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Abstract

We study time-consistent bank resolution mechanisms. When interventions are
ex post efficient, a government cannot commit not to inject capital into the banking
system. Contrary to common wisdom, we show that the government may still avoid
moral hazard and implement the first best allocation by using the distribution
of bailouts across banks to provide ex ante incentives. We analyze properties
of credible tournament mechanisms that provide support to the best performing
banks and resolve the worst performing ones, including through mergers. Our
mechanism continues to perform well when banks are heterogeneous in size, when
they are imperfect substitute, and when they are differentially interconnected as
long as bailout funds can be earmarked.
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Governments often bail out large financial firms during financial crises because they
perceive that the economic costs of letting these firms fail exceed the fiscal costs of the
bailouts themselves. This recurrent issue came to a head during the global financial
crisis (GFC) of 2008-2009 because of the magnitude and scope of the bailouts. In
the aftermath of the Great Recession, governments pledged to end the “too-big-to-fail”
problem, and G20 Leaders endorsed the global implementation of a set of reforms for
systemically important banks (SIBs). These financial stability reforms rely on three
pillars: capital requirements (and other forms of loss absorbing capacity), enhanced
supervision, and resolution regimes. The reforms have achieved significant progress along
the first two dimensions. Capital requirements have roughly doubled and the supervision
of large banks has become tighter (Financial Stability Board, 2021). These evolutions
are somewhat uneven across jurisdictions, but regulators and market participants view
banks as significantly safer than before the GFC.

The same cannot be said, however, of the third pillar: resolution regimes. Despite
10 years of efforts, there is still no consensus about the ability of governments to resolve
large banks during times of economic stress. The root of the skepticism is that one
cannot expect policy makers to let a majority of banks – or even a significant number
of large ones – fail at the same time. As a result, the argument goes, the expectation of
bailouts will remain and will continue to distort funding costs and to feed moral hazard.

We argue that this skepticism is misplaced. More precisely, while we agree with
the premise (letting several large banks fail is not a realistic option), we show that the
pessimistic conclusion does not follow. The logic of the standard argument is flawed in
two ways. Firstly, it assumes that if regulators cannot let a majority of banks fail then
no bank can fail at all. Secondly, it assumes that private incentives depend only on the
average level of the bailout. We show that both arguments are incorrect.

The main idea of our paper is to apply the logic of tournaments to the issue of too-
big-to-fail in the context of imperfect resolution regimes. We assume that it is impossible
for governments to credibly commit not to intervene to support the financial sector as a
whole during a crisis. However, this does not mean that the government has to support
every bank in the same way. Time consistency might pin down the size of the bailout
but it does not generally pin down its distribution, and the distribution of bailout funds
(or taxes) matters for incentives.

We write a simple model where bailouts can be ex post efficient because of a neg-
ative externality on the real economy when the financial system is undercapitalized.
Bailout anticipations affect the incentives of banks to engage in costly risk mitigation
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strategies ex ante. When we assume, as in the existing literature, that bailout funds
are distributed in a symmetric way across banks, we obtain the standard moral hazard
results: bailouts inefficiently increase risk taking as in Chari and Kehoe (2016), create
strategic complementarities across banks’ risk management choices as in Farhi and Ti-
role (2012), and the situation is worse the deeper the pockets of the government. This
line of argument strongly calls for limiting the funds available for bailouts and tying the
hands of regulators ex post to the extent possible.

To establish our first main result we use the systemic risk model of Acharya et al.
(2016) where the negative externality on the real economy depends on the aggregate
capital shortfall in the banking system. In this case the optimal bailout takes the form
of a weakly increasing functionM (K −R) whereK is the aggregate capital requirement
and R the aggregate return. With N banks, time consistency requires that the set of
bailout payments satisfies

∑N
i=1mi = M (K −R) for any value of R =

∑N
i=1 ri. This

places no restrictions of the distribution of {mi} around its mean. In stark contrast to
the conventional results, we then show that we can implement the first best equilibrium
by conditioning government support on a relative performance mechanism such as a
rank-order tournament, in which banks performing above the median get a higher m
than banks performing below the median. The scheme is fully time consistent since it
takes as given the overall size of the bailout. Punishing the banks that perform poorly
while rewarding those who perform well works because, despite knowing that the median
bank will be saved, each individual bank strives to make sure it does not end up in the
lower half. This race to the top generate first best ex ante incentives for all the banks.

The optimal contract requires punishment of bad banks. When we extend our model
by adding limited liability constraints, we find that the common wisdom regarding deep
pockets is overturned. We show that the set of implementable policies improves mono-
tonically with fiscal slack. The more slack, the more incentives the government can pro-
vide, the less moral hazard, and with enough slack the first best is always implementable
despite limited liability. When the limited liability constraint binds, our model offers a
macro-prudential justification for increasing TLAC requirements and also for mandat-
ing clawback provisions in executive compensation contracts. The reason is that these
contracts reduce the tightness of the constraint and therefore increase the range of time
consistent outcomes. For the same reason, we show that although the fire sales that
occur during systemic crises must be met by larger bailouts, they also make it easier to
provide ex ante incentives. Fire sales hurt the outside options of weak banks relative to
the transfers proposed by the regulator. Reducing bank leverage improves risk-taking
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incentives when fire sales discount are deep enough.
Our baseline framework assumes that banks are highly substitutable, in the sense

that capital surpluses in one bank can compensate for capital shortfalls in another. We
show that this pure systemic risk model can be viewed as the optimal outcome of a
process that allows the resolution authority to merge banks at a low cost. If healthy
banks can absorb the assets and customers of any failing bank, then only the aggregate
capital of the sector matters. If the social cost of mergers is too high, however, bailouts
become more attractive, which spurs moral hazard.

We next study a model where banks are imperfect substitutes, for instance because
of soft information, specialization across activities and locations, or market power. Lack
of substitution worsens the time-inconsistency problem as each individual bank knows
it will be partly insured against its own poor returns to the extent that it would be
costly for other banks to pick up the slack. We introduce the concept of ε-commitment
to ensure continuity of the limit of mechanisms. A mechanism is ε-credible if welfare
deviates by less than ε from its ex post optimum. We can then recast our first result
in more general terms. We show that the ‘size’ of the set of implementable outcomes
is proportional to εη where η is the elasticity of substitution between capital surpluses
located in different banks. The Acharya et al. (2016) loss function assume η =∞ which
is why the first best is always implementable without any commitment. On the other
hand, when η is small, the first best is not implementable in the usual (strong) time
consistent fashion.

When banks are differentiated, however, the notion of renegotiation-proof mech-
anisms in Fudenberg and Tirole (1990) becomes quite appealing. If the government
promises a set of transfers, banks can block a deviation that would leave them worse off.
Under this weaker form of time consistency the government can choose among Pareto
optimal allocations. The government cannot directly commit to punish weak banks but
it can commit not to renege on its promised support to well-performing banks. The core
time-inconsistency problem is still present but our tournaments can once again imple-
ment the first best level of safety, albeit at a higher cost (that is, larger bailouts) than
in the case of perfect bank substitutability. Numerically, we find that the cost decreases
rapidly towards the first best cost as banks become more substitutable.

Finally, we consider a different form of heterogeneity, arising from financial linkages
between banks that generate comovement in returns. These linkages capture a variety
of “contagion” forces, such as cross-exposures, fire sales, or domino effects, as studied
in the financial networks literature. We show how contagion leads to a natural notion
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of systemic risk: banks are more systemic when their performance has a stronger effect
on the rest of the system. In turn, more systemic banks should act more prudently,
and so a resolution mechanism must strive to give them stronger incentives. Ex post,
however, the government may consider highly systemic banks “too interconnected to fail”
(Haldane, 2013). Our main finding is that the constraints that financial linkages impose
on bank resolution depend crucially on how bailout funds attributed to one bank spill
over to other banks.

If a form of “ring-fencing” or earmarking applies to public funds and bailout money
cannot flow throughout the system to benefit other banks indirectly, our tournament
mechanism remains credible and efficient under minor amendments. A bank’s rank in
the tournament is determined by its ex post performance, as in the baseline model, but
now weighted by its systemic risk. On the other hand, moral hazard comes back when
earmarking public funds is not possible. Spillovers reduce ex post intervention costs
to the extent that injecting money in one bank can also stabilize other banks. The
problem, however, is that spillovers make it ex post optimal to always save the most
systemic bank first. That systemic bank is completely insured and thus maximizes its
risk-taking. Our model thus shows the importance of earmarking public funds and of
limiting safe harbor provisions for interbank liabilities.

Related literature Bailouts are risky bets. Some succeed, some drag down the
sovereign, as shown in Acharya et al. (2014). There is ample theoretical and empiri-
cal support for the idea that the expectation of bailouts distort incentives and create
moral hazard. Kelly et al. (2016) show that the key factor affecting the pricing of finan-
cial crash insurance is the extent of collective government guarantees. Dam and Koetter
(2012) find that a change of bailout expectations by two standard deviations increases
the probability of official distress.

Our main contribution is to show how to use the classic rank-order tournament
mechanisms of Lazear and Rosen (1981) to overcome the pervasive time inconsistency
problem that generates or worsens moral hazard in bank risk-taking (Farhi and Tirole
2012, Keister 2016, Chari and Kehoe 2016).

Our results differ from existing results in the literature in two important ways. The
first difference centers around commitment and tournaments. Chari and Kehoe (2016)
study an economy where a utilitarian planner distorts an ex post allocation which is
otherwise a Pareto optimum. Chari and Kehoe (2016) thus assume an extreme form of
lack of commitment which would be solved by a renegotiation-proof mechanism (Fuden-
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berg and Tirole, 1990). Farhi and Tirole (2012), on the other hand, study a model with
symmetric banks and consider only symmetric contracts, which rule out tournament
incentives.

Second, the literature argues that the moral hazard problem is worst in countries
with ample fiscal space: the narrative is that if banks expect the sovereign to be able to
bail them out even in deep crises, they have no reason to self-insure. We find that fiscal
capacity has the opposite effect once richer mechanisms such as ours are used. Since a
sovereign with larger fiscal capacity is able to transfer a larger amount to the banking
sector as a whole, it also has more flexibility in the distribution of transfers across banks,
which tends to relax incentive constraints and reduce moral hazard.

Keister and Mitkov (2021), Dewatripont and Tirole (2018), and Clayton and Schaab
(2021) study the design of bail-in policies; we simplify the capital structure side by con-
sidering only two classes of liabilities, hard deposits and “total loss absorbing capacity”
including equity and bailinable debt. Our extension to financial contagion relates to
the work of Demange (2020) on resolution among interconnected banks. Our paper also
relates to the strategic substitutability among banks during ex post fire sales, and the
resulting ex ante incentives to build financial resilience, as in Perotti and Suarez (2002),
Acharya and Yorulmazer (2007), or Malherbe (2014). Instead of considering strategic
substitutability driven by a competition for cheap assets, we show how a well-designed
competition for government support can implement efficient ex ante safety. Acharya
and Yorulmazer (2008) also show that liquidity support to surviving banks instead of
failed ones improves banks’ incentives to differentiate their exposures rather than to
herd. Our approach relates to Kasa and Spiegel (2008), who show that using relative
instead of absolute performance evaluation in bank closures can reduce costs. Unlike
us, they do not consider how a tournament-like mechanism can implement the first best
risk-taking. They also assume that regulators can fully commit, while our core insight
is that tournaments mitigate the time-consistency problem.

We abstract from the dynamic dimension of crises, but uncertainty and learning
would only reinforce our results. Nosal and Ordonez (2016) show that uncertainty about
the severity of the crisis can prompt governments to delay bailouts until it becomes clear
that the crisis is systemic. This in turn gives banks incentives to make sure they survive
until the government intervenes. Instead of focusing on how exogenous uncertainty
improves incentives, we show that even in a perfectly known systemic crisis—hence even
when bailouts are inevitable—the government can still optimally design asymmetric
transfers to reach the first best safety.
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1 A Model of Systemic Crises And Government Inter-

ventions

We present our baseline environment before defining the first best allocation. The key
feature of our model is that banks decide how much risk to take, anticipating government
support policies in case of a systemic crisis that hits many banks at the same time.

1.1 Environment

We consider a two-period model with N ≥ 2 banks and a “government”, that should
be viewed as combining fiscal and monetary authorities. At t = 0, the government an-
nounces a bailout rule mapping realized returns on banks’ assets to government transfers,
as described below. Each bank then chooses and safety investment xi ∈ [0, 1]. Uncer-
tainty is resolved at time t = 1. Uncertainty consists of aggregate as well as bank
specific shocks. We define state s = 0 as the normal state and the states s 6= 0 as the
crisis states. The probability of the normal state is P [s = 0] = p0. The crisis states are
distributed on some compact set S so that

∫
S psds = 1− p0.

Banks. At time 0 banks have assets a and deposits with face value d due at time 1.
We denote by rsi the gross asset return of bank i in state s at time 1 and by mi,s the
cash injection from the government. Table 1 shows the balance sheet of bank i at time
1.

Table 1: Balance Sheet
Assets ai Liabilities

Gross Value riai TLAC ei
Deposits di

TLAC means total loss absorbing capacity and denotes the sum of equity (tier 1) and
other loss absorbing capacity such as junior unsecured bailinable bonds. Our model has
nothing new to say about of ex ante capital requirements or differences in asset liquidity.
We therefore lump the various layers of TLAC into one category that we call capital,
and we lump all assets returns into one category that we call gross value, or output.1

1Keister and Mitkov (2021) study the interaction between private incentives to bail in investors and
public incentives to bail them out. Similarly, Dewatripont and Tirole (2018) endogenize the composition
of liquid and illiquid assets.
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We say that a bank is well capitalized when ei ≥ eai or equivalently ri ≥ ri = di/ai+e,
and its capital surplus is then ei − eai. This notion of well capitalized is defined in the
welfare function below. Banks maximize expected capital returns net of transfers. The
gross returns are given by

rsi =

f (xi) + ξi with probability p0

ri,s ∼ G (. | xi, s) with probability ps
(1)

The shocks ξi are positive (hence f (xi) is the minimum gross return in normal times)
and i.i.d. across banks and the crisis returns ri,s are bounded. The expected return in
the normal state f is decreasing, bounded, and concave over [0, 1] and attains a strict
maximum at 0. The shock s is common to all banks. The cumulative distribution
G (xi, s) of the return ri,s is ranked by stochastic dominance.2

Assumption 1. G (r | xi, s) is decreasing and continuously differentiable in x for all r.

