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Abstract

I quantify the causal impact of macroeconomic uncertainty on expected returns.

The exogenous timing of macroeconomic announcements provides an instrument for

uncertainty. Using realized returns and daily measures of macroeconomic uncertainty,

I find announcements resolve uncertainty, which causes expected returns to fall. Under

weak assumptions, macroeconomic uncertainty explains at most 32% of expected return

variation. Under the additional, empirically justified assumption that other expected

return drivers do not correlate with announcement timing, macroeconomic uncertainty

explains 10% of expected return variation and a one standard deviation increase in

macroeconomic uncertainty raises long-run expected returns by 173 basis points.
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“There is nothing investors hate more than uncertainty. Right now, that is all there

is...The spiraling fears have caused financial carnage.”

— New York Times. March 6, 2020.

What variables cause discount rate variation? This question is fundamental to asset

pricing. Many models suggest that macroeconomic uncertainty — the subjective conditional

covariance of dividend growth with the stochastic discount factor — should impact expected

returns (e.g. Bansal & Yaron (2004); Bollerslev, Tauchen & Zhou (2009); Bansal et al. (2014);

Campbell et al. (2018)). Furthermore, as is often highlighted by the financial press, there

is a strong contemporaneous negative correlation between uncertainty and realized returns,

which is consistent with uncertainty raising discount rates. On the other hand, the empirical

evidence is mixed. Some work finds that investors will pay to hedge political uncertainty

(Kelly, Pástor & Veronesi (2016)) while other work implies that hedging uncertainty shocks

earns positive average returns (Dew-Becker, Giglio & Kelly (2019)). Additionally, a large

related literature fails to find a strong risk-return tradeoff between volatility and future re-

turns, which suggests uncertainty does not impact discount rates (Campbell (1987); Glosten,

Jagannathan & Runkle (1993); Whitelaw (1994); Moreira & Muir (2017)). Moreover, even

if one believes that increases in macroeconomic uncertainty do raise expected returns, the

size of this effect still remains unclear. How much would expected returns rise due to an

exogenous one standard deviation increase in macroeconomic uncertainty? What proportion

of expected return variation does macroeconomic uncertainty account for? Although these

questions quantify crucial structural parameters in asset pricing models, the field does not

have definitive answers to them.

The fundamental issue in answering these questions lies in the difficulty of finding ex-

ogenous changes in uncertainty. Identifying causality in asset pricing and macrofinance

proves extremely challenging in general because the aggregate quantities of interest are often

jointly determined in equilibrium. Yet the identification problem in this setting is further

exacerbated by the positive correlation of macroeconomic uncertainty with many other coun-
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tercyclical variables. How does one credit a rise in discount rates to an increase in macroeco-

nomic uncertainty instead of risk aversion or intermediary leverage when all three often move

together at monthly or quarterly frequencies? Most previous work has sought to disentangle

these variables at low frequency using structural models or vector autoregressions (VARs).

Both these approaches, however, require strong structural assumptions.

My main contribution in this work is to propose a novel identification strategy to isolate

exogenous variation in macroeconomic uncertainty at high frequency. In particular, I exploit

the exogenous timing of prescheduled macroeconomic announcements as an instrument for

uncertainty. The Bureau of Economic Analysis (BEA), Bureau of Labor Statistics (BLS),

and Federal Reserve all schedule macroeconomic announcements up to a year in advance in

a predictable manner. While the content of these announcements is surely endogenous to

the contemporaneous state of the economy, the timing is not. The only source of variation

I exploit is the timing of prescheduled announcements, not their content.

Moreover, since these announcements are prescheduled, investors cannot ex-ante expect

their macroeconomic expectations to change in a predictable direction on announcement

dates. Doing so would violate the martingale property of conditional expectations. For

example, on April 28, 2020, investors cannot expect their second-quarter GDP growth ex-

pectations to predictably move when the BEA releases first-quarter GDP growth statistics on

April 29, 2020. Any such forecasted changes would already be incorporated into conditional

expectations. Only investors’ uncertainty can depend on announcement timing.

Controlling for contemporaneous shifts in first moments represents a significant obsta-

cle to identifying causal effects of uncertainty in many applications (Alfaro, Bloom & Lin

(2018); Baker, Bloom & Terry (2020); Barrero, Bloom & Wright (2017)). The prescheduled

nature of these macroeconomic announcements ensures that conditional expectations can-

not predictably move on announcement days. The timing of prescheduled macroeconomic

announcements therefore provides a valid instrument for uncertainty.

Thus, any movement in asset prices induced by the timing of announcements is due
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to changes in uncertainty. Yet changes in uncertainty can potentially affect asset prices

through multiple channels. For example, a decrease in uncertainty about second-quarter

GDP growth may lower expected returns through both a decrease in overall macroeconomic

uncertainty and through a decrease in risk aversion. In reduced form, however, both these

effects arise from the resolution of uncertainty. If changes in risk aversion do not correlate

with announcement timing, then this entire reduced-form effect operates through the channel

of macroeconomic uncertainty.

I demonstrate that the announcement resolution of uncertainty causes decreases in ex-

pected returns. Specifically, I construct a daily measure of macroeconomic uncertainty by

projecting the monthly Jurado, Ludvigson & Ng (2015) macroeconomic uncertainty index

onto the daily implied volatilities of a set of options, as done by Dew-Becker, Giglio & Kelly

(2019). This daily measure of macroeconomic uncertainty falls by an average additional

0.21 standard deviations on GDP, unemployment, Consumer Price Index (CPI), Producer

Price Index (PPI), Employment Cost Index, and scheduled FOMC announcement days as

compared to non-announcement days. Thus, the timing of announcements is a relevant

instrument for macroeconomic uncertainty.

