51% 52% 50% 51% 50% 51% 50% 47% 44% 44% 45% 45% 

Missouri 43% 46% 52% 44% 46% 45% 46% 50% 49% 46% 46% 44% 

Nebraska 51% 51% 49% 46% 43% 48% 47% 47% 47% 48% 48% 47% 

Nevada 73% 71% 61% 60% 60% 62% 59% 56% 56% 64% 61% 60% 

New Hampshire 57% 57% 56% 56% 54% 53% 52% 52% 51% 49% 49% 50% 

New Jersey 64% 65% 64% 64% 62% 62% 59% 58% 60% 58% 51% 61% 

New York 64% 64% 64% 63% 64% 62% 61% 60% 59% 58% 58% 58% 

North Carolina 40% 43% 44% 45% 44% 43% 40% 39% 39% 40% 41% 41% 

Ohio 58% 58% 58% 56% 54% 52% 49% 46% 44% 43% 42% 41% 

Oklahoma 34% 46% 51% 52% 50% 48% 45% 46% 49% 48% 49% 45% 

Oregon 56% 59% 59% 59% 59% 58% 58% 58% 56% 54% 53% 54% 

Pennsylvania 62% 57% 58% 58% 57% 58% 59% 59% 56% 54% 53% 53% 

Rhode Island 56% 57% 57% 56% 55% 54% 52% 54% 53% 51% 49% 49% 

South Carolina 48% 51% 47% 42% 39% 38% 35% 34% 36% 38% 36% 35% 

Tennessee 46% 43% 43% 41% 42% 41% 41% 39% 37% 39% 39% 41% 

Virginia 25% 27% 27% 28% 50% 43% 43% 42% 43% 41% 38% 39% 

Washington 59% 59% 59% 57% 56% 55% 56% 54% 53% 51% 51% 49% 

West Virginia 44% 48% 51% 55% 53% 53% 40% 39% 36% 39% 37% 38% 

Wisconsin 85% 68% 67% 67% 64% 62% 60% 59% 57% 56% 54% 52% 

 

Source: Zillow ZTRAX 

Notes: Estimated land value to price ratio are calculated as the total land value from the hedonic model divided by the total predicted price in a 

given state/year. 
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Table D: Land Value to Price Ratio by State – Machine Learning Model 

State 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Alabama 62% 63% 59% 56% * 54% * * * * * 46% 

Arizona 58% 68% 63% 62% 62% 61% 58% 60% 61% 59% 58% * 

Arkansas 57% 55% 52% 51% 49% 42% 43% 42% 37% 42% 41% 46% 

California 51% 53% 49% 47% 45% 46% 45% 43% 44% 50% 49% 47% 

Colorado 67% 70% 68% 66% 60% 58% 60% 56% 58% 58% 56% 59% 

Connecticut 65% 64% 59% 57% 60% 58% 62% 58% 60% 57% 53% 51% 

Delaware 66% 56% 50% 53% 50% 50% 45% 44% 44% 48% 47% 43% 

Florida 64% 67% 65% 66% 65% 64% 62% 59% 62% 62% 62% 63% 

Georgia 78% 77% 76% 74% 75% 76% 75% 72% 77% 82% 82% 80% 

Illinois 64% 61% 58% 56% 52% 60% 55% 49% 49% 49% 48% 48% 

Iowa 65% 69% 65% 65% 64% 63% 62% 59% 59% 62% 63% 60% 

Kentucky 53% 60% 61% 56% 60% 63% 57% 57% 60% 56% 58% 68% 

Maryland 74% 68% 56% 58% 58% 53% 54% 49% 52% 52% 47% 46% 

Massachusetts 57% 52% 51% 50% 50% 48% 45% 45% 43% 43% 45% 48% 

Michigan 71% 71% 71% 66% 65% 66% 68% 63% 65% 64% 67% 69% 

Minnesota 55% 55% 50% 50% 48% 52% 47% 48% 47% 43% 65% 45% 

Missouri 64% 65% 67% 66% 67% 63% 67% 61% 66% 62% 63% 62% 

Nebraska 44% 49% 47% 44% 43% 44% 41% 42% 44% 46% 44% 42% 

Nevada 60% 62% 56% 57% 57% 58% 52% 53% 47% 46% 45% 45% 

New Hampshire 48% 51% 53% 53% 52% 53% 49% 48% 48% 45% 46% 48% 

New Jersey 46% 48% 48% 44% 40% 39% 39% 43% 38% 36% 37% 34% 

New York 67% 68% 69% 67% 65% 65% 63% 65% 64% 62% 64% 66% 

North Carolina 60% 62% 66% 66% 71% 67% 68% 57% 54% 54% 53% 55% 

Ohio 66% 67% 69% 70% 67% 65% 69% 67% 67% 65% 64% 65% 

Oklahoma 59% 58% 54% 52% 47% 53% 52% 51% 52% 50% 48% 50% 

Oregon 46% 45% 47% 43% 40% 40% 43% 39% 40% 38% 38% 39% 

Pennsylvania * 57% 56% * 48% 51% 48% 48% 47% 43% 46% 45% 

Rhode Island 61% 62% 58% 58% 61% 65% 58% 61% * 58% 58% 60% 

South Carolina 63% 73% 84% 62% 60% 57% 57% 56% * 57% 55% 59% 

Tennessee 72% 69% 67% 68% 65% 65% 58% 59% 56% 57% 56% 62% 

Virginia 70% 72% 66% 66% 63% 64% 63% 55% 53% 58% 56% 56% 

Washington 63% 63% 64% 66% 58% 56% 59% 56% 59% 61% 63% 65% 

West Virginia 64% 63% 65% 64% 60% 62% 62% 64% 64% 64% 66% 69% 

Wisconsin 81% 81% 81% 80% 80% 81% 77% 79% 77% 79% 79% 79% 

 

Source: Zillow ZTRAX 

Notes: Estimated land value to price ratio are calculated as the total land value from the machine learning model divided by the total predicted 

price in a given state/year. * represents omitted, outlier estimates that are based on small cells or erroneous data (as the ML approach was not 

culled with the same filter as the linear hedonic estimates). 