The function f thus captures the risk/return tradeoff that banks face. Banks can
improve their crisis return by increasing x, at the cost of lower returns f(x) in normal
times. The maximal risk banks can take, x = 0, leads to a highest expected return f(0)

in the good state but the worst exposure in crisis states.

Government. The government observes the aggregate state at time 1 as well as the
banks’ returns ri,s. We will normalize the parameters of the model so that the normal
state is indeed normal, i.e, no crisis and no bailout. The government’s ex post value

V ({ei, ai}i=1..N)

is concave and weakly increasing in ei, decreasing in ai. To simplify the notations we
often write V {ei} since {ei}i=1..N are the only random parts of the function, but the
function itself also depends on ai and the parameter e. Finally, V is flat at its maximum
when all banks are well capitalized: V = V̄ when ei ≥ eai for all i = 1..N . This
defines what we mean by a “well capitalized” banking system. Our formulation based
on a general value function V encompasses multiple (and non-exclusive) frictions that

2In Section 6 we will allow the distribution of ri,s to depend on other banks’ safety investments xj
as well.
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arise when bank capital is low, even when banks are still solvent. We discuss micro-
foundations for V below in terms of runs and credit crunch.

The government has the option to mitigate the consequences of financial distress by
implementing transfers {mi,s}. The total cost M =

∑
imi,s is subject to a shadow cost

of public transfers Γ (M ; γ) which is positive, weakly convex and strictly increasing for
all M > 0. We index the cost of funds to γ ≥ 0 which measures the inverse of fiscal
slack. The function Γ (M ; γ) is increasing in γ and super-modular in (M,γ). Ex ante
aggregate welfare is thus defined as

E [R + V {ei,s +mi,s} − Γ (Ms; γ)] . (2)

where R =
∑

i airi,s is the random aggregate asset return.

Discussion of Assumptions The results of the paper do not depend on the specific
friction that gives rise to the welfare value V , but for concreteness we provide examples
of micro-foundations in Appendix A. Broadly speaking, two classes of models can deliver
the welfare function specified above. The first class includes models of runs (Diamond
and Rajan, 2012). A bank with low equity (but still potentially solvent) may face the risk
of a run, unless it restructures part of its debt; restructuring, however, can trigger money
market disturbances (further runs, as we saw after the collapse of Lehman Brothers).

The second class includes models of credit crunch (Myers, 1977; Holmström and
Tirole, 1997; Philippon and Schnabl, 2013). In these models, a new investment op-
portunities arises at date-1, but limited pledgeability (or other frictions such as debt
overhang) prevents solvent banks from investing at the efficient scale unless they bring
enough equity/liquidity into the period. The welfare cost in models of runs comes from
fire sales (Stein, 2012) or from the inefficient liquidation of existing assets. In models of
credit crunch the welfare cost arises from inefficiently low investment in new projects.
Both costs are clearly relevant and the Appendix shows how each maps into a welfare
function V .3

We wish to focus our analysis on the issue of systemic risk, not on the pricing of
deposit insurance. We therefore assume

3One advantage of using a welfare function V is to highlight the key feature that is not typically dis-
cussed in micro-founded models. As our analysis makes clear, the critical feature is the substitutability
of capital between banks with a shortfall and banks with a surplus. In a credit crunch model, then, the
key feature is whether bank 1 can lend to the customers of bank 2, either directly or after a merger when
bank 2 is distressed. Standard models of runs, fire sales and credit crunch typically do not highlight
this aspect.
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Assumption 2. Well calibrated TLAC. di
ai
≤ min {ri,s} < ri = di

ai
+ e.

Assumption A2 means that TLAC requirements are calibrated so as to protect small
depositors, and allows us to focus on the issue of undercapitalization during systemic
crises.

The variable x captures the efforts of the bank to mitigate its systematic risk. It
includes investment in liquid or safe assets with a low return as well as investments
in monitoring and screening technologies and risk governance in general. We assume
that x is not contractible. More precisely, we think of x as the residual discretion
that bankers have once they have fulfilled their quantitative regulatory requirements,
such as Tier 1 ratios, TLAC and LCR. The post crisis policy response has focused
on ensuring a minimum level x but these regulations are necessarily imperfect due to
informational delays, signal jamming, off-balance sheet transactions, etc. Some private
sector discretion always remains, so we normalize the regulatory level of safe investment
to zero and view x as the residual investment in safety, above and beyond what can
be enforced ex ante. Our baseline model ignores direct contagion between banks. We
extend the model to allow for contagion in Section 6.

The variable mi is the net transfer to bank i across all discretionary policies: the
most obvious interpretation is that of direct equity injections, but we can also think of
other implicit and explicit subsidies such as credit guarantees and loans at a reduced
interest rate. Philippon and Skreta (2012) and Tirole (2012) discuss these policies in the
context of an adverse selection model, and Diamond and Rajan (2011) and Philippon
and Schnabl (2013) in the context of a debt-overhang model. What matters in our
model is the net subsidy component of these policies, i.e., the excess payment that the
government makes compared to current market prices.

Finally, our paper focuses on payoffs in the crisis state. In general, the planner might
want to use information from the normal state to provide ex ante incentives. In practice
there are two reasons why this is not feasible. The empirical reason is that returns
in normal states contain little information about returns in crisis states. For instance,
Acharya et al. (2016) find that the cross-section of returns only begin to predict returns
during the GFC after the end of 2006. Relative returns during the boom years contain
no useable information for estimating performance during the crisis. We thus assume
that VAR (ξi)� VAR (εi). The theoretical reason is that f (xi) is a decreasing function
of x so an incentive scheme would have to punish a firm for good performance and these
schemes are not robust to hidden trading as shown in Innes (1990) and Nachman and

10



Noe (1994).

1.2 No Bailout

Consider first the allocations when bailouts are ruled out by assumption.
We start with the privately optimal solution. Under A2, maximizing ei is equivalent

to maximizing ri,sai. Let x̃ be the privately optimal safe return of a bank anticipating
m = 0 in all states:

x̃i ≡ arg max
0≤xi≤1

p0aif (xi) + (1− p0) aiE [ri,s | xi] . (3)

By stochastic dominance the function E [ri,s | x] is increasing in x and the concavity of
f guarantees the existence of a unique solution. Since have assumed that the safety
investment set is the same for all banks, x̃i = x̃ is the same for all i.

Consider next the socially optimal allocation. Since f is concave it is optimal for the
planner to set the same level of safety for all the banks. The return in the normal state
is therefore

∑
i f (xi) and

∑
i ri,s in a crisis state. We can define the no-bailout optimal

solution as

x∗0 = arg max
x

∑
i

ai (p0f (xi) + (1− p0)E [ri,s | xi]) + E
[
V
(
{ei,s}i

)
| x
]

(4)

where x∗0 =
(
x∗1,0, .., x

∗
N,0

)
is the vector of safety investment by banks. The concavity of

V guarantees the existence of a unique solution. We maintain throughout the paper the
assumption that banks are well capitalized in the normal state. We also assume that
the efficient safety investment without bailout is positive.

Assumption 3. 0 < x∗i,0 and f
(
x∗i,0
)
> ri for all i.

Note that, since V is an increasing function, we have x∗i,0 ≥ x̃ for all i. Even without
bailouts, the planner prefers higher safety investments than what banks would choose
individually due to the externality captured by V .

1.3 First Best Allocation with Bailouts

DefineM ≡∑imi as the state contingent aggregate bailout. Assumption A2 guarantees
thatM = 0 in the normal state since the option to bailout can only decrease the optimal
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level of ex ante safety (i.e., the solution of the full program is always such that x∗ ≤ x∗0,
therefore f (x∗) > r since f is decreasing). The program of the planner is therefore

(x∗,m∗) = arg max
x,m

p0

∑
i

aif (xi) + (1− p0)
∑
i

aiE [ri,s | xi]

+ E
[
V
(
{ri,sai +mi,s − di}i

)
− Γ (M ; γ) |x

]
We define the ex post optimal vector of bailouts as

m∗ (r) ≡ arg max
{mi}i

V
(
{ri,sai +mi,s − di}i

)
− Γ (M ; γ) .

A positive bailout in the worst state is typically part of the first best allocation. This
is in line, for instance, with the theoretical results in Keister (2016) in the context of
a Diamond and Dybvig (1983) model. More generally, it is not difficult to imagine
that the government is more efficient than the private sector at providing some form of
catastrophe insurance. In this case, it would be inefficient to force the private sector to
fully self-insure against very unlikely but costly crises. The issue is therefore not the
existence of strictly positive bailout probability, but rather what the anticipation of a
bailout does to private incentives for safety.

2 A Pure Systemic Risk Model

In this section we follow Acharya et al. (2016) and assume that the value function
depends only on the aggregate capital surplus of the banking sector:

V ({ei, ai}) = V

(∑
i

(ei − eai)

)
(5)

where V is increasing and concave. For instance, the systemic expected shortfall in
Acharya et al. (2016) uses the piecewise linear case V = min {0,∑i (ei − eai)}. The
assumption behind this loss function is that the banking sector has specific expertise
that is not easily replicated by non-bank actors, but that banks within the sector are
good substitutes for one another. With this loss function, the government does not care
about the distribution of returns across banks, but only about the aggregate capital
shortfall of the banking sector. In other words, we assume that the expertise that
makes banks socially valuable, for instance their ability to lend to SMEs and households,
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is transferable across banks but not outside the banking system. If a bank fails, its
outstanding assets and new lending can be picked up by other surviving banks. By
definition, when the system is solvent, it is possible to transfer assets and liabilities to
solvent banks. By contrast, when the banking system is insolvent, the planner cannot
avoid a disruption that has real welfare costs because it is costly to transfer bank assets
outside the banking sector, either to deep-pocket private investors or to the government
itself, and it is difficult to raise bank equity quickly in a crisis.

We relax these assumptions in later sections, but view them as a good starting point
to capture the deadweight loss from an undercapitalized banking system. In Section 4 we
allow for mergers between banks and show that the pure systemic risk model of equation
(5) corresponds to the case of low merger costs, in the sense that activities of distressed
banks can be transferred to strong banks with limited disruption. In Section 5 we
consider imperfect substitutability between banks: individual shortfalls matter because
some institutions are “too-specific-to-fail”. We generalize our results to show that the
amount of commitment needed to implement the first best is inversely proportional to
the degree of substitutability between banks.

2.1 Ex Post Optimal Bailout

Define the aggregate return as R ≡ ∑i airi,s and the aggregate gross requirement as
K ≡∑i (eai + di). The ex post optimal bailout is then simply a function of the aggregate
return. We define the maximized value function as

V (R−K; γ) ≡ max
M≥0

V (R +M −K)− Γ (M ; γ) ,

and the optimal bailout as

M (K −R; γ) ≡ arg max
M≥0

V (R +M −K)− Γ (M ; γ) . (6)

Proposition 1. The maximized value function V is increasing and concave in R −K,
and decreasing in γ. The bailout M (K −R; γ) is increasing in K − R and decreasing
in γ. There exists a threshold K (γ) ∈ [0, K], decreasing in γ such, that M = 0 for
R ≥ K (γ).

The value function V is concave and differentiable irrespective of the shape of V
and Γ. The bailout function, on the other hand, may or may not be convex, and
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is usually not differentiable. For instance, when the systemic externality is piecewise
linear V = min (0, E − eA) and the fiscal cost of funds is quadratic Γ = γM2, then the
bailout is flat at (2γ)−1 when the crisis is severe and then linearly decreasing (in R) to
zero when the return is between K − (2γ)−1 and K.

Example: Linear Cost of Funds Suppose that the cost of funds is linear

Γ (M) = γ |M |

The quasi-linear preferences of the planner imply that the ex post optimal bailout takes
the simple form of a put option on the aggregate return R:

Lemma 1. With linear cost of funds, the optimal aggregate bailout is

M = max {0,K (γ)−R}

where K (γ) ∈ [0, K] is decreasing.

The planner has an aggregate target K (γ) which depends on the aggregate capital
requirement K and the cost of public funds γ. If the private sector delivers the target
by itself (R > K), then the planner does not intervene. If the private sector falls short
of the target (R < K) then the planner replenishes aggregate capital up to the target to
M (R) + R = K. The replenishment may not be complete (K < K) when public funds
are costly and when V approaches its maximum smoothly from the left.

2.2 First Best

With the welfare function (5), the first best solution solves

x∗ = arg max
x≥0

p0

∑
i

aif (xi) + (1− p0)
∑
i

aiE [ri,s | xi] + E

[
V
(∑

i

airi,s −K
)
| x
]
.

The loss function is decreasing in R and increasing in γ which implies that

x̃ ≤ x∗i ≤ x∗i,0.

The planner always wants more safety than the privately optimal choice under no bailout
x̃, but requires less than in the optimal case without bailouts x∗0 because the option to
bail out limits downside risks.
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Notice that optimal safety may depend on bank size because of the non-linear loss
function.

Lemma 2. Let Gε (. | xi, s) be the distribution of εi = ri,s − E [ri,s | xi, s] and let ε ≡∑
i aiεi be the aggregate of bank-level shocks. Optimal safety does not depend on size

when Gε does not depend on x.