Next, I quantify the causal effect of this exogenous resolution in uncertainty on expected

returns. In particular, I consider daily changes in long-run expected returns (in the sense of

Cochrane (2008)). Given the binary announcement timing instrument, the effect of the an-

nouncement resolution of uncertainty on long-run expected returns is the difference between

the announcement-day and non-announcement day average changes in long-run expected

returns. Since announcements are prescheduled, the law of iterated expectations implies

that this average difference in long-run expected return changes approximately equals the

negative difference between announcement-day and non-announcement day average realized

returns. A reduced-form regression of negative returns on announcement timing indicates

that the announcement resolution of uncertainty causes an 7.8 basis point decrease in long-

run expected returns. Moreover, this estimated parameter implies that macroeconomic un-

4



certainty can account for at most 32% of the daily variation in long-run expected returns.

As discussed above, this upper bound accounts for the possibility that this reduced-form

“announcement resolution of uncertainty effect” affects expected returns through multiple

channels (e.g. macroeconomic uncertainty and risk aversion).

This upper bound can be tightened. If no driver of expected returns but macroeco-

nomic uncertainty correlates with the announcement timing, then the entire reduced-form

announcement resolution of uncertainty effect must go through the channel of macroeconomic

uncertainty. Returning to the example from above, if the announcement-timing-induced de-

crease in uncertainty about second-quarter GDP growth only lowers overall macroeconomic

uncertainty and does not affect risk aversion, then we can attribute the entire announcement-

day average change in expected returns to the fall in macroeconomic uncertainty. I provide

evidence that other theoretically-motivated expected return drivers do not correlate with

the timing of announcements. Whereas macroeconomic uncertainty declines significantly on

average on announcements, proxies for risk-aversion, disaster risk, and intermediary leverage

do not correlate with announcement timing. In this case, one can conclude that macroe-

conomic uncertainty accounts for 10% of variation in long-run expected returns and that a

one standard deviation increase in the level of macroeconomic uncertainty causes long-run

expected returns to rise by 173 basis points.

Furthermore, I provide evidence of external validity for my main results by demonstrating

that macroeconomic uncertainty also explains a significant amount of price variation in other

asset classes, specifically government bonds, corporate bonds, and the variance risk premium.

In this paper I measure the total effect of macroeconomic uncertainty on expected returns.

The definition of macroeconomic uncertainty I use throughout this paper encompasses both

the time-varying physical volatility and posterior variance of macroeconomic fundamentals.

Moreover, in general many different macroeconomic variables contribute to macroeconomic

uncertainty. This paper focuses on overall macroeconomic uncertainty, not uncertainty in

any particular macroeconomic variable (e.g. “inflation uncertainty”, “monetary policy un-
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certainty”, or “financial market uncertainty”). The general identification strategy I present

can be paired with more specific uncertainty measures to determine which types of uncer-

tainty fall on announcements and cause decreases in expected returns. For example, recent

work suggests that at high frequencies only posterior variance, not macroeconomic volatility,

changes (Ai, Han & Xu (2021)). Decomposition of overall macroeconomic uncertainty into

more granular measures (e.g. either physical macroeconomic volatility versus posterior vari-

ance or uncertainty about specific macroeconomic variables) represents an important and

promising line of work that I leave to future research.

While measuring expected returns and macroeconomic uncertainty proves difficult, the

general identification strategy I present can be used regardless of the particular measures

employed. I consider many alternative expected return, expected cash flow growth, and

macroeconomic uncertainty time series to ensure my results prove robust to alternative mea-

surement techniques. Specifically, measuring expected returns using the options-implied

Martin (2017) equity premium lower bound and Gao & Martin (2019) log equity premium

lower bound delivers quantitatively similar results to the baseline analysis. Measuring ex-

pected cash flow growth using the Pettenuzzo, Sabbatucci & Timmermann (2020), Gao &

Martin (2019), and Gormsen & Koijen (2020) measures (extracted from dividend announce-

ments, index options, and dividend strips, respectively) reveals that finite-sample variation

in cash flow growth shocks does not drive my results. Measuring macroeconomic uncer-

tainty at different horizons as well as by simply using S&P 500 implied volatility does not

change the baseline results using the projected Jurado, Ludvigson & Ng (2015) one-year

horizon macroeconomic uncertainty index. Any other expected return and macroeconomic

uncertainty measures could also be used with my identification strategy.

Moreover, the baseline results prove robust to taking subsets of different announcement

types. In particular, dropping all FOMC announcements from the sample does not under-

mine the baseline results.

The remainder of the paper proceeds as follows. The next section reviews the related
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literature. Section 1 develops my identification strategy. Sections 2 and 3 discuss my data

and high-frequency measurement methodology. Section 4 contains my main empirical results.

Section 5 provides evidence from other asset classes. Section 6 details the robustness checks

I conduct. Lastly, Section 7 concludes. The internal Appendix contains generalizations of

the results from Section 1. The Internet Appendix contains technical details and additional

robustness checks.

Related Literature

This paper relates to four literatures: empirical identification of causality in asset pricing

and macrofinance, investigations of macroeconomic and asset pricing effects of uncertainty,

research into the drivers of expected returns, and studies of asset pricing dynamics around

macroeconomic announcements.

First, this paper contributes to a small but growing literature on identifying causality in

asset pricing and macrofinance via plausibly exogenous variation as opposed to strong struc-

tural assumptions (Nakamura & Steinsson (2018) discuss the benefits of this paradigm shift).

The oldest work in this area identifies asset price effects of demand shocks by estimating asset

price elasticities.1 More recent work has used the exogenous timing of low-frequency events

to identify the effects of intermediary constraints on asset prices (Du, Tepper & Verdel-

han (2018)) and sustainability preferences on investment decisions (Hartzmark & Sussman

(2019)). Cieslak & Pang (2020) employ sign restrictions and asset-class heterogeneity to

identify common shocks to stock and bond prices at high-frequency. In this paper I propose

an identification strategy that exploits the exogenous timing of macroeconomic announce-

ments at high frequency as an instrument for uncertainty.

Second, most of the empirical literature examining the effects of uncertainty in macroe-

conomics and asset pricing either uses structural vector autoregressions (VARs) for identifi-

cation or provides correlative evidence from predictive regressions or cross-sectional trading
1Shleifer (1986); Harris & Gurel (1986); Koijen & Yogo (2019); Gabaix & Koijen (2020).

7



strategies. Many macroeconomics papers find contractionary effects of uncertainty using

VARs.2 In asset pricing, Segal, Shaliastovich & Yaron (2015) find increases in uncertainty

raise risk premia in VARs, while Bekaert, Engstrom & Xing (2009) and Bekaert, Engstrom

& Xu (2019) find the same result in structural models. Bali & Zhou (2016) and Brogaard &

Detzel (2015) show uncertainty positively predicts equity returns.3

Identification proves difficult in these areas. Low-frequency VARs require strong struc-

tural assumptions to argue for identification.4 Predictive regressions and cross-sectional

analyses provide only suggestive evidence. Several papers have made strides toward isolating

exogenous variation in uncertainty. Barrero, Bloom & Wright (2017) and Alfaro, Bloom &

Lin (2018) both use cross-sectional heterogeneity in firm-level exposures to multiple macroe-

conomic variables to identify the effects of macroeconomic uncertainty on real outcomes,

while Baker, Bloom & Terry (2020) uses randomly occurring events such as terrorist attacks

and natural disasters to instrument for uncertainty. My approach does not require firm-level

data and provides a cleaner instrument for uncertainty (e.g. terrorist attacks may reduce

growth directly through heightened risk aversion and increased uncertainty). The paper

whose empirical strategy proves most similar to mine is Kelly, Pástor & Veronesi (2016),

which uses the timing of prescheduled political events (e.g. elections, global summits) to

isolate exogenous variation in uncertainty. They find prices of options whose lives span po-

litical events reflect a premium investors pay to hedge political uncertainty. In this paper

I go beyond simply documenting that there is a premium for uncertainty in the cross sec-

tion of one asset class (a within-period risk-return tradeoff): I quantify the causal effect of

macroeconomic uncertainty on expected returns (an intertemporal risk-return tradeoff).
2Bloom (2009), Alexopoulos & Cohen (2009), Jurado, Ludvigson & Ng (2015), Leduc & Liu (2016),

Caldara et al. (2016), and Baker, Bloom & Davis (2016) find contractionary effects on output, employment,
investment, consumption, and credit spreads.

3Other work documents an unconditional negative risk premium for macroeconomic uncertainty in the
cross section of equities (Boguth & Kuehn (2013); Bali, Brown & Tang (2017); Xyngis (2017); Heigermoser
(2020)). Bali, Brown & Caglayan (2014) and Della Corte & Krecetovs (2019) find macroeconomic uncertainty
exposures explain cross-sectional variation in hedge fund and currency returns. Dew-Becker, Giglio & Kelly
(2019) find a positive uncertainty premium in options portfolios hedging macroeconomic uncertainty shocks.

4Cochrane & Piazzesi (2002) discuss the difficulties in achieving identification in VARs.
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Third, a large literature in asset pricing examines the time-varying drivers of expected

returns. Previous work has proposed time-varying risk aversion (Campbell & Cochrane

(1999)), long-run risks and stochastic volatility (Bansal & Yaron (2004); Bansal et al. (2014);

Campbell et al. (2018)), disaster risks (Barro (2006); Wachter (2013)), and intermediary

leverage (He & Krishnamurthy (2013)) as potential drivers. However, since all of these vari-

ables are countercyclical, isolating exogenous variation in any of them and cleanly estimating

their relative importance for expected returns prove difficult. In this work I use exogenous

variation in macroeconomic uncertainty to pin down its contribution to expected returns.

Lastly, much work examines asset pricing dynamics around macroeconomic announce-

ments. Previous work has noted that the timing, but not content, of announcements is

exogenous to other economic shocks and has documented announcement-day declines in im-

plied volatilities.5 However, no previous work takes the next step of exploiting announcement

timing as an instrument for uncertainty with respect to some dependent variable of interest

in asset pricing or macrofinance.

Other work finds high average returns on macroeconomic announcements (Jones, La-

mont & Lumsdaine (1998); Savor & Wilson (2013)).6 Lucca & Moench (2015) find “pre-

announcement drift:” positive equity returns leading up to announcements. Both of these

phenomena have been attributed to the resolution of uncertainty in previous work (Ai &

Bansal (2018); Laarits (2019); Hu et al. (2019)). Unlike this previous literature, the primary

goal of the present paper is not to explain why announcements experience high average re-

turns. Instead, I use the timing of announcements as an instrument to gauge the causal

effect of macroeconomic uncertainty on expected returns.
5Ederington & Lee (1996); Fornari & Mele (2001); Beber & Brandt (2006, 2009); Vähämaa & Äijö (2011);

Jiang, Konstantinidi & Skiadopoulos (2012); Amengual & Xiu (2018).
6Balduzzi & Moneta (2017) and Law, Song & Yaron (2018) find average returns and sensitivities of returns

to announcement content vary across the business cycle.
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1 Identification Strategy

This section presents my identification strategy. I first provide the high-level intuition and

then explain in detail how the identification strategy works in a stylized environment in Sec-

tion 1.1. Section 1.2 generalizes this environment to explain why my identification strategy

works in the real world. Section 1.3 discusses potential threats to identification and explains

why my identification strategy proves robust to them.