We get scale independence if return volatility does not depend on x. An example is
ri,s = α (xi) + s+ εi where α is increasing. This implies R =

∑
i aiα (xi) +As+ ε where

ε is independent of x. On the other hand there are realistic cases where x would affect
the volatility of r. For instance, if ri,s = α (xi) + s+ (1− xi) εi, efficiency requires large
banks to invest more in safety.

We say that a crisis is systemic if it necessitates a bailout (i.e., when R < K) and
moderate otherwise. We summarize our results in the following proposition.

Proposition 2. The social optimum is characterized by (x∗,M (K −R; γ)). Safety
investments x∗ are increasing in γ, in aggregate banking assets A, and in the mean and
variance of s; they are decreasing in e and satisfy (x̃, ..x̃) ≤ x∗ ≤ x∗0.

Propositions 1 and 2 put some discipline on the range of outcomes that are consistent
with optimal regulations and interventions. There are no bailouts in moderate states.
Once the capital shortfall is large enough, the planner finds it optimal to transfer bailout
funds to banks. The shape of the bailout is then pinned down by fiscal capacity. When
the fiscal cost is linear (e.g., the US), it is optimal to fully insure the banking system
against further downside risk. When the fiscal cost is convex (e.g., Ireland, Greece,
Cyprus), the bailout increases less than one for one with the losses.

In the first best, the governmentmandates the optimal safety vector x∗, thus avoiding
moral hazard. In the rest of the paper we study what happens when x is unobserved
by the government. The model then includes the potential for a strong form of moral
hazard. When M∗ > 0 the aggregate return net of government transfer does not depend
on x. Anticipating this, banks might discount the systemic states and increase their risk
taking.

2.3 Moral Hazard under No Commitment and Symmetric Bailouts

We now assume that x cannot be observed and we impose a time-consistency, or “credi-
bility”, constraint. The government is restricted to rules {mi} that are ex post optimal,
even off the equilibrium path. Therefore
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∑
i

mi,s =M (K −R) (7)

for all possible values of R whereM (K −R) is defined in (6). We define a symmetric
bailout as follows.

Definition 1. A bailout is symmetric if, for all (i, j) ∈ [1 : N ]2 and all s ∈ S, we have
mi,s
ai

=
mj,s
aj

.

When all banks of ex ante identical a symmetric bailout is one where they all get
the same amount of money. When banks’ sizes vary, the definition simply allows pro-
portionality with size. In a symmetric bailout satisfying the credibility constraint (7)
we must have mi,s = ai

M(R)
A

. The best response of bank i is therefore

βi (x−i) = arg max
xi≥0

p0aif (xi) + (1− p0) ai (E [ri,s | xi] + Ω (xi; x−i)) (8)

where x−i is the vector of safety investments by all banks except bank i, and Ω is defined
as Ω (x) ≡ 1

A
E [M (K −R) | x], which we can write as

Ω (x) =
1

A

∫
M (K −R) dΦN (R | x) . (9)

The distribution ΦN is the convolution of the underlying ones: R | x ∼∑N
i=1 airi,s | x.

Lemma 3. Ω (x) is continuous, decreasing in each xi, and satisfies the increasing dif-
ferences condition in (xi,x−i) for all i.

Lemma 3 immediately implies that, for all possible values of x−i, the best response
is bounded above by the private equilibrium: β (x−i) ≤ x̃. Our game takes place on
compact sets with a finite number of players, continuous choices and continuous reward
functions, therefore we know that at least one Nash equilibrium exists and any solution
satisfies x̂ ≤ x̃. We summarize our discussion in the following proposition.4

4Given risk-neutrality, it is without loss of generality to focus on pure strategies. Fudenberg and
Tirole (1990) show that with risk-averse agents, it is possible to maintain some incentives once we allow
for mixed strategies.
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Proposition 3. All equilibria with no commitment and symmetric bailouts have the
following properties:
(i) Lack of commitment creates strategic complementarities in risk taking: βi (x−i) is
increasing.
(ii) Safety is too low (x̂i < x∗i ) and the probability of a systemic crisis is too high:
ΦN (K | x̂) > ΦN (K | x∗).
(iii) Safety decreases when the cost of public funds γ decreases.
(iv) If βi (0) = 0 a full unraveling equilibrium exists with minimum safety, maximum
systemic risk, and maximum bailout xi = 0 for all i.

Lack of government commitment creates strategic complementarities between banks:
if all banks reduce their safety the probability of a bailout increases, which reduces the
marginal incentives to hedge against systemic crises. Lack of government commitment
can generate an extreme form of moral hazard where banks make no investment in safety.
A marginal increase ∆xi reduces the bank’s expected bailout. We have illustrated this
point in the simple case of symmetric bailouts, but more generally it will hold whenever
the expected bailout E [mi|x] received by bank i is decreasing in its own safety xi.

Strategic Complementarities and Uniqueness While strategic complementarities
are a realistic feature, they can open the door to multiple equilibria if those complemen-
tarities are too strong. We can in principle deal with multiple equilibria: there is a set
of equilibria, and each time we say that safety is increasing we mean it in the Strong
Set Order sense of Topkis (1978) and Milgrom and Shannon (1994). Alternatively, we
could allow the government to act as a coordination device and select the equilibrium
with highest safety. These solutions are feasible but they create a large burden of no-
tations without changing the economic insights. It is more convenient to have a unique
equilibrium to state our main results in the next section. We therefore assume that Ω

is not too convex or that f is concave enough.

Assumption 4. The slope of the best response βi (x−i) is less than one.

3 Credible Tournaments

The previous section has shown that when the government lacks commitment, standard
bailout mechanisms lead to moral hazard. In stark contrast, we now show that the
government can use relative performance evaluation among multiple banks to solve the
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moral hazard problem and implement the first best allocation in a time-consistent fash-
ion. The reason is that the credibility constraint only affects the aggregate bailout, and
leaves enough leeway to the government to structure the distribution of bailouts across
banks. In particular, the government can use a relatively simple tournament scheme
that rewards banks according to their ranking while maintaining credibility. For sim-
plicity we illustrate our main result in the case where banks are ex ante identical, thus
assuming ai = 1 for all banks; we extend our mechanism to account for heterogeneous
bank size in Appendix B.

3.1 Bonus-Malus Implementation

Two Banks. We build intuition by considering the case of two banks. We define the
tournament rule T with two banks as

mi =


M(K−R)

2
+ ∆ ri,s > rj,s

M(K−R)
2

−∆ ri,s < rj,s

Note that P [r1,s > r2,s|x] = Hs (x1, x2) where Hs is increasing in x1 and decreasing in
x2. The best response function for bank 1 is therefore

x̂1 = β1 (∆, x2) = arg max
x1

p0f (x1) + (1− p0) (E [r1,s | x1] + Ω (x1, x2))

+ 2∆

∫
s

Hs (x1, x2) psds.

The crucial departure from perfect insurance and the ensuing moral hazard comes from
∆, which rewards the best bank and punishes the other one. When ∆ = 0 this best
response corresponds to the one discussed in Proposition 3. We can then state our first
main proposition.

Proposition 4. With N = 2, there exists a unique ∆∗ > 0 that implements the social
optimum (x∗, x∗,M (K −R)).

Note that ∆∗ is unique in the class of mechanisms that we consider but there are other
classes of mechanisms that can implement the first best. We know from Proposition 3,
however, that all of them must use some form of relative performance evaluation.
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N Banks. It is straightforward to extend our results to N banks. In fact, it is easier
than with two banks since there are more degrees of freedom. A possible rule is

mi =
M (K −R)

N
+ ∆× I (ri −med (r))

where the function I is such that I (y < 0) = −1 , I (0) = 1, and I (y > 0) = 1 and
med (r) is the median return. By definition of the median

N∑
i

I (ri −med (r)) = 0

so
∑N

i mi =M (R) and the rule is credible. Denote Hmed
s,N (xi, x−i) the probability that

ri > med (r) when other banks play x−i and bank i plays xi. Hmed
s,N is increasing in xi

and decreasing in x−i. Then bank i solves

x̂i = βi (∆,x−i) = arg max
θ

(1− p0)xi + (1− p0) (E [ri,s | xi] + Ω (xi,x−i))

+ 2∆

∫
s

Hmed
s,N (xi,x−i) psds.

Following the same steps as for N = 2 we have:

Proposition 5. For any number N ≥ 2 of banks, there exists a unique ∆∗ > 0 that
implements the social optimum (x∗,M (K −R)).

The simplicity of our “median” rule makes it attractive, but there are many other
more complex rules that can achieve the same objective, even within the class of tour-
naments. For instance, different prizes could be attributed to banks according to their
exact ranking in terms of returns, and not just whether they are above or below the
median.

The implementation above might require large punishments in equilibrium. A bank
with a bad draw needs to be punished to provide ex ante incentives. There are, however,
practical limits on punishments. The first limit, which we consider next, is that the
planner might not be able to punish because of limited liability. The second limit, which
we study in Section 5, is that the planner might not be willing to punish because of
imperfect substitutability between banks.
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3.2 Limited Liability

Let us now consider the case where government transfers and taxes are constrained
by limited liability (LL). There are two ways to write limited liability. The strict form
(“strict LL”) ismi ≥ 0 for all banks in all states, which simply rules out negative transfers.
This constraint typically leaves equity holders with a surplus. A weaker form of limited
liability (“weak LL”) is airi +mi ≥ di, which allows negative transfers of residual equity
value, but not more. In Section 3.3 we show how these two cases can be interpreted as
polar cases of a richer model with fire sales and mark-to-market accounting in resolution.
Our general result holds under strict (and therefore also weak) limited liability.

Proposition 6. Even under strict limited liability (mi ≥ 0), tournament incentives rule
out moral hazard (x̂ > x̃) and implement the first best when the cost of funds is low, i.e.,
there exists γ̂ > 0 such that x̂ = x∗ for any γ < γ̂.

What happens when the cost of funds γ is above the threshold γ̂, making the first
best unattainable? Characterizing the second best allocation is a lot more complicated,
so we use the following special case with binary outcomes. We assume that all banks are
ex ante identical with size a. At time 1 banks are randomly allocated into two groups,
L and H, with sizes NL and NH such that NL + NH = N . The returns of bank i are
determined jointly by its risk management, its group, and the aggregate state:

rsi =

f (xi) + ξi in the normal state

s+ xiIi∈H in crisis state s

The model thus works as follows. Banks make ex ante safety choices xi. If a bank ends
up in group L its return is s irrespective to x. If a bank is in group H, its safety choice
matters ex post as its return is s + xi. The key point is that there is no way for the
planner to distinguish a bank in group L from a bank in group H who chose x = 0. In
this setting we obtain the following result:

Proposition 7. The highest implementable safety under limited liability is decreasing in
the cost of public funds γ and decreasing in the size of the banking sector A. Incentives
and ex ante leverage constraints d/a are substitutes under strict LL, but complement
under weak LL.

Proposition 7 gives a striking result with respect to fiscal slack: a lower γ increases
safety. This is exactly the opposite of the conventional wisdom based on symmetric
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mechanisms. The result under weak LL also gives a novel rationale for leverage limits
or higher capital requirements; we generalize the result and provide more intuition in
the next subsection on fire sales. It also gives a macro-prudential reason for clawback
provisions on executive compensation to reduce the binding limited liability constraint.

One should keep in mind that taxes can also be levied ex ante, for instance to
provision a “bailout insurance fund”. Banks could all pay the same tax at time 0 and
recoup different payments at time 1 based on the tournament rule. This would improve
incentives by effectively relaxing the limited liability constraint.

3.3 Fire Sales

We conclude this section by generalizing the polar cases of weak and strict LL in a
simple model of fire sales. Under our scheme, fire sales are useful for incentives, because
lower secondary market prices decrease the outside option of the distressed banks which
helps relax their limited liability constraint. Moreover, incentives and ex ante leverage
constraints are complement if and only if fire sale prices are low enough.

Suppose that during the crisis, the regulator is constrained to net transfers mi that
cannot expropriate bank shareholders at current market prices. Thus shareholders have
the choice between accepting resolution and obtaining a payoff ari +mi− d, with assets
left at book value within the bank until the crisis is over, or liquidating assets at fire
sale prices immediately. We can interpret the return ri as the fundamental value that
assets recover to after the crisis. In the midst of the crisis, however, asset values can be
temporarily lower, equal to (1− χ)ri, where χ ∈ [0, 1) is a fire sale discount on assets.5

Therefore the shareholder participation constraint ismi + ari ≥ d if ri ≤ d
(1−χ)a

mi + χari ≥ 0 if ri ≥ d
(1−χ)a

⇐⇒ mi ≥ amax

{
d

a
− ri,−χri

}
.

For deep fire sale discounts χ → 1, the constraint converges to weak LL. For moderate
discounts, the constraint writes mi + χari ≥ 0, and strict LL corresponds to the case
without fire sales χ = 0. Just like weak LL is easier to satisfy than strict LL, a deeper
fire sale discount χ allows the regulator to impose tougher punishments on weak banks
during the crisis, and therefore relaxes the incentive constraint for all banks ex ante.

5We treat χ as fixed to simplify, but our results would extend to a stochastic χ that is potentially
correlated with returns, as would be the case, for instance, when endogenizing asset prices using “cash-
in-the-market pricing”.

21



We can also generalize the result in Proposition 7 on the effect of leverage:

Proposition 8. Consider the same setting as in Proposition 7 and suppose the cost of
funds is linear. Let

χ̂ = 1− A

K (γ)

d

a
.

Incentives and ex ante leverage constraints on d/a are complement if the fire sale discount
χ is higher than χ̂, and substitutes otherwise.