At a high level, the main identification problem involved in measuring the effect of

macroeconomic uncertainty on expected returns is omitted variable bias. Assume expected

returns (µt) are linear in two factors: macroeconomic uncertainty (σ2
t ) and some other driver

(xt):

∆µt=λσ2∆σ2
t +λx∆xt. (1)

Macroeconomic uncertainty is the subjective conditional covariance between dividend

growth and the (negative) stochastic discount factor (SDF). From the Campbell (1991)

realized return decomposition, one can express the risk premium as:

Et[Rt+1]−Rf
t =−Covt(SDFt+1,Rt+1)

=Covt(SDFt+1, Discount Rate Shock)+Covt(−SDFt+1, Dividend Growth Shock)︸ ︷︷ ︸
Macroeconomic Uncertainty

.

(2)

In general macroeconomic uncertainty reflects both the time-varying physical volatility and

posterior variance of macroeconomic fundamentals.7 In this paper, I do not decompose
7For example, let consumption and dividend growth ∆ct+1 and ∆dt+1 have the following dynamics:

∆ct+1 = µc,t︸︷︷︸
≡φcµt+ηc,t

+εc,t+1+ρcstεt+1

∆dt+t= µd,t︸︷︷︸
≡φdµt+ηd,t

+εd,t+1+ρdstεt+1
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macroeconomic uncertainty into these two components.8 Moreover, in general both the

SDF and dividend growth may depend on many different macroeconomic variables. The

time-varying physical volatilities and posterior variances of common components to any of

these variables will contribute to macroeconomic uncertainty. This paper focuses on over-

all macroeconomic uncertainty, not uncertainty in any particular macroeconomic variable.9

Thus, in this paper I structurally define and empirically measure macroeconomic uncer-

tainty as the subjective conditional variance of the common component to many different

macroeconomic series. Again, this definition includes both time-varying physical volatility

and posterior variance.

In most models the first covariance in (2) between the SDF and the discount rate shock

is driven by variables such as risk aversion, intermediary leverage, etc. Thus, in general, the

second variable xt could be time-varying risk aversion, intermediary leverage, or any of the

other expected return drivers proposed by asset pricing theory.10

I assume that an outside econometrician in this environment observes only expected

returns µt and macroeconomic uncertainty σ2
t , not the other variable xt, and wants to identify

the effect of macroeconomic uncertainty on expected returns: λσ2 . While measuring expected

returns and macroeconomic uncertainty proves difficult, the general identification strategy I

where the investor has posterior distribution µt∼N(µ̄t,v2
t ) over the common component µt of the expected

growth rates. All ε·,t and η·,t are uncorrelated and εt+1 is i.i.d. with variance of one. Then in a model with
a consumption-based SDF, macroeconomic uncertainty reflects both posterior variance in growth rates (v2

t )
and physical macroeconomic volatility (s2

t ):

σ2
t ≡Covt(∆ct+1,∆dt+t)= φcφdv

2
t︸ ︷︷ ︸

Posterior Variance Contribution

+ ρcρds
2
t︸ ︷︷ ︸

Macro Volatility Contribution

.

Changes in either posterior variance or physical macroeconomic volatility will change overall macroeconomic
uncertainty, which in turn affects expected returns.
In a rational expectations setting where expected growth rates are known, macroeconomic uncertainty

reflects only time-varying physical volatility (e.g. as in Bansal & Yaron (2004)).
8Although it is likely that at high frequencies only posterior variance, not physical macroeconomic volatil-

ity, changes (Ai, Han & Xu (2021)).
9For example, I will not decompose macroeconomic uncertainty into more granular variables such as

“inflation uncertainty”, “monetary policy uncertainty”, or “financial market uncertainty”. Each of these
variables contributes to macroeconomic uncertainty.

10As an example, in Internet Appendix A I provide a simple model with HARA utility where the log
expected excess return takes the form in (1) and ∆xt captures the effect of time-varying risk aversion on
expected return.
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present can be used with any measures of µt and σ2
t . In addition to the baseline measurement

methodologies laid out in Section 3, I consider many alternative measurement techniques

in Section 6. All of my baseline results prove robust to these alternative measurement

techniques. Any other measures of µt and σ2
t could also be used with this identification

strategy.

In general, expected return drivers are correlated. Thus, without further information

the econometrician can only identify — and estimate via OLS regression — the following

parameter:

λσ2 +Cov(∆σ2
t ,∆xt)

V [∆σ2
t ]

λx.

However, introducing announcements into this environment enables the econometrician

to identify λσ2 . Consider the following factor structure for the expected return drivers σ2
t

and xt:11

∆σ2
t =εv,t+ρvεc,t+α1(t=announcement).

∆xt=εx,t+ρxεc,t. (3)

Macroeconomic uncertainty falls deterministically on announcement days: α represents the

average difference between announcement-day and non-announcement day changes in σ2
t .

However, note that the timing of announcements does not affect xt. The other shocks ε·,t

capture all other variation in both expected return drivers, including (but not limited to)

any announcement content revealed on announcement day t.

If the announcement timing is uncorrelated with the other shocks ε·,t (i.e. the standard
11Note that this structure does not necessarily imply martingale dynamics for ∆σ2

t as it also nests the
following AR(1) structure:

σ2
t =πvσ

2
t−1+ε̃v,t+ρvεc,t+α1(t=announcement)

↔∆σ2
t =(πv−1)σ2

t−1+ε̃v,t︸ ︷︷ ︸
≡εv,t

+ρvεc,t+α1(t=announcement).
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instrument exclusion restriction), then the econometrician can identify λσ2 :

λσ2 = E[∆µt |1(t=announcement)=1]−E[∆µt |1(t=announcement)=0]
E[∆σ2

t |1(t=announcement)=1]−E[∆σ2
t |1(t=announcement)=0]

= E[∆µt |1(t=announcement)=1]−E[∆µt |1(t=announcement)=0]
α

The numerator represents the reduced-form causal effect of announcement timing on ex-

pected returns. Scaling by the denominator causal effect of announcement timing on macroe-

conomic uncertainty delivers the desired causal effect of macroeconomic uncertainty on ex-

pected returns.

Note that the only source of variation I exploit to identify λσ2 is the timing of announce-

ments, not the content of announcements. In particular, I measure both Cov(∆µt,1(t =

announcement)) and Cov(∆σ2
t ,1(t= announcement)). I do not measure Cov(∆µt,∆σ2

t | t=

announcement). Using only the timing of announcements ensures that contemporaneous

shifts in first moments do not contaminate the identification of λσ2 because conditional ex-

pectations cannot covary with the announcement timing. Any such correlation would imply

ex-ante predictable changes in conditional expectations, which would violate the martingale

property of conditional expectations.

Thus, the credibility of my identification strategy rests on the validity of the following

two conditions: 1) the timing of prescheduled announcements is uncorrelated with all other

macroeconomic shocks and 2) the timing of prescheduled announcements impacts no driver

of expected returns other than macroeconomic uncertainty. The next three sections establish

and justify four formal assumptions under which these two conditions are true.

1.1 Identification in a Stylized Environment

In this section I first introduce a stylized environment and then present the four formal

assumptions required to identify the parameter of primary interest: the causal effect of

macroeconomic uncertainty on expected returns λσ2 . In spite of the stylized nature of the
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environment, this section contains all of the core ideas of my identification strategy. In

particular, all of these core ideas will carry over to the generalized environment in Section

1.2.

Environment

I model a representative agent who learns about the latent state of the economy over time

and prices assets based on his conditional distributions over economic variables. For now,

the only state variable is next quarter’s consumption growth. This setup proves similar to

the model in Ai & Bansal (2018), which also features a representative agent who learns

about future consumption. Assume the representative agent’s conditional distribution over

consumption growth can be parameterized by mean and variance (e.g. as in a normal

distribution). Section 1.2 generalizes to an arbitrary number of state variables and allows

for higher moments. Let Q(t) be the quarter that day t belongs to and ∆CQ(t)+1 represent

next quarter’s consumption growth. Furthermore, let ∆Et[∆CQ(t)+1] and ∆Vt[∆CQ(t)+1]

denote the day-over-day change in the conditional mean and conditional variance of next

quarter’s consumption growth, respectively.

As above, I model expected returns µt as linear in two factors: macroeconomic uncertainty

σ2
t and some other driver xt (e.g. risk aversion, intermediary leverage, etc.):

∆µt=λσ2∆σ2
t +λx∆xt.

Section 1.2 generalizes to an arbitrary number of expected return drivers.

Now consider the following factor structure for the expected return drivers σ2
t and xt:

∆σ2
t =α1∆Vt[∆CQ(t)+1]+α2∆Et[∆CQ(t)+1]+ρvεf,t+εv,t (4)

∆xt=δ1∆Vt[∆CQ(t)+1]+δ2∆Et[∆CQ(t)+1]+ρxεf,t+εr,t,

where εν,t,εr,t, and εf,t are all uncorrelated. This factor structure captures the correlation

between expected return drivers and links asset prices to the agent’s conditional distribution
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over the state variable.

In this setting, I introduce macroeconomic announcements (e.g. announcements that

reveal the current quarter’s GDP growth). These announcements are prescheduled: at all

days t−j,j >0, the indicator variable 1(t=announcement) is deterministically known. The

timing of announcements can potentially affect all moments of the representative agent’s

conditional distribution, which means both coefficients θ1,1 and θ2,1 are potentially non-zero

in the following equations:

∆Vt[∆CQ(t)+1]=θ1,0+θ1,11(t=announcement)+ν1,t (5)

∆Et[∆CQ(t)+1]=θ2,0+θ2,11(t=announcement)+ν2,t. (6)

As above, I impose the empirically relevant assumption that an outside econometrician

observes only:

1. The announcement calendar: 1(t=announcement).

2. Changes in macroeconomic uncertainty: ∆σ2
t .

3. Changes in expected returns: ∆µt.

The econometrician does not observe the other expected return driver xt. The next section

lays out the assumptions required to identify the parameter of interest λσ2 using only the

timing of announcements and discusses why these assumptions hold in the real world.

Identifying Assumptions

The first two identifying assumptions are exclusion restrictions about the announcement

timing with respect to other shocks and the moments of the representative agent’s conditional

distribution over the state variable.

Assumption 1. (Exclusion with respect to other economic shocks) The timing of presched-

uled macroeconomic announcements is uncorrelated with all other relevant shocks:

Cov(ε·,t,1(t=announcement))=0,
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and in the following reduced-form regressions

∆Vt[∆CQ(t)+1]=θ1,0+θ1,11(t=announcement)+ν1,t

∆Et[∆CQ(t)+1]=θ2,0+θ2,11(t=announcement)+ν2,t.

we have Cov(ν·,t,1(t=announcement))=0.