Tightening ex ante leverage regulation by decreasing d/a has two effects on incentives.
On the one hand the aggregate bailout is lower, which undermines incentives to become
a good bank, just like tighter fiscal space does. On the other hand lower leverage allows
regulator to impose a harsher penalty upon poorly performing banks, especially in the
case of deep fire sale discounts (high χ). If fire sales are mild (low χ), however, regulators
cannot take away much from weak banks regardless of their leverage so the negative effect
on incentives dominates.

Of course, fire sale prices are endogenous and a successful intervention would also
reduce χ as in Philippon and Skreta (2012) and Tirole (2012). We leave that to future
work.6

4 Mergers and Resolution Authority

We have used the benchmark loss function V (
∑

i ei − eai) to establish our first main
result with and without limited liability. In all these cases policy makers intervene using
taxes and transfers. These instruments are used extensively in practice, but there is
another tool that is used extensively and requires a modification of the baseline model:
mergers of weak banks with strong ones. In this section we endogenize the distribution
of assets and liabilities by giving the government a resolution authority.

Definition 2. Resolution authority is a technology with which, for any undercap-
italized bank ei < eai the government can write capital claims to 0 and transfer the
assets and deposits to another bank or another set of banks.

6Fire sales also create strategic substitutability between banks even absent any bailout mechanism,
as pointed out by Perotti and Suarez (2002), Acharya and Yorulmazer (2007; 2008), or Malherbe (2014).
This can even lead to predatory hoarding, which in our model would take the form of over-investment
in safety x in order to buy cheap assets sold by distressed banks. We focus on the case where banks
under-invest in safety under laissez-faire.
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We have already discussed the issue of strict versus weak limited liability so we focus
here on the case of weak limited liability where regulators have the authority to wipe out
investors of failing banks. It is straightforward to extend the results to the case of strict
limited liability. To discuss mergers we need to specify a value function over different
sets of existing banks. We consider the following value function

V {ei, ai} = V

(
N∑
i=1

aiv (yi)

)
, (10)

where yi is defined as the percentage surplus of bank i

yi ≡
ei
ai
− e.

The functions V and v are increasing and (weakly) concave with v (0) ≥ 0 and V (0+) =

V̄ . For instance, in our application below we use v (y) = min (0, y), while the benchmark
model of Acharya et al. (2016) corresponds to v (y) = y.

This value function has two key properties that make it appealing to study mergers
and capital shortfalls. The first property is that it is neutral with respect to the com-
bination of similarly capitalized banks. If yi = yj = y then we get aiv (yi) + ajv (yj) =

(ai + aj) v (y) so nothing is gained or lost by combining two similar banks. This is clearly
a desirable feature of any welfare function. The second key property is that the con-
cavity of v around y = 0 captures the degree of substitution between capital shortfalls
and surpluses: v (y) = min (0, y) implies zero substitution while v (y) = y implies perfect
substitution, with most realistic cases somewhere in between. For instance, in a fire sales
model, distressed banks are forced to sell, while banks with surpluses take advantage of
low prices, but they do not pick up the slack one for one. On the other hand, this value
function does not capture two economic forces that may be important in some context:
taste for variety and market power. We study these issues in Section 5.

Let us now define a merger allocation and its cost.

Definition 3. A merger allocation is a matrix α where αi,j ∈ [0, ai] are the assets from
bank i transferred to bank j and

∑N
j=1 αi,j = ai. The cost of the merger allocation is

τ
∑N

i=1 (ai − αi,i).

The idea here is simple. Mergers reallocate assets and the cost of transfer is τ per
unit of assets. One cost of mergers is the due diligence required to ascertain asset quality;
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for instance, during the 2007-2008 crisis some mergers famously fell through (Lehman
Brothers) or almost did so (Bear Sterns) in part because regulators and potential buyers
did not have enough time and resources to value complex assets in the midst of the
panic. Another cost of mergers comes from the non-pledgeable rents that must accrue
to employees and managers of the acquired bank (as in Hart and Moore, 1995; Holmström
and Tirole, 1997). Finally, mergers can impede the flow of soft information, especially
if the target is a small or specialized bank (Sapienza 2002, Stein 2002).

4.1 Frictionless Mergers: An Aggregation Result

Consider for instance the sale αi,j from bank i to bank j. The net welfare gain is then

V

(
..+ (ai − αi,j) v (yi) + (αi,j + aj) v

(
αi,jyi + ajyj
αi,j + aj

))
−V (..+ aiv (yi) + ajv (yj))−ταi,j.

(11)
Since v is concave and V increasing we know that the first difference is positive and the
question is whether it is high enough to cover the cost ταi,j. Would the shareholders of
bank j approve the merger? Under Assumption A2 of well calibrated TLAC the value
of assets exceeds that of liabilities, so the merger increases shareholder value, but the
merged bank might still be undercapitalized (if αi,jyi + ajyj < 0), in which case the
regulator might want to provide bailout funds to bank j. We return to these issues
later.

Let N− and N+ the sets of undercapitalized and well capitalized banks. When we
study mergers the two key state variables are the mass of failed assets A− =

∑
i∈N−

ai

and the aggregate surplus equity E − eA. We have the following aggregation result.

Proposition 9. Let V post = maxα V (α, {ei, ai})−τ
∑N

i=1 (1− αi,i) ai be the post merger
welfare value. We have

V post ≥ V

(
Av

(
E − eA
A

))
− τA−.

As τ → 0 any value function of the type (10) converges to the value function V
(
Av
(
E−eA
A

))
.

The proposition is useful because it shows that the value function in our benchmark
case is without loss of generality when mergers are frictionless. In particular, all our
previous results apply:
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Corollary 1. Tournament bailouts credibly implement the first best as in Propositions
5 and 6 when mergers are frictionless. In particular, when E > eA, frictionless mergers
achieve the first best without bailouts.

Tournaments implement the first best as the government is not forced to bail out the
poorly performing banks, in spite of the value function (10). It can instead merge them
with good banks, whose shareholders can be rewarded with additional funds if necessary.

4.2 Costly Mergers: Second Best Allocations

When mergers are costly (τ > 0), in general the value function does not converge to
the pure systemic risk model. Characterizing the second best allocation in that case is
challenging, especially when we also consider endogenous bailouts. To make progress we
specialize the value function (10) to

V = V̄ + v
N∑
i

ai min (0, yi) (12)

This is a conservative value function since it assumes no benefit from banks with capital
surpluses ei > eai. In particular, the time inconsistency problem is extremely severe
since, without mergers, it is ex post optimal to bail out only the banks with negative
surplus.

The takeaway of this section is that even if mergers are costly, for low enough τ

(below some threshold τ ∗) the first best safety is credibly implementable, exactly as in
the case of frictionless mergers. However, there is a stark discontinuity as the merger
cost increases: τ above τ ∗ brings back full moral hazard. We start by analyzing the
optimal ex post combination of mergers and bailouts before turning to the implications
for ex ante safety incentives.

Ex Post Interventions: Mergers and Bailouts Define the surplus of good banks
Y+ =

∑
j∈N+

ajyj and the shortfall of undercapitalized banks Y− =
∑

j∈N−
−ajyj, hence

Y = Y+ − Y−. With the value function (12) mergers are useful only if they tap into
unused capital surplus. An immediate implication is that, if τ > 0 and the value function
is only weakly concave as in (12), then when Y < 0 the merger process will not lead to
equalization of capital surpluses across banks. When Y+ > 0 there is untapped capital
surplus and the attractive merger target is the bank with the worst shortfall. Under
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Assumption A2 we know that di/ai − ri ≥ 0 hence yi ≥ −e, so we make the following
assumption to ensure that mergers are potentially useful:

Assumption. The merger cost satisfies τ < ev.

We can now describe the second best allocation. Define for y ≤ 0 the cumulative
shortfall function

Y (y) = −
∑
yi≤y

aiyi ∈ [0, Y−]

and the following two cutoffs yγ and yτ :

yγ = inf
i
yi s.t. Γ′ (Y− − Y (yi)) ≤ v, and yτ = sup

i
yi s.t.

yi ≤ −τ/vY (yi) ≤ Y+

Both yγ and yτ are negative. To interpret yγ, note first that is never ex post optimal to
give more than mj = −ajyj to bank j. Thus if bailouts are the only option, the ex post
efficient allocation that maximizes incentives gives a full bailout mj = −ajyj to banks
starting from yj = 0, until the marginal cost of further bailouts Γ′ exceeds the marginal
benefit v, which happens at yγ. To interpret yτ , note that if mergers are the only option,
the ex post efficient allocation merges all the banks with yi below yτ to banks with a
capital surplus, starting with the worst bank yi. The two inequalities defining yτ capture
the fact that the merging process stops when either the marginal return to merging the
next bank falls below the cost τ , or the entire capital surplus Y+ has been exhausted.
When yτ > yγ, we define y∗ ∈ (yγ, yτ ) such that

y∗ = sup
i
yi s.t. − yiΓ′ (Y− − Y (yi)) ≤ τ.

Figure 1 illustrates the cumulative shortfall function Y before and after mergers, in the
case yτ < yγ.

When bailouts and mergers are both available, the ex post efficient allocation that
maximizes incentives only bails out the least undercapitalized banks:

Lemma 4. The efficient ex post policy combining bailouts and mergers is as follows:
If yτ ≤ yγ then (i) banks with yi ∈ [yγ, 0] are fully bailed out (mi = −ayi) thus the

aggregate bailout is −∑yγ≤yi≤y aiyi = Y− − Y (yγ); (ii) banks with yi ∈ (yτ , yγ) are left
untouched; (iii) banks with yi ≤ yτ are merged with good banks.
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Y(y)

y0−e − τ
v

Y−

Y+

yτ yγ

(Γ′)−1(v)

Y(y)

y0−e − τ
v

Y−

Y+

yτ yγ

Figure 1: Cumulative shortfall function Y (in red) in the case yτ < −τ/v < yγ before
(top panel) and after (bottom panel) mergers and bailouts.
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If yτ > yγ then (i) banks with yi ≥ y∗ are fully bailed out; (ii) banks with yi ≤ y∗ are
merged with good banks.

Ex Ante Incentives We now show how mergers allow the government to reward good
banks and punish weak ones and thus provide incentives, even when the loss function
such as in (12) would call for fully bailing out weak banks absent the merger technology.
Suppose the cost of funds is quadratic, Γ (M) = γM

2

2
. Then we can compute the

thresholds as
yτ = −τ

v
, yγ = −v

γ
, y∗ = −

√
τ

γ
.

Consider the case of 2 banks with the same shock structure as in Section 3.2, with a single
crisis state s to simplify. There are four possible events, depending on which banks end
up in groupsH and L. If both banks end up with a capital surplus, no policy intervention
is needed. If both banks end up with capital shortfalls (y1 = y2 = s − d

a
− e < 0) then

there is no merger as Y+ = 0. We assume the cost of funds is low enough that the only
time-consistent policy in that case is to bailout both banks fully (so that both banks
obtain a payoff e), i.e., the following “joint bailout” condition holds:

v ≥ 2γ

(
d

a
+ e− s

)
. (13)

The most interesting case occurs if only bank 1, say, ends up in group H. Then in an
equilibrium with safety choices x, Y+ = y1 = s+x− d

a
−e and Y− = −y2 = −

(
s− d

a
− e
)
.

Suppose that even under the laissez-faire safety x̃, the strong bank has enough capital to
absorb the distressed one, that is, x̃ > 2

(
d
a

+ e− s
)
. Thus whenever bank 1 succeeds, a

full merger is feasible. Condition (13) implies that if mergers are too costly, it is always
optimal to fully bailout bank 2. However, if the cost of mergers τ is low enough

τ ≤ τ ∗ (γ) = γ

(
d

a
+ e− s

)2

then y2 ≤ y∗ and a merger is optimal. The merged bank’s shareholders end up with 0,
while the resulting equity of bank 1’s shareholders is 2s + x∗ − 2d

a
. Figure 2 illustrates

how the thresholds yτ , yγ and y∗ vary with the cost of mergers τ . A higher fiscal capacity
(lower γ) makes bailouts more attractive and undermines the credibility of mergers, thus
reducing τ ∗.

Turning to ex ante incentives, we find a striking discontinuity in the merger cost τ :
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Figure 2: Optimal ex post policy as a function of the cost of mergers τ .

Proposition 10. Suppose that γ is low enough.7 For τ > τ ∗ only the moral hazard
safety level x̂ (as defined in Proposition 3) is credibly implementable, while for τ ≤ τ ∗

the first best safety x∗ is credibly implementable. Welfare decreases discontinuously at
τ = τ ∗.

Proposition 10 extends our aggregation result under frictionless mergers to the case of
costly mergers. We find that if τ is low enough then the first best is attainable, just like
in the limit τ → 0. By contrast, for τ high enough we are back to the full moral hazard
equilibrium. One interesting implication of this proposition is the complementarity
between the efficiency of mergers at the micro level and the credibility of tournaments
at the macro level. Efficient mergers allow the government to redistribute assets without
creating aggregate costs, which creates scope to provide private incentives for safety even
without commitment.

Finally, our proposal relies on rewarding strong banks, but we abstracted from imper-
fect information and the resulting fear of stigma that may prevent these strong banks
from even accepting government support (Philippon and Skreta, 2012; Tirole, 2012).
This was an important concern during the 2008 crisis: regulators had to force some of
the healthier banks to accept government capital. First, we emphasize that the effective
transfer must be attractive enough: banks reluctant to some forms of bailouts such as
preferred stock injections will still welcome subsidized mergers with asset guarantees.
Second, stigma is endogenous to the bailout mechanism, and our scheme works in the

7Formally γ < γ̂ where γ̂ is defined in the proof.
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right direction. Under standard mechanisms allocating large bailouts to the weakest
institutions, accepting public support is indeed a sign of weakness. But under a well-
understood tournament mechanism, public support is a signal of strength instead. In
fact, under our mechanism, upon the failure of some banks the market value of the
surviving ones would rise, as they would now be revealed to be in the good camp.