Assumption 2. (Exclusion with respect to conditional expectations) The timing of presched-

uled macroeconomic announcements does not systematically affect the investor’s conditional

expectations of macroeconomic variables:

Cov
(
∆Et[∆CQ(t)+1],1(t=announcement)

)
=0.

That is, θ2,1 =0 in (6).

Assumption 1 proves reasonable because the relevant agencies (e.g. BLS, BEA, Fed)

schedule macroeconomic announcements up to a year in advance, often to fall on the same

day of the week and week of the month in each year. This long lag prevents these agencies

from timing announcements to co-occur with future shocks. The prior knowledge that the

BEA will release the 2020 first-quarter GDP advance estimate on April 29, 2020, is uncor-

related with any of the other economic shocks that occur on that day (e.g. coronavirus

news).12 Why? Because the BEA could not possibly have known months in advance what

other economic shocks would occur on April 29, 2020. Moreover, GDP announcements are

scheduled for the last Thursday of the month, regardless of what the BEA might expect

to happen on that day. Thus, the timing of these announcements is exogenous to other

relevant economic shocks. On the other hand, the content of announcements (captured by

ν·,t) is surely endogenous to other economic shocks, but that is not the source of variation I

exploit.

Assumption 2 also proves reasonable because failure of this assumption would violate the
12Unscheduled announcements (e.g. unscheduled FOMC announcements) do not satisfy this property.
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martingale property of conditional expectations. Failure of Assumption 2 implies θ2,1 6=0 in

(6). But if θ2,1 6=0, then for any announcement day t′ and any prior day t′−j,j>0:

Et′−j
[
∆Et′ [∆CQ(t)+1]

]
6=0,

which violates the martingale property. The investor cannot ex-ante expect his conditional

expectations to change in the future in a predictable direction. For example, on April 28, 2020

the investor cannot expect his second-quarter expected consumption growth to predictably

move on the April 29 first-quarter GDP growth announcement. Any such forecasted changes

would already be incorporated into the conditional expectation on April 28.

Controlling for contemporaneous shifts in first moments represents a significant obstacle

in much of the uncertainty literature (e.g. Alfaro, Bloom & Lin (2018); Baker, Bloom &

Terry (2020); Barrero, Bloom & Wright (2017)). The prescheduled nature of these macroe-

conomic announcements ensures that conditional expectations cannot predictably move on

announcement days.13

Second and higher moments, on the other hand, can predictably move on announcement

days. That is, θ1,1 can be nonzero in (5). Indeed, α1θ1,1 6= 0 is the relevance condition

required for announcement timing to have any impact on macroeconomic uncertainty.14

Given an empirical measure of σ2
t , one can empirically verify this relevance condition via the

following first-stage regression:

∆σ2
t =βσ2,0+βσ2,11(t=announcement)+εt. (7)

Note in this regression βσ2,1 =α1θ1,1. Thus, the third identifying assumption is:

Assumption 3. (Relevance) The loading βσ2,1 of macroeconomic uncertainty ∆σ2
t on the

announcement timing 1(t=announcement) in first-stage regression (7) is non-zero.
13Of course, the content of announcements will cause conditional expectations to move (e.g. as captured

by ν2,t in (6)). However, by the martingale property of conditional expectations, these movements are not
ex-ante predictable and so Assumption 2 is justified.

14Note that this setup is consistent with the model of Ai & Bansal (2018), in which macroeconomic
announcements resolve uncertainty about future consumption.
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Under Assumptions 1, 2, and 3, the econometrician can identify the announcement res-

olution of uncertainty (ARU) effect:

λARU =λσ2α1θ1,1+λxδ1θ1,1. (8)

This parameter is the causal effect of the announcement-timing-induced change in uncer-

tainty about next quarter’s consumption growth on expected returns. It accounts for all

channels through which changes in uncertainty can affect expected returns: both macroe-

conomic uncertainty and the other expected return driver xt. For example, an average

reduction in conditional variance about next quarter’s consumption growth on announce-

ment days may reduce overall macroeconomic uncertainty and lower risk aversion. Both of

these channels will reduce expected returns. In reduced form, however, both of these effects

arise from the resolution of uncertainty. Thus, λARU is a causal effect of uncertainty on

expected returns; it is not at all polluted by contemporaneous shifts in first moments.

One can estimate this parameter via the following reduced form regression:

∆µt=λ0+λARU1(t=announcement)+εt. (9)

Note that the identification of λARU does not use changes in expected returns on particular

announcements. As shown by (9), λARU is the difference between the announcement-day and

non-announcement day average changes in expected returns. The only source of variation

used to identify λARU is the timing of announcements.

Given estimated regressions (7) and (9), the econometrician can also identify:

λARU
βσ2,1

=λσ2 +λx
δ1θ1,1

α1θ1,1
. (10)

This parameter, however, is still not the parameter of primary interest λσ2 . Identifying λσ2 ,

requires a fourth assumption:

Assumption 4. (Exclusion with respect to other expected return drivers) Announcements
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do not systematically affect any driver of expected returns except macroeconomic uncertainty:

Cov(∆xt,1(t=announcement))=0.

Assumption 4 implies that βr,1 =0 in the following reduced-form regression:

∆xt=βr,0+βr,11(t=announcement)+εt, (11)

where βr,1 = δ1θ1,1. Thus, the second term in (10) vanishes and the econometrician can

identify the effect of macroeconomic uncertainty:

λARU
βσ2,1

=λσ2 . (12)

To summarize, the outside econometrician who only observes expected returns, macroeco-

nomic uncertainty, and the announcement calendar can identify the announcement resolution

of uncertainty effect λARU if Assumptions 1, 2, and 3 are satisfied. If Assumption 4 is also

satisfied, then the econometrician can identify the effect of macroeconomic uncertainty λσ2 .

Crucially, under these four assumptions the only source of variation required to identify

λARU and λσ2 is the timing of announcements. Section 1.3 discusses potential threats to

identification.

I estimate both λARU and λσ2 . Since Assumptions 1 and 2 prove uncontroversial, I take

them as given. I then empirically verify Assumption 3 and estimate λARU via the reduced

form regression (9). Unfortunately, I cannot prove Assumption 4 since many variables, in-

cluding those not yet considered by theoretical or empirical research, may impact expected

returns. However, I provide strong suggestive evidence in support of Assumption 4 by demon-

strating proxies for risk aversion, disaster risk, and intermediary leverage do not correlate

with the timing of announcements. In light of this evidence, I take Assumption 4 as given

and estimate λσ2 .

The next section generalizes the environment from this section. In particular, the gener-
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alized environment allows for:

1. Multiple expected return drivers.

2. Multiple state variables.

3. Conditional distributions with time-varying higher moments.

All of the intuition and structural interpretations from this section carry over to the gener-

alized environment.

1.2 Identification in a Generalized Environment

This section generalizes the environment from Section 1.1 and demonstrates how λARU and

λσ2 are still identified under Assumptions 1—4.

In contrast to Section 1.1, I now allow for an arbitrary number of state variables and relax

the assumption that the representative agent’s conditional distributions can be parameterized

by mean and variance. Let Et ∈RN be the vector of the agent’s conditional expectations

over all N state variables (e.g. future consumption growth, future interest rates, etc.). Let

H t∈RM be the vector of all second and higher conditional moments for these N economic

variables. For example, if the agent’s conditional distributions can all be parameterized by

conditional mean and variance (as in a normal distribution), then M = N and H t is the

vector of all conditional variances.

Unlike in Section 1.1, I now allow for an arbitrary number of expected return drivers.

Expected returns are now linear in macroeconomic uncertainty σ2
t and some general residual

term ∆µ̌:

∆µt=λσ2∆σ2
t +∆µ̌t. (13)

Here ∆µ̌t captures all variation in expected returns not driven by macroeconomic uncertainty.

Whereas xt in Section 1.1 represented a single alternative expected return driver, ∆µ̌t may
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include variation from many expected return drivers (e.g. ∆µ̌t may include variation from

both risk aversion and intermediary leverage).

Additionally, I generalize the factor structure from (4) to now depend on all moments of

the representative agent’s conditional distributions over state variables:

∆σ2
t =α′1∆H t+α

′

2∆Et+ρvεf,t+σvεv,t (14)

∆µ̌t=δ
′

1∆H t+δ
′

2∆Et+ρxεf,t+σrεr,t,

where εν,t,εr,t, and εf,t are all uncorrelated. Lastly, the timing of announcements can poten-

tially affect all moments of the representative agent’s conditional distributions, which means

both coefficient vectors θ1,1 and θ2,1 are potentially non-zero in the following generalizations

of (5) and (6):

∆H t=θ1,0+θ1,11(t=announcement)+ν1,t (15)

∆Et=θ2,0+θ2,11(t=announcement)+ν2,t. (16)

Nothing fundamentally changes in this environment. Appendix A formalizes the changes

in the four identifying assumptions, but all of the same intuition from Section 1.1 carries

over. In this generalized environment, the first-stage coefficient βσ2,1 from (7) becomes

βσ2,1 = α
′
1θ1,1. Under Assumptions 1, 2, and 3, the econometrician can still identify the

announcement resolution of uncertainty (ARU) effect:

λARU =λσ2α
′

1θ1,1+δ′1θ1,1,

and estimate it via reduced-form regression (9). The ARU effect is now the causal effect of the

announcement-timing-induced change in uncertainty on expected returns, where uncertainty

broadly includes all higher moments of all state variables. It still accounts for all channels

through which changes in uncertainty can affect expected returns: both macroeconomic

uncertainty and all expected return drivers in the residual term ∆µ̌t. As in Section 1.1,
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however, λARU is still a causal effect of uncertainty on expected returns because it is not at

all polluted by contemporaneous shifts in first moments (i.e. by Assumption 2 θ2,1 = 0 in

(16)).

Given estimated regressions (7) and (9), in this generalized environment the econometri-

cian can also identify:

λARU
βσ2,1

=λσ2 + δ
′

1θ1,1

α
′
1θ1,1

. (17)

As in Section 1.1, under Assumption 4 no other expected return driver correlates with the

announcement timing. Thus, βr,1 =0 in the following reduced-form regression:

∆µ̌t=βr,0+βr,11(t=announcement)+εt,

where βr,1 =δ′1θ1,1. Thus, the second term in (17) vanishes and the econometrician can still

identify the effect of macroeconomic uncertainty:

λARU
βσ2,1

=λσ2 .

The next section discusses potential threats to identification.

1.3 Potential Threats to Identification

This section discusses potential threats to identification and explains why my identification

strategy proves robust to them. Many threats involve potential biases that can arise from

announcement heterogeneity. Yet since the timing of announcements is exogenous and I

only exploit average differences between announcement and non-announcement days, these

concerns do not undermine my identification strategy. I consider several such threats in

detail below to elucidate this general point.

1. What if announcement content affects macroeconomic expectations? For

example, a positive surprise in the announcement of last quarter’s GDP growth may
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induce upward revisions about future expected consumption growth, which in turn

could affect expected returns. That is, on any given announcement conditional expec-

tations of macroeconomic variables can change (i.e. ∆Et 6= 0). However, the average

announcement-day change in conditional expectations is zero by the martingale prop-

erty. Thus, any average announcement-day changes in expected returns must come

from average announcement-day changes in uncertainty. Hence, the content of par-

ticular announcements is irrelevant to my identification strategy since I use only the

differences between announcement-day and non-announcement day averages.