5 Differentiated Banks: Too-Specific-To-Fail

In Section 4 we show how mergers can be used to optimally combine capital shortfalls
and surpluses under the assumption that the same banking activities can be performed
under different ownership structures. This may not be a good assumption when banks
are geographically specialized and rely on soft information, or when the regulators worry
about excessive local concentration in deposit taking as emphasized by Drechsler et al.
(2014). Suppose then that banks are imperfectly substitutable and the value function is

V {ei +mi} = V (φ {ei +mi} − φ {e})

where

φ {ei +mi} =
N∑
i=1

(ei +mi)
η−1
η

and η > 1 is the elasticity of substitution between banks. This value function converges
to the one in the pure systemic model (5) as η → ∞. It also captures the fact that it
becomes more costly to take away the positive equity ei = airi − di from bank i as it
gets smaller.

In this section we assume differentiability of f and V and a linear cost of funds
Γ (M) = γM to simplify the exposition. Without commitment, perfect ex post efficiency
requires equalizing the marginal return of transfers mi across banks i, that is for each i

η − 1

η
(ei +mi)

−1
η
∂V

∂ei
{ei +mi} = γ.

Thus the government will fully insure all banks by setting the same level for ex post
capital all banks ei+mi = e∗ irrespectively of individual bank performance, where e∗ > e
solves

η − 1

η
e

−1
η
∗ V ′ {e∗} = γ (14)
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Figure 3: Function V (e) = e
η−1
η − e

η−1
η for different values of η. Lower η makes the

function more concave, which increases incentives to offset individual capital shortfalls.

denoting V ′ {e∗} = ∂V
∂ei
{e∗}.

At first glance, it seems that imperfect substitutability brings back the extreme form
of moral hazard that arose under symmetric mechanisms. Each bank knows that it will
be perfectly insured by the government since other banks will not be able to step in
and replace it in case of resolution. In particular, our previous tournament scheme is
not credible in this context. This extreme result comes from the extreme assumption
that the government does not want to deviate at all from the ex post optimum. Indeed,
if banks are almost perfectly substitutable (η → ∞), imperfect insurance should have
negligible costs and the model’s conclusions should approach those of the pure systemic
risk model.

We now relax the assumption of complete lack of commitment in two ways; both
allow to re-establish our main result. In the first relaxation, we introduce a small
amount of commitment, by giving the planner the ability to deviate slightly from the
ex post optimum, by an amount at most ε > 0 in welfare terms. We call this notion
ε-commitment. In the second, and independent, relaxation, we consider a less stringent
notion of time-consistency: the government can only deviate from promises to achieve
a Pareto-improvement relative to the ex ante contract. The idea is that deviating from
a pre-commitment is less likely to generate backlash and intense lobbying if all the in-
volved parties benefit. In other words, we consider renegotiation-proof mechanisms in
the language of Fudenberg and Tirole (1990). This solution concept provides a weak
form of commitment consistent with the political economy of bailouts.
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5.1 ε-Commitment

Consider a mechanism that transfers

mi = e∗ + d− ri + δ (ri − r̄) (15)

to each bank so that the capital after bailout is ri − d+mi = e∗ + δ (ri − r̄) where e∗ is
the ex post efficient (symmetric) capital that solves (14) and r̄ = 1

N

∑
i ri is the average

return. We are looking for a slope δ that is high enough to give incentives ex ante, while
remaining low enough that the loss in ex post efficiency remains below some threshold
ε. The next proposition shows how knife-edge the case of complete lack of commitment
ε = 0 is. In general, there is a trade-off between commitment and substitutability:
with any small level of commitment ε > 0, the first best is implementable if banks are
sufficiently substitutable:

Proposition 11. There exists α ∈ (0, 1) increasing in ε such that the first best is
implementable under ε-commitment using transfers

mi = e∗ + d− ri + δ (ri − r̄)

with δ = 1+γ

1− 1
N

if

ηε ≥ N(
1− 1

N

)2

(1 + γ)2 γσ2
r

2k (γ) (1− α)
. (16)

The right-hand side of (16) is increasing in γ, in the variance of returns σ2
r , and in the

number of banks N .

Equation (16) yields interesting comparative statics. The recurring theme in our
paper is that once we allow for richer mechanisms, fiscal space (lower γ) is helpful for
incentives. In this particular example, fiscal space and commitment ability ε are com-
plement: fiscal space allows for larger bailouts and thus lower welfare losses from any ex
post equity dispersion, as banks are dispersed around a level closer to the unconstrained
optimum (that solves V ′ {e} = 0).

A contract with non-zero slope δ amplifies return differences arising from luck (in
equilibrium), hence a lower variance of idiosyncratic risk σ2

r makes stronger incentives δ
less costly to provide, which also decreases the amount of commitment needed. Finally,
the number of banks N plays two roles: first, we impose the ε bound on the total welfare
loss V , and a larger numbers of banks N increases any welfare loss mechanically: if ε-
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efficiency applied to welfare per bank (i.e., ∆V ≤ Nε) then δ̄ would be given by the
same formula with N = 1; second, a larger N strengthens the incentive from δ. The
first effect dominates.

Proposition 11 uncovers a novel policy implication for ex ante regulation. Existing
policies, both micro- and macro-prudential, are focused on setting high enough capital
and liquidity buffers, not so much on the scope of bank activities. But our model
highlights the social cost of allowing banks to become “too-specific-to-fail”. While the
substitutability η must be taken as given ex post, there is a range of ex ante regulation
that can effectively increase the substitutability η. For instance, even in settings where
technological increasing returns to scale would call for having only one or two banks
specialized in some activity (such as Bank of New York Mellon and JPMorgan Chase
for the clearing of tri-party repos), credibility concerns give a rationale for imposing
some redundancy. This insight is reminiscent of the industrial organization literature
on multiple sourcing as a protection against ex post holdups (Shepard 1987, Farrell and
Gallini 1988): a monopolist trying to encourage early product adoption may benefit
from offering licenses to rivals, as a commitment to keep the post adoption market
competitive.

5.2 Renegotiation-Proof Mechanisms

We now discuss another form of partial commitment. When banks are imperfect substi-
tutes, their ex ante incentives are undermined by the lack of government commitment
in two ways: ex post, the government would like to save the weakest banks, but it also
doesn’t want to favor the strong ones. Suppose, as in the literature on renegotiation-
proof mechanisms, that it remains impossible to commit to ex post Pareto inefficient
allocations, but that it it is politically costly to renege on promises when they end up
hurting some subset of the agents. The interpretation is that banks (supported by their
state or country if we interpret the imperfect substitutability as reflecting geographical
segmentation) have a stronger incentive to lobby against an intervention if they have
something to lose. As a result, the government will still help the worst banks (who have
no reason to complain), but it is now able to credibly reward the strong banks.

To convey the point it is sufficient to consider the case of two banks N = 2. We
assume that ex ante the government announces post recapitalization levels (ē1, ē2) for
the better and worse performing bank, respectively, such that ex post the government
can choose its preferred allocation subject to the constraint that each bank must be
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weakly better off than under the contractual allocation (ē1, ē2). Thus at date 1, given
(ē1, ē2) the government solves (suppose without loss that r1 > r2):

max
m1,m2

V

(
φ {e1 +mi} − φ {e}

)
− γM

s.t. e1 +m1 ≥ ē1

e2 +m2 ≥ ē2

The following result shows that with enough fiscal capacity, the prospect of rewards is
sufficiently strong to restore first best incentives, in the same spirit as our results on
limited liability. To simplify, consider the additive return structure

ri = xi + s+ εi

and let h = H ′ (0) where H is the c.d.f. of ε2 − ε1.
Proposition 12. There exists γ̂ such that for γ < γ̂ the tournament contract (ē1, ē2)

where ē1 is the unique solution to

∂φ

∂e2

(
ē1, ē1 −

1 + γ

h

)
× V ′

(
φ

(
ē1, ē1 −

1 + γ

h

)
− φ (e)

)
= γ (17)

and ē2 = ē1 − 1+γ
h

is renegotiation-proof and implements the first best safety x∗.

In the limit perfectly substitutable banks η →∞, the renegotiation-proof tournament
converges to the tournament in Section 3. The renegotiation-proof “winner” payoff ē1

(and therefore the payoff for the “loser” ē2 = ē1 − 1+γ
h
) increases as η decreases. The

reason is that when banks are more specialized, it becomes less credible to punish the
worst bank harshly. Ex post, the marginal benefit of bailing out the worst bank is higher
when customers cannot easily switch to the best bank. Thus incentives must be provided
through a better “carrot” for the better bank. Since the incentive condition pins down
the payoff difference between the two banks, the worst bank also ends up with a larger
bailout. The expected cost of ex post interventions E [m1 +m2] = 2ē1− 1+γ

h
−E [r1 + r2]

is thus higher when banks are more specialized.
Figure 4 shows a numerical example. As η →∞ the expected cost converges to the

first best expected cost of bailouts (assuming banks all choose x∗) K (γ) − E [r1 + r2].
But note that the expected cost of intervention decreases quickly with η and becomes
very close to the first best limit already when η ≈ 5.
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Figure 4: Renegotiation-proof prize ē1 for the best bank as a function of the elasticity
of substitution η. Dashed line: ē1 with perfectly substitutable banks. Parameters:
V (x) = −x2

2
, γ = 0.5.

6 Financial Contagion: Too-Interconnected-To-Fail

In this section we consider a different form of heterogeneity, arising from financial linkages
between banks that generate comovement in returns. These linkages capture a variety
of “contagion” forces, such as cross-exposures, fire sales, or domino effects, as studied in
the financial networks literature (e.g., Caballero and Simsek 2013, Elliott et al. 2014,
Acemoglu et al. 2015). The resulting return structure is significantly more complex than
the one we have worked with so far: banks now have heterogeneous loadings on the
aggregate risk factor s, and each bank is exposed to many other banks’ idiosyncratic
structural shocks εj.

We show how contagion leads to a natural notion of systemic risk: banks are more
systemic when their performance has a stronger effect on the rest of the system. In
turn, more systemic banks must act more prudently, and so a resolution mechanism
must strive to give them stronger incentives. ex post, however, the government may
consider these “super-spreader” banks too interconnected to fail (Haldane, 2013). Our
main finding is that the constraints that financial linkages impose on bank resolution
depend crucially on how bailout funds attributed to one bank spill over to other banks.

If public funds can be earmarked and bailout money cannot flow throughout the
system to benefit other banks indirectly, our tournament mechanism remains credible
and efficient under minor amendments. A bank’s rank in the tournament is determined
by its ex post performance, as in the baseline model, but now weighted by its systemic
risk.

A subtle constraint appears if earmarking public funds is not possible, and bailout
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money can instead spillover to other banks. A first intuition would be that these spillover
effects can reduce costs ex post, as it is now possible to rescue some banks indirectly,
working through the linkages. The countervailing and dominating force, however, is
that spillovers actually worsen the credibility problem. It becomes optimal to target
the most systemic bank, as this is a cheap way to save the whole system. But this
makes the moral hazard problem unsolvable, because the most systemic bank will now
be completely insured and thus maximize risk-taking, thereby endangering the whole
system.8

6.1 Restricted Bailouts

In this section, we focus on interconnectedness and simplify the other dimensions of the
model, by assuming that all states s are systemic, and that f is differentiable. Suppose
that conditional on a crisis, each bank i’s return becomes a function of other banks j’s
returns through a linear relation:

r = x + s + ε+ Ωr

with Ω = {ωij} where by convention ωii = 0. We assume here that the interconnection
between banks is based on pre-bailout returns r: at the ex post stage, bailouts do not
spillover to other banks. The next subsection will consider the case in which bailout
funds mi cannot be “targeted” to bank i’s shareholders, but also spill over to other
banks j. As a result, returns can be solved as

r = Λ (x + s + ε) (18)

where Λ = (I −Ω)−1. Call Λij the elements of Λ. The crisis value function in a
contagion state becomes

V

(∑
i

λi (xi + s+ εi) +
∑
i

mi

)

where λi =
∑

j Λji captures the systemic risk of bank i, that is how much other banks
load on bank i’s return, and thus how much bank i’s return can affect the aggregate
banking sector’s shortfall through this form of financial contagion. Banks with higher

8In the knife-edge case in which multiple banks are equally systemic, we can still use a tournament
within them and thus restore incentives.
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weights λi are banks who have a high “network centrality”: their returns have a relatively
large impact on aggregate bank capital.

Suppose the cost of funds is linear hence the aggregate bailout is M = K (γ) − R.
The results can readily be extended to a more general setting. The ex post optimality
constraint remains unchanged: the total bailout has to satisfy

∑
imi = M. The only

difference in the first best allocation is that ex ante, more systemic banks should invest
more in safety. For instance, when f is differentiable, the first best vector x∗ solves

f ′ (x∗i ) = −
(

1− p0

p0

)
λi (1 + γ) . (19)

Our baseline symmetric model is nested by setting Ω = 0 hence λi = 1 for all i. With
heterogeneity, the first best requires that higher λi banks must invest in higher safety
x∗i .

While the most natural interpretation of contagion involves weights λi > 1 so that
investment in safety by bank i has positive externalities on other banks’ returns, note
that nothing prevents weights λi from being lower than 1. This allows to capture in part
negative actions that banks can take against their competitors, which become especially
tempting in the presence of tournament incentives. In that case the first best solution is
to reduce the investment xi of such banks, and it can still be implemented through the
handicapped tournament described below.