2. What if the quantity of uncertainty resolved varies across announcements?

For example, the Federal Reserve might deliberately vary the informativeness of FOMC

announcements depending on macroeconomic conditions. Alternatively, GDP an-

nouncements might endogenously be more informative in times of unprecedented crisis

(e.g. April 2020) than in times of stable macroeconomic conditions. These scenar-

ios pose no problems for my identification because I do not exploit heterogeneity in

the amount of uncertainty resolved across announcements. I only use the timing of

announcements. Even if the quantity of uncertainty resolved on announcements is en-

dogenous to other macroeconomic developments, the timing of these announcements

is exogenous because they are prescheduled far in advance and follow a predictable

schedule (e.g. the BEA does not make more GDP growth announcements in bad times

than in good times). As Section 1.1 details, my identification strategy requires only

the exogeneity of announcement timing, not the exogeneity of announcement content.

3. What if some announcements create more uncertainty? For example, a par-

ticular FOMC announcement may confuse market participants or a poor GDP growth

announcement may raise macroeconomic uncertainty. Again, these scenarios pose no

problems for my identification because I do not use the changes in uncertainty on partic-

ular announcements. I only use the average announcement-day and non-announcement

23



day changes in uncertainty. Section 4.1 verifies empirically that on average macroeco-

nomic uncertainty falls on announcements.

Macroeconomic announcements are surely heterogeneous and the content of these announce-

ments is surely endogenous to prevailing macroeconomic conditions. But that is not the

source of variation I exploit. I only use the timing of these announcements, which is exoge-

nous. As long as announcements are not scheduled to coincide with future economic shocks,

the timing of announcements is a valid instrument for uncertainty.

2 Data

This section discusses the data sources I use. To measure macroeconomic uncertainty, I use

the monthly uncertainty index of Jurado, Ludvigson & Ng (2015) (JLN index). As discussed

in Section 3.1, I construct a daily measure of uncertainty by projecting the JLN index onto

the implied volatilities of a set of options. I use CME data for options on futures for the

following underlyings: corn, crude oil, gold, soybean, S&P 500, ten-year Treasury notes, and

wheat.15 My baseline time sample is limited by this data: November 20, 1986 to December

22, 2016.

I use macroeconomic announcements for three groups of variables: output, prices, and

monetary policy. For variables related to output I use quarterly real GDP growth announce-

ments from the BEA and monthly unemployment announcements from the BLS.16 For price

variables I use monthly CPI and PPI announcements as well as quarterly Employment Cost

Index announcements, all from the BLS. For monetary policy variables I use scheduled
15These underlyings are a subset of those from Dew-Becker, Giglio & Kelly (2019) whose options and

futures have high daily liquidity in a long time period in the CME data. The assets used in Dew-Becker,
Giglio & Kelly (2019) but not in this paper 1) are not available in my CME data, 2) have time series starting
after 1986, or 3) do not have average daily volume per options contract (among all contracts with positive
volume) of at least 100 trades. I choose 1986 as the cutoff year since it is the start year for many assets.

16The BEA releases three measurements for each quarter’s real GDP growth, roughly one month apart. I
use all three dates; all results prove robust to using just each quarter’s first release date.
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FOMC announcements.17 This sample includes 1675 announcements in total.18

I use the CRSP value-weighted market portfolio as my proxy for the aggregate stock

market.19

For the other assets in Section 5, I use CRSP Treasury Fixed Term Indexes, AAA and

BAA seasoned corporate bond yields from FRED (series DAAA and DBAA), NYSE TAQ

data from WRDS for measuring the variance risk premium, five and ten-year TIPS spreads

from FRED (series T5YIE and T10YIE), and dollar exchange rates versus broad and major

trade-weighted currency baskets from FRED (series DTWEXB and DTWEXM).

3 High-Frequency Measurement

In this section I describe how I measure changes in macroeconomic uncertainty and expected

returns at the daily frequency.

3.1 Measuring Macroeconomic Uncertainty

Following Dew-Becker, Giglio & Kelly (2019), I construct a daily measure of macroeconomic

uncertainty by projecting the monthly uncertainty index of Jurado, Ludvigson & Ng (2015)

onto the implied volatilities of a set of options. The JLN index measures the common

component of the unforecastable variation in 132 macroeconomic series.20 In this sense, it
17I use the date of the post-meeting FOMC statement. Prior to 1994, when the Fed did not release

FOMC statements, I use the date of the first open market operation following the meeting (Gürkaynak,
Sack & Swanson (2005) argue financial markets inferred policy decisions on these dates). These open market
operations usually occurred on the first business day after the meeting. I use the same dates as Gürkaynak,
Sack & Swanson (2005) for 1990-1994 since that paper does not extend back to 1986. For 1989 I use the
dates from Kuttner (2003). For 1986-1988 I use the first business day after the meeting.

18324 GDP, 349 unemployment, 336 CPI, 352 PPI, 94 Employment Cost Index, and 220 FOMC.
19Section 6 considers alternative expected return and expected cash flow growth measures. I construct

the Martin (2017) equity premium lower bound and the Gao & Martin (2019) log equity premium lower
bound using options data from OptionMetrics. I obtain the Pettenuzzo, Sabbatucci & Timmermann (2020)
expected dividend growth series from the supplemental data of that paper. I use high-frequency options data
from Market Data Express and the zero-coupon yield curve data from OptionMetrics to extract dividend
strip prices