Handicapped Tournament. We show next that only slight modifications to our
tournament mechanism are enough to accommodate the presence of this fairly general
form our financial contagion. Intuitively, under heterogeneous systemic risk, the ex
post bailout distribution must incentivize more systemic banks to hedge more. This is
achieved by promising such banks higher prizes upon winning the tournament, or raising
the effect of safety on their probability of “winning the tournament”. An asymmetric
or “handicapped” tournament contract can implement the first best, by simply ranking
banks ex post according to their systemic-weighted performance λ̃iri instead of their raw
return ri. For simplicity, consider the case of two banks:

Proposition 13. Suppose N = 2. Denote h = H ′ (λ1x
∗
1 − λ2x

∗
2) where H is the c.d.f.

of (λ2 − λ1) η + λ2ε2 − λ1ε1, and

λ̃1 = λ1 + Λ21 + det Λ− 1, λ̃2 = λ2 + Λ12 + det Λ− 1.
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Then the following contract implements the first best (x∗1, x
∗
2) credibly:

If λ̃1r1 > λ̃2r2 then bank 1 obtains m1 = K
2

+ 1+γ
2h
− r1 and bank 2 obtains m2 =

K
2
− 1+γ

2h
− r2;

If λ̃2r2 > λ̃1r1 then bank 1 obtains m1 = K
2
− 1+γ

2h
− r1 and bank 2 obtains m2 =

K
2

+ 1+γ
2h
− r2.

Example. To illustrate the result, suppose bank 1 is systemic so ω21 = ω 6= 0 but
bank 2 is not, ω12 = 0. Then the matrix Λ is

Λ =

(
1 0

w 1

)
.

The weights λi that characterize the first best allocation through (19) are given by

λ1 = 1 + w, λ2 = 1.

The weights λ̃i that make the first best allocation an equilibrium of the handicapped
tournament are related but slightly different, given by

λ̃1 = 1 + 2w, λ̃2 = 1.

If ω > 0 as in the standard interpretation of contagion, the socially efficient allocation
dictates that bank 1 invest more in safety in order to protect bank 2 indirectly. This
higher safety can be induced through a tournament that makes it easier for bank 1 to
earn the winning prize. If ω < 0 instead, bank 1 has a negative externality on bank 2,
and it is optimal to weaken its investment x1 by under-weighting its performance in the
tournament.

6.2 Contagious Bailouts

Finally, we consider the form of financial contagion that is hardest to overcome credibly.
The regulator observes returns r̃i such that r̃ = Λ (x + s + ε) as in the previous subsec-
tion, before deciding on a bailout policy. The key difference is that now we suppose that
bailout money itself is also “contagious”. It is each bank j’s post bailout equity rj +mj
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(and not just rj) that affects the value of other banks’ assets ri:

ri = xi +
∑
j 6=i

ωij (rj +mj) + s+ εi. (20)

Adding mi on each side and solving for r + m, we obtain in vector form

r + m = Λ (x + m + s + ε) = r̃ + Λm.

The seemingly small difference relative to (18) turns out to be crucial in terms of policy
implications. There is now an additional ex post asymmetry between banks: in the
first best allocation, not only should more systemic banks (i.e., those with a higher λi)
invest more in liquidity x ex ante; but as we will show, it is also efficient to focus the ex
post government intervention on the most systemic bank. In the crisis state, the value
function now writes

V

(∑
j

r̃j +
∑
i

λimi

)

The first best vector of safety x∗ is the same as in the previous section. Ex post, however,
since the shadow cost of public funds γ is the same for all banks i, a larger “bang for the
buck” is obtained in terms of stabilizing the financial sector when the marginal dollar
of public funds is allocated to the most systemic bank. Suppose that banks are strictly
ranked according to their systemic risk, with bank 1 being the unique most systemic
bank:

λ1 > λ2 ≥ · · · ≥ λn

and banks cannot be taxed to fund other banks, so that mi ≥ 0 (otherwise the result
would be strengthened further, as the planner would then redistribute from banks i ≥ 2

to bank 1). We have the following result regarding the optimal ex post intervention:

Lemma 5. For any realization of pre-bailout returns r̃, the optimal ex post policy is to
transfer the full aggregate bailout M to bank 1: m1 = M, and nothing to other banks:
mi = 0 for all i ≥ 2. The total bailout isM = K

λ1
−∑N

i=1 r̃i and decreases with λ1.

For a given realization of returns, the loss is decreasing in the largest systemic weight
λ1. Ex post, it is cheaper to inject funds through the most systemic bank, and the more
systemic it is, the cheaper the total cost of intervening. However, this will backfire ex
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ante: when bailouts are contagious, it becomes impossible to credibly punish bank 1 and
reward other banks.

Proposition 14. When bailout funds cannot be earmarked, the government has zero
commitment, and banks are differentially interconnected, the equilibrium reverts to max-
imal risk-taking by the most systemic bank, x1 = 0, and autarky-level risk-taking by other
banks: xi = x̃i ∀i ≥ 2. The equilibrium bailoutM = K

λ1
−∑N

i=2 λix̃i −
∑N

i=1 λi (s+ εi)

exceeds the first best bailout byM−M∗ = λ1x
∗
1 +

∑N
i=2 λi (x

∗
i − x̃), which is increasing

with λ1.

The optimal aggregate bailout goes entirely to bank 1 and fully offsets bank 1’s
idiosyncratic shock ε1; but it also depends on the realization of all the idiosyncratic
shocks {εj}j>1. When some other banks do poorly, even if bank 1 has not suffered a
negative idiosyncratic shock, the government still wants to inject more capital into the
system. Banks hit by idiosyncratic shocks receive nothing because it is cheaper to inject
the money through the most systemic bank.

The takeaway from this section is that financial contagion undermines credibility if
and only if bailout funds can flow through the system and affect the performance of
many banks besides the bank they are supposed to target. It is thus desirable to enforce
a form of earmarking, where bailout money can be used to rescue specific institutions
(in an asymmetric way, to provide incentives), but with some conditionality regarding
its use. For instance, bailout funds should not be used primarily to repay debt to other
banks (and it is always possible to bail out these downstream banks directly instead).

As a corollary, our model sheds new light on the “safe harbor” versus “automatic stay”
debate.9 It is of course well understood that safe harbor provisions can have negative
effects on incentives for risk management (Roe, 2011; Bolton and Oehmke, 2014). Our
model shows that the key issue is not the extent of moral hazard for the downstream
banks, whose health is affected by systemic banks; it is instead that heterogeneity in
systemic risk undermines commitment power, as it is not credible not to bail out the
most systemic institutions even when they perform poorly. Once again, a key take-away
from our analysis is the complementarity between micro regulations (such as the scope of

9Safe harbor provisions allow some creditors to walk away with their pledged collateral instead of
joining the line of other creditors in the bankruptcy process. In bankruptcy creditors’ claims on a failing
firm are normally subject to “automatic stay”. In this context, “safe harbor” is a super-seniority right
that exempts some liabilities from automatic stay. Safe harbor rights were introduced in 1982 for repo
contracts on treasuries but the Bankruptcy Abuse Prevention and Consumer Protection Act of 2005
added safe harbor provisions for repo loans based on mortgage collateral.
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safe harbor provisions) and macro regulation (systemic risk management under limited
commitment).

7 Conclusion

A standard takeaway of the literature is that without commitment, the government
is powerless at providing incentives, hence moral hazard must ensue. Our paper goes
against this common wisdom and proposes a way to bring back high-powered incentives,
even in a world with no commitment, by using tournaments.

Of course, once we do that, we also bring back the potential pitfalls of high-powered
incentives, as in the multitask framework of Holmström and Milgrom (1991). Tourna-
ments may induce banks to manipulate the return measures serving as inputs in the
mechanism, or to take actions undermining other banks’ performance. Yet if such issues
arise, they would signal the success of our scheme at overcoming the basic moral hazard
problem, and could be corrected by dampening incentives. Indeed, we considered such
an example in the context of financial contagion, showing how to properly handicap the
tournament when a bank imposes a negative externality on the system.

For theoretical clarity, we mostly framed the implementation in terms of standard
taxes and transfers. A broader interpretation is that the government should lean towards
policies that reward strong performers and punish weak ones, e.g., through differentiated
restrictions on executive compensation, clawbacks as we discussed in the context of
limited liability, or delays in bailouts and access to credit facilities.
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Appendix

A Micro-foundations for V and e

Our model’s value function V is meant to capture, in a tractable and unified way, a
variety of externalities that arise when banks are solvent but poorly capitalized. The
general formulation also highlights throughout the paper which key features matter for
the provision of incentives, e.g., the degree of differentiation between banks. Neverthe-
less, in this section we give two (non-exclusive) illustrations. The first example focuses
on banks’ liability side, through the money market disturbances that happen when hair-
cuts are imposed on creditors. The second example focuses on banks’ asset side: new
investment opportunities can emerge even during a crisis, but limited pledgeability pre-
vents banks from realizing these investments unless they bring enough equity/liquidity
into these states.

Money market instability. Suppose that when a bank’s equity falls below a thresh-
old eai, creditors start running, unless the equity is replenished to eai. The costs of
allowing for a run are too high (e.g., the illiquidity discount on assets in place is too
large), so banks must find a way to reach eai. In the short run it is difficult to do it by
issuing new shares, hence absent bailouts the only way to raise equity is to renegotiate
the existing debt down, to a new level d̃i such that airi − d̃i = eai that is

d̃i = airi − aie.

The renegotiation is approximately costless from the bank’s private viewpoint, so that
banks do not self-insure against these run events and only care about returns. But
renegotiation is socially costly, as it creates a financial stability externality

φ
(
di − d̃i

)
= φ (eai − ei)

where φ is increasing and weakly convex. For instance, if money market funds are
highly exposed to banks’ commercial paper, a debt write-down may trigger a run on
money market funds and further instability in money markets. The cost φ indexed how
“bailinable” the debt di is. Note that our goal here is not to provide deep foundations
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for limited bailinability: in practice this is a constraint taken as given by regulators,
and related to holdout problems or incomplete contracts. Summing over all banks, the
resulting value function is

V = −
∑
i

φ (eai − ei) .

Whether φ is concave or linear, and thus how good an approximation the pure systemic
risk provides, depends on other features of money markets, such as how diversified the
money market funds are. φ will be more concave if some funds’ holdings are extremely
concentrated in some particular banks’ debt, such as when the Reserve Primary Fund
broke the buck due to its exposure to Lehman’s commercial paper in 2008. φ will be
closer to linear if funds are well-diversified, as then the aggregate debt write-down will
be the most relevant variable.

New bank investments and limited pledgeability. Another natural foundation
comes from a standard model with liquidity shocks and limited pledgeability à la Holm-
strom Tirole. Banks have new investment opportunities (or equivalently liquidity shocks
they need to cover), which they can finance by borrowing against their future equity.
If equity is too low, even solvent banks will be constrained in their reinvestment scale,
which generates an externality V if the social planner cares about these projects.

Concretely, we unfold our baseline model’s date t = 1 into an intermediate date t = 1

and a final date t = 2. At the beginning of t = 1, banks’ assets in place ai that mature
at t = 2 have a value airi while debt di is also due at t = 2, so the value of their equity at
the beginning is ei = airi− di. There is a large supply of new investment opportunities:
an investment ki at t = 1 produces output f (ki) at t = 2 where f is weakly concave.

Banks must issue new debt li at some competitive rate ρ to finance these new in-
vestments. There is an upward sloping aggregate debt supply curve L (ρ). Assume the
output from these new investments is not pledgeable at all, while the output from the
assets in place is fully pledgeable. For instance, if limited pledgeability arises from a
model of moral hazard and private benefits, the assets in place may not require mon-
itoring or screening effort anymore once at t = 1, unlike the new investments. More
generally, as long as the proceeds from the assets in place are somewhat pledgeable and
the new projects are not perfectly pledgeable, equity ei may play a role to relax the
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date-1 financial constraint (Tirole, 2006). Banks solve

max f (ki)− ρli
s.t. ki ≤ ei +mi

ki = li +mi

For a given rate ρ the unconstrained level of investment k̄ solves

f ′
(
k̄ (ρ)

)
= ρ

k̄ (ρ) is decreasing in ρ if f is strictly concave; if f is linear equal to f (k) = ρ1k then
k̄ = kmax if ρ < ρ1 and can take any positive value if ρ = ρ1.

Given the credit constraint the investment of bank i is thus

ki = min
{
ei +mi, k̄

}
.

If the social planner values the return on new projects ki we can express the value
function V as

V {ei +mi} =
∑
i

min
{
f
(
k̄ (ρ)

)
, f (ei +mi)

}
where ρ itself depends on the vector {ei +mi} and is determined by the market clearing
condition for bank debt issued at t = 1:

L (ρ) =
∑
i

(
min

{
k̄ (ρ) , ei +mi

}
−mi

)
.

The simpler case of an exogenous interest rate ρ∗ is nested, corresponding to a perfectly
elastic supply curve ρ = ρ∗.10 When f is linear (more generally, when decreasing returns
are not at the bank level but at the aggregate level through f (

∑
ki)) the value function

simplifies to

V = min

{
L (ρ1) ,

∑
i

(mi + ei)

}
.

The maximal possible aggregate reinvestment is attained when all N banks are uncon-
10For general L, one can show that even taking into account the general equilibrium feedback on ρ,

V remains increasing in ei and it is concave if f is concave enough.

48



strained. It is given by K̄ = L (ρ̄) where the maximal interest rate ρ̄ solves

ρ̄ = f ′
(
L (ρ̄)

N

)
When f is linear then ρ̄ = ρ1. Thus as in our baseline model, there is a level e = L(ρ̄)

N

such that there is no externality (V does not increase with ei) if all banks have equity
ei ≥ e.
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B Tournaments with Heterogeneous Bank Size

In the general case with different bank sizes ai, bank i chooses its safety investment to
solve:

x̂i = arg max
xi≥0

p0f (xi) + (1− p0)

(
E [ri,s | xi] + E

[
mi,s (r)

ai
| x
])

. (21)

Suppose the conditions of Lemma 2 hold hence the first best safety x∗ does not depend
on size. Importantly, due to the credibility constraint the reward ∆ in the bonus-malus
tournament cannot depend on size either: the gain of one bank is the loss of another.
But if the tournament rule only compares raw returns to determine who wins and who
loses, larger banks will in general choose a lower level of safety than smaller banks,
because the potential prize ∆ is smaller as a fraction of their assets.

We can solve this issue by considering the following handicapped tournament

mi =

ai
A
M (K −R) + ∆ λiri,s > λjrj,s

ai
A
M (K −R)−∆ λiri,s < λjrj,s

(22)

that compares weighted returns λiri instead of raw returns to determine the bailout
allocation. Given λ = λ1

λ2
the best response function for bank 1 is

x̂1 = β1 (∆, λ, x2) = arg max
x1

p0f (x1) + (1− p0) (E [r1,s | x1] + Ω (x1, x2))

+ 2
∆

a1

∫
s

P [λr1,s > r2,s|x] psds,

while the best response function for bank 2 is

x̂2 = β2 (∆, λ, x1) = arg max
x2

p0f (x2) + (1− p0) (E [r2,s | x2] + Ω (x1, x2))

− 2
∆

a2

∫
s

P [λr1,s > r2,s|x] psds.

We thus look for a pair ∆, λ that implements the first best:

x∗ = β1 (∆, λ, x∗)

x∗ = β2 (∆, λ, x∗)
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To characterize when this is possible, we use a more specific example of returns:

ri = xi + s+ εi. (23)

Then

P [λx1 − x2 > (1− λ) s+ ε2 − λε1] = Hs (λx1 − x2;λ)

where Hs (·;λ) is the c.d.f. of (1− λ) s + ε2 − λε1. The marginal incentives from the
tournament for banks 1 and 2 are respectively

∂

∂x1

(
2

∆

a1

∫
s

Hs (x1, x2;λ) psds

)
= 2∆

λ

a1

∫
s

H ′s (λx1 − x2;λ) psds

∂

∂x2

(
−2

∆

a2

∫
s

Hs (x1, x2;λ) psds

)
= 2

∆

a2

∫
s

H ′s (λx1 − x2;λ) psds.

so as long as
∫
s
H ′s (λx1 − x2;λ) psds > 0 there exists a λ such that the two banks to

choose the same x∗.
Note that the condition

∫
s
H ′s (λx1 − x2;λ) psds > 0 imposes an upper bound on the

relative size of the two banks. If a1/a2 is too large, then no λ can generate first best
incentives for the larger bank and we are back to the moral hazard unavoidable in a
one-bank world.

Proposition 15. Suppose that N = 2, a1 ≥ a2, and returns follow (23) with εi dis-
tributed over [0, ε̄]. Then there exists

κ ∈
(

0,
ε̄

x∗ + inf s

)
such that a handicapped tournament (22) can implement the first best safety if and only
if

a1

a2

< 1 + κ.

Proof. λ = 1 implements the first best as a1
a2
→ 1. For λ = a1

a2
the tournament incentives

are the same while ∂Ω
∂x1

< ∂Ω
∂x2

hence bank 1 chooses a lower safety than bank 2. Hence
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we need λ > a1
a2
. We can compute

Hs (λx1 − x2;λ) =

∫ ε̄

0

Gε (λε1 + λx1 − x2 − (1− λ) s) dε1

H ′s (λx1 − x2;λ) =

∫ ε̄

0

gε (λε1 + λx1 − x2 − (1− λ) s) dε1

where Gε and gε are the c.d.f. and p.d.f. of ε1, respectively. Then for x1 = x2 = x∗

λε1 + λx1 − x2 − (1− λ) s ≤ ε̄⇔ ε1 ≤
ε̄− (λ− 1) (x∗ + s)

λ

Therefore∫
s

H ′s (λx1 − x2;λ) psds =

∫
s

(∫ ε̄

0

gε (λε1 + λx1 − x2 − (1− λ) s) dε1

)
psds

is negative if λ > 1 + ε̄
x∗+inf s

. This shows that if a1
a2

> 1 + ε̄
x∗+inf s

the handicapped
tournament cannot implement the first best.
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C Proofs

Proof of Proposition 1. First note that if R > K the solution is obviously M = 0.
We can therefore restrict our attention to R < K andM ≥ 0. Because V is concave. The
solution x∗ (θ, κ) to the problem maxx f (x− θ) + g (k − x) where f and g are concave
is increasing in θ and κ with slopes less than one, i.e., such that x∗ − θ is decreasing in
θ and k − x∗ is increasing in k. ThereforeM (R,K) is increasing in K − R with slope
less than one. The comparative statics with respect to γ come directly from the fact
that Γ (M ; γ) is increasing and super-modular. The fact that V is concave comes from
the fact that V is concave and the fact thatM has a slope less than 1. The definition
of K (γ) is the same as in the next example.

Proof of Lemma 1. First note that if R > K the solution is obviously M = 0. We
can therefore restrict our attention to R < K and M ≥ 0. To exploit the quasi-linear
preferences we change variable from M to M̂ ≡ M + R − K. We can rewrite the loss
minimization problem (6) as

max
M̂≥R−K

V
(
M̂
)
− γ

(
M̂ +K −R

)
If M̂ = R−K the solution is M = 0. If M̂ > R−K, then it solves

M̂ (γ) = arg max
M̂

{
V
(
M̂
)
− γM̂

}
which is negative and decreasing in γ. Since M = M̂ + K − R, we then get M =

K (γ) − R with K (γ) = M̂ (γ) + K. Putting the two cases together, we therefore get
M = max {0,K (γ)−R}.

Proof of Lemma 2. Suppose Gε does not depend on x. Define r̄ (x, s) = E [ri,s | x, s].
We have

x∗ = arg max
x≥0

p0

∑
i

f (xi) + (1− p0)

∫
s

∑
i

r̄ (xi, s) dP (s)

+
1

ai

∫
s

dP (s)

∫
ε

V
(∑

i

air̄ (xi, s) + ε−K
)
dḠε (ε)
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where Ḡε (ε) is the convolution of the distributions Gε. It does not depend on x. There-
fore

1

ai

∂

∂xi
E [V (R) | x, s] = r̄x (xi, s)E [V ′ (R) | x, s]

and the optimal choice of xi does not depend on the size of bank i.

Proof of Lemma 3. We use the standard notations R−i =
∑

j 6=i ajrj,s and

ΦN (R | x) = P
(
R̃ < R | x

)
=

∫
s

P

(
N∑
i=1

airi,s < R | x, s
)
psds

=

∫
s

P (a1r1,s < R−R−1 | x, s) psds

=

∫
s

∫
R−1

G

(
R−R−1

a1

| x1, s

)
dΦN−1 (R−1 | x−1, s) psds

Since G (. | xi, s), is decreasing in xi, so is ΦN (R | x). Since M is decreasing in R,
Ω (xi; x−i) in decreasing in xi for any i. Since G (. | x, s) is C1 in x we have

∂ΦN (R | x)

∂xi
=

∫
s

∫
R−1

∂G
(
R−R−1

a1
| xi, s

)
∂xi

dΦN−1 (R−i | x−i, s) psds

is negative and increasing in x−i since ΦN−1 (. | x−i, s) is decreasing in x−i. Therefore
∂Ω
∂xi

is increasing in x−i.

Proof of Proposition 3. (i) Because ∂Ω
∂xi

is increasing in x−i. (ii) Because Ω is
decreasing. (iii) BecauseM is decreasing in γ hence Ω is super-modular in (xi, γ). (iv)
follows from the fact that f is maximized at x = 0.

Proof of Proposition 4. The objective function is super-modular in (x1,∆) since
H is increasing in x1 therefore x1 is increasing in ∆. Suppose that x2 = x∗. Clearly
x̂1 (0, x∗) < x∗. On the other lim∆→∞ x1 (∆, x∗) = 1. Since x1 is continuous there is a
unique ∆∗ such that x1 (∆∗, x∗) = x∗. The same holds for x2 by symmetry.

Proof of Proposition 6. The proof has two steps. Let xmax be the maximum im-
plementable level of safety. The first step is that the planner can always improve
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upon purely private incentives. Any bailout function with mi (ri < med (r)) = 0 and
mi (ri > med (r)) = 2M/N satisfies x̂i > x̃. Therefore xmax > x̃. The second step is
that when γ → 0 the government can fully insure downside risk: limγ→0 V = V̄ and
limγ→0 x

∗ = x̃. Therefore limγ→0 x
∗ < xmax.

Proof of Proposition 7. Let us consider the implementation of a symmetric equilib-
rium x. When all banks make the same choice the aggregate return does not depend on
the random selection of the groups H and L:

R = A (s+ hx) .

where h = NH/N is the probability that any particular bank ends up in group H. In
particular, the first best solves

x∗ = arg max
x≥0

p0Af (x) + (1− p0)A (s+ hx) + E [V (As+ Ahx−K)] .

Let us now consider incentive constraints. If one bank deviates, the aggregate return
depends both on s and on the group selection. Define X̃H =

∑
i∈H xi. The return is

then
R̃ = As+ ahX̃H .

If a bank deviates it will choose x = 0 so that it can hide among the legitimate banks
of group L. Because banks’ outcomes are binary, the bailout takes the simple form
mL = aµL for group L̃ (banks with low returns) and mH = aµH to group H̃ (banks with
high returns). Therefore the credibility constraint is(

N − ÑH

)
aµL + ÑHaµH =M

(
K − R̃

)
.

Consider the incentive constraint of bank 1 given that all the other banks play x∗. If
bank 1 chooses x1 = x∗ its expected payoffs are

p0af (x) + (1− p0) a (s̄+ hx+ E [(1− h)µL (s) + hµH (s)])

If bank 1 instead chooses x1 = 0 its expected payoffs are

p0af (0) + (1− p0) a (s̄+ E [(1− h)µL (s) + hµL (s,NH − 1)])
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because ex post with probability 1−h it belongs to group L and thus the fact that x = 0

does not matter. In this state nobody (except bank 1) is aware of the deviation, neither
ex ante nor ex post and the payoff must be the same µL (s) as in equilibrium. With
probability h it belongs to group H. In that case the planner learns that at least one
bank has deviated as the number of high types, ÑH = NH − 1, is not NH as expected.
The incentive constraint of bank 1 is therefore

(1− p0)h (x+ E [µH (s)− µL (s,NH − 1)]) > p0 (f (0)− f (x)) (24)

Minimizing µL (s,NH − 1) is good for incentives. If the planner can lower the return
µL sufficiently, it can implement the first best, i.e., satisfy (24) with x = x∗. With
limited liability, the first best may not be implementable. The limited liability constraint
depends only on the return of bank i, not on NH . Therefore without loss of generality
we can write µL (s) which is either 0 under strict limited liability, or µL = d/a− s under
weak limited liability. Once we have minimized µL we find the maximum value µ∗H using
the time consistency constraint hµ∗H = M/A − (1− h)µL (s) or h (µ∗H (s)− µL (s)) =

M/A− µL (s) and the IC constraint (24) becomes

(1− p0) (hx+ E [M (s) /A− µL (s)]) > p0 (f (0)− f (x)) .

We know thatM (s) /A is decreasing in γ so it is immediate that the IC improves when
γ decreases. We also know that M/A is decreasing in A. Under strict LL we have
µL = 0 and know thatM increases with the capital shortfall K−R = eA+ d

a
A−R. M

is therefore increasing in d/a and the IC tightens when ex ante leverage is lower. Under
weak liability, on the other hand, we have µL = d/a− s and since the slope ofM is less
than one we have that M (s) /A − µL (s) is decreasing in d/a. A lower leverage then
loosens the IC constraint.

Proof of Proposition 8. As above the incentive constraint is

(1− p0) (hx+ E [M (s) /A− µL (s)]) > p0 (f (0)− f (x)) .

Increasing leverage d/a has an ambiguous effect on incentives because it increases the
bailout received by both strong and weak banks.
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On the one hand, higher leverage increases the minimal transfer µL(s) = max
{
d
a
− r,−χr

}
:

∂E
[
max

{
d
a
− r,−χr

}]
∂ (d/a)

= P

(
d

(1− χ) a
− hx

)
where P (x) =

∫
s≤x psds. Hence the effect of d/a on µL is stronger if χ is higher. In the

limit χ→ 1, we recover the case of weak LL and
∂E[max{ da−r,−χr}]

∂(d/a)
→ 1.

On the other hand,

∂ E [M(s)/A]

∂(d/a)
= E

[
M′

(
eA+

d

a
A−R

)]
= P

(K (γ)

A
− hx

)
.

Thus, starting from leverage d/a, locally tightening the leverage constraint (i.e., decreas-
ing d/a) relaxes the incentive constraint if and only if

P

(
d

(1− χ) a
− hx

)
> P

(K (γ)

A
− hx

)
that is, if the fire sale discount in case of crisis is deep enough:

χ > χ̂ = 1− A

K (γ)

d

a
.

Proof of Proposition 9. Let us start from a marginal change. Taking the derivative
of (11) we get

dV

dαij
= (v (yj)− v (yi)− (yj − yi) v′ (yj))V ′ (.)− τ

This formula contains most of the economics of mergers in our model. If τ → 0, a
marginal asset transfer increases welfare if and only if yj > yi and the most attractive
first merger is the one between the two furthest banks i = arg minl yl and j = arg maxl yl.
This then suggests the following algorithm starting at k = 0 with the initial allocation
{ai, ei}. Define

i(k) ≡ arg min
at>0,yt<0

y
(k)
t

J (k) ≡ arg max
t
y

(k)
t

j
(k)
2 ≡ arg max

t/∈J(k)
y

(k)
t
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In words, i(k) is the worst bank among the ones with positive assets and negative surplus
(pick any one in case there is a tie), J (k) is the set of best banks, and j(k)

2 the next best
one. Let yc (i, j, α) be the capital combination function

yc (i, j, α) =
αi,jyi + ajyj
αi,j + aj

The algorithm is then

1. Compute i(k), J (k), j
(k)
2 . If i(k) ∈ J (k), stop. Otherwise proceed.

2. If yc
(
i(k), J (k), a

(k)

i(k)

)
> y

(
j

(k)
2

)
then transfer uniformly all the assets from i(k) to

the banks in J (k). Set a(k+1)

i(k)
= 0 and y

(
J (k)

)
= yc. Repeat step 1.

3. Otherwise define α such that yc
(
i(k), J (k), α

)
= y

(
j

(k)
2

)
, transfer α, set a(k+1)

i(k)
=

a
(k)

i(k)
− α and y

(
J (k)

)
= y

(
j

(k)
2

)
. Repeat step 1.

It is easy to check that this algorithm provides the welfare V
(
Av
(
E−eA
A

))
− τA−. The

set of failed bank N− decreases until either N− = ∅ or all the banks have the same
negative capital surplus. When E > eA the algorithm stops when A

(k)
− = 0, having

relocated all failed assets to healthy banks. Capital is not typically equalized across all
banks, but since all remaining banks are well capitalized we get V̄ . When E < eA the
algorithm does not stop until all the banks have the same capital ratio E−eA

A
. In both

cases the algorithm never transfers more than A−.

Proof of Proposition 10. If τ > τ ∗ and mergers are not used, then the equilibrium
payoff of bank 1 under safety x is

p0f (x) + (1− p0)

[
h

(
x+ s− d

a

)
+ (1− h) e

]
and the only equilibrium features x1 = x2 = x̂ as in our general Proposition 3. Mergers
are too costly and only full bailouts are credible, so we are back into the full moral
hazard case with maximal risk-taking.

Contrast this with the case with mergers. If τ ≤ τ ∗ then the equilibrium payoff under
the first best safety x∗ is

p0f (x∗) + (1− p0)

[
h2

(
x∗ + s− d

a

)
+ h (1− h)

(
x∗ + 2

(
s− d

a

))
+ (1− h)2 e

]
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The first term in the bracket denotes the expected payoff if both banks succeed, and
thus there is no government intervention. The second term denotes the expected payoff
if bank 1 succeeds but bank 2 does not, hence bank 1 receives a surplus s− d

a
from the

merger. The third term captures the case in which both banks get fully bailed out. If
the unsuccessful bank 1 is merged to the better bank 2 then the payoff is zero.

If bank 1 instead chooses the minimal safety x1 = 0 then its expected payoff is
p0f (0) + (1− p0) (1− h) e. Bank 1 only obtains a positive payoff e when bank 2 also
fails hence both are bailed out, which happens with probability 1 − h. Denote ∆0 the
difference between the payoff under minimal safety x = 0 and the payoff under first best
safety x∗.11 The incentive compatibility constraint holds if

∆0 ≤ (1− p0)

[
e (1− h (1− h)) + h (1− h)

(
s− d

a

)]
(25)

There exists γ̂ > 0 such that the joint bailout condition (13) and the incentive compat-
ibility constraint (25) both hold for γ < γ̂.

Proof of Lemma 4. Suppose the government has spent M ≥ 0 in bailout funds with
resulting sets of banks N− and N+. If Y+ = 0, then no merger takes place and further
bailouts of distressed banks happen if v > Γ′ (M). If Y+ > 0, a merger takes place if
there is an i such that τ < −yi min (v,Γ′).

Consider a bank with yi < 0. If the government does nothing the value is V0 =

V−i + vayi − Γ (M). If the government bails out the bank by some small amount m the
value becomes V = V−i + v (ayi +m) − Γ (M) − Γ′ (M)m = V0 + (v − Γ′ (M))m so a
(partial) bailout improves welfare if and only if v > Γ′ (M). Consider a merger instead.
Consider next the sale of α of ai. If Y+ = 0 the acquiring bank has yj ≤ 0 so the value
becomes V = V−i+v (ai − α) yi+vαyi−τα−Γ (M) = V0−τα. A simple merger reduces
welfare. A merger cum recap would lead to V0 + (v − Γ′ (M))m − τα which may be
positive but is always worse than a simple bailout.
If Y+ > 0 then a merger leads to V = V−i + v (ai − α) yi− τα−Γ (M) = V0− vαyi− τα
which is higher than V0 if −vyi > τ . Finally, a full merger of bank i α = ai is better
than a full bailout mi = −aiyi if −yiΓ′ (M) > τ .

11We have ∆0 = p0 [f (0)− f (x∗)]− (1− p0)
[
h
(
x∗ + s− d

a

)
− e
]
> 0.
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Proof of Proposition 11. Setting a high enough slope δ can achieve the first best:
given δ each bank maximizes

p0f (xi) + (1− p0) δE

[
ri

(
1− 1

N

)
− 1

N

∑
j 6=i

rj | xi
]

while the first best safety maximizes

p0

∑
i

f (xi) + (1− p0) (1 + γ)E [R|x]

hence the first best can be implemented using (15) with

δ =
1 + γ

1− 1
N

. (26)

The higher N , the lower is the required δ; when N = 1, relative performance evaluation
cannot help.

To simplify and focus on the core idea we assume that the ex post dispersion in bank
returns is small relative to the average return (i.e., idiosyncratic risk is small relative to
aggregate risk). To second order in the deviation of returns around the mean we have

∑
(ei +mi)

η−1
η = Ne

η−1
η
∗

(
1− η − 1

η
× 1

2η

(
δ

e∗

)2

σ̄2
r

)

where σ̄r =
√

1
N

∑
i (ri − r̄)

2 is the standard deviation of returns, equal to the population
standard deviation σr to first order. Setting a positive slope δ generates a welfare loss
relative to the ex post efficient allocation ∆V = V {e∗} − V {ei +mi} which to second
order writes

∆V = V ′ {e∗}N
η − 1

2η2
e

1− 1
η

∗

(
δ

e∗

)2

σ2
r

=
N

2ηe∗
δ2σ2

rγ

by definition of e∗. Therefore ex post ε-efficiency allows to set any slope δ such that
∆V ≤ ε or

δ ≤ δ̄ =

√
2e∗
Nγσ2

r

ηε. (27)
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Combining (26) and (27), we find that a sufficient condition to implement the first best
is

ηε ≥ N(
1− 1

N

)2

(1 + γ)2 γσ2
r

2e∗
.

Note that e∗ depends on η, and the dependence can be non-monotone. However, from
(14) we have that e∗ converges to 0 as η → 1 and to some positive constant k (γ) weakly
decreasing in γ (solving V ′ {k} = γ) as η → ∞. Thus for any α ∈ (0, 1) there exists
ηα > 1 such that for η ≥ ηα, e∗ > k (1− α) thus we need

η ≥ max

{
ηα,

1

ε
× N(

1− 1
N

)2

(1 + γ)2 γσ2
r

2k (γ) (1− α)

}
.

Setting α high enough, the second term dominates, which leads to Proposition 11.

Proof of Proposition 12. We guess and verify that the ex post symmetric allocation
e1 +m1 = e2 +m2 = e∗ is not renegotiation-proof, that is e∗ < ē1. Then it must be that
the constraint r1 − d + m1 ≥ ē1 binds, hence bank 1 gets ē1 and bank 2 gets e2 + m2

such that
φ2 (ē1, e2 +m2)× V ′ (φ (ē1, e2 +m2)) = γ

From the renegotiation-proofness principle, we can restrict attention to contracts with
ē2 = e2 +m2. Given the return structure, the first best is implementable if ē1, ē2 satisfy:

h · (ē1 − ē2) = 1 + γ

where h = H ′(0) and H is the c.d.f. of ε2 − ε1. Therefore ē2 = ē1 − 1+γ
h
. We then look

for a solution ē1 to the equation

V ′
(
φ

(
ē1, ē1 −

1 + γ

h

))
=

γ

φ2

(
ē1, ē1 − 1+γ

h

) .
As ē1 increases from 0 to ∞, the left-hand side decreases from limy2→0 V

′ (φ (1+γ
h
, y2

))
to 0 and the right-hand side increases from limy2→0

γ

φ2( 1+γ
h
,y2)

to γ.
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Proof of Proposition 13. Suppose that bank i gets mi = K
2

+ ∆− ri and bank j 6= i

gets mj = K
2
−∆− rj if and only if λ̃iri > λ̃jrj where

λ̃i = λi + Λji + det Λ− 1

Then λ̃1, λ̃2 solve the system

λ̃1Λ11 − λ̃2Λ21 = λ1

λ̃2Λ22 − λ̃1Λ12 = λ2

Therefore

P
[
λ̃1r1 > λ̃2r2

]
=P
[(
λ̃1Λ11 − λ̃2Λ21

)
(x1 + s+ ε1) >

(
λ̃2Λ22 − λ̃1Λ12

)
(x2 + s+ ε2)

]
=P [λ1 (x1 + s+ ε1) > λ2 (x2 + s+ ε2)]

=P [λ1x1 − λ2x2 > z]

where z = (λ2 − λ1) s + λ2ε2 − λ1ε1 has a conditional c.d.f. H. Therefore bank 1’s
optimal effort x1 solves

max
x1

p0f (x1) + (1− p0) {H (λ1x1 − λ2x2) 2∆}

leading to the first order condition

f ′ (x1) =
− (1− p0)

p0

λ1H
′ (λ1x1 − λ2x2) 2∆.

Similarly, bank 2’s optimal effort x2 solves

max
x2

p0f (x2) + (1− p0) [1−H (λ1x1 − λ2x2)] 2∆

hence
f ′ (x2) =

− (1− p0)

p0

λ2H
′ (λ1x1 − λ2x2) 2∆.

Therefore, to implement effort levels (x∗1, x
∗
2) that solve f ′ (x∗i ) = −(1−p0)

p0
λi (1 + γ) we

need

∆ =
1 + γ

2H ′ (λ1x∗1 − λ2x∗2)

62



D A Parametric Example

In this section we consider a simple parametric example that can be solved in closed form
and illustrates our general results. We also use a case of this model in Figure 4 when
studying renegotiation-proof implementation. There are two banks, with sizes a1 ≥ a2.
The value function is

V (R +M) = min

{
0,− v

β
(K −R−M)β

}
, β ≥ 1

and the cost of funds is linear Γ (M) = γM . There is only one systemic state, so we
omit the s notation. Returns in the systemic state are linear in safety

ri = xi + εi

with εi uniform between 0 and ε̄. The normal state return is

f (xi) = −f x
2
i

2

Optimal bailout. The optimal bailout in the systemic state is

M (K −R) = max

{
0, K −R−

(γ
v

)β−1
}

Hence the optimized value is

V (R) = V (R +M)− γM

=

−
v
β

(
γ
v

)β(β−1) − γ
[
K −R−

(
γ
v

)β−1
]

if R ≤ K −
(
γ
v

)β−1

min
{
− v
β

(K −R)β , 0
}

otherwise

We assume that these returns are low enough that a bailout is always needed in the
systemic state: A (supx+ 1) ≤ K −

(
γ
v

)β−1 hence

V (R) = − v
β

(γ
v

) β
β−1 − γ

[
K −R−

(γ
v

)β−1
]
.
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First Best. The first best safety x∗ is the same for both banks and solves

x∗ = arg max
x

p0Af (x) + (1− p0) (Ax+ E [V (R) |x])

= arg max
x

p0Af (x) + A (1− p0) (1 + γ)x

hence

x∗ =
q (1 + γ)

f

where q = 1−p0
p0

is the odds ratio of a crisis. x∗ is increasing in q and increasing in γ.

Moral hazard with symmetric bailouts. Suppose bailouts are proportional to bank
size:

mi =
ai
A
M (K −R) .

Then bank i solves

x̂i = arg max
x

p0aif (xi) + (1− p0)

aixi +
ai
A

[
K − aixi − ajxj −

(γ
v

)β−1
]

︸ ︷︷ ︸
=E[M(K−R)|x]


Thus

x̂i =
q

f

(
1− ai

A

)
< x∗i .

With symmetric bailouts, both banks take excessive risk, and the moral hazard problem
is worse for the larger bank (high ai/A). This is consistent with Dávila and Walther
(2020)’s results on symmetric bailouts with small and large banks.

Tournament with bonus-malus. With symmetric banks ai = a, the credible tour-
nament described in Section 3 with

∆ =
1

2
aε̄

(
γ +

1

2

)
implements the first best safety. ∆ is increasing in ε̄: noisier returns require larger
rewards.
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With asymmetric banks, under the condition

a1

a2

( a1
A

+ γ
a2
A

+ γ

)
≤ 1 +

ε̄

x∗
= 1 +

ε̄f

q (1 + γ)

the handicapped tournament (22) with

λ =
a1

a2

( a1
A

+ γ
a2
A

+ γ

)
∆ =

1
2
a1ε̄
(
γ + a1

A

)
1− (λ− 1)x∗/ε̄

implements the first best safety.

Limited liability. As in the main text we consider a tournament rule that satisfies
strong limited liability by transferring the total bailoutM to bank 1 if λr1 ≥ r2 and to
bank 2 otherwise. Bank 1 solves

max
x1

p0a1f (x1)+(1− p0)

(
a1x1 +

[
K − a1x1 − a2x2 −

(γ
v

)β−1
] ∫ ε̄

0

Gε (λε1 + λx1 − x2) dε1

)
where Gε is the c.d.f. of ε1. With a1 = a2 = a and λ = 1 the maximal implementable
safety xmax satisfies

p0f
′ (xmax) + (1− p0)

[
1

2
+
K − Axmax −

(
γ
v

)β−1

a
min

{
1,

1

ε̄

}]
= 0

or

xmax =
q

f + 2qmin
{

1, 1
ε̄

} [1

2
+
K −

(
γ
v

)β−1

a
min

{
1,

1

ε̄

}]
which is indeed decreasing in γ (and above x∗ for γ low enough) and in bank size a.
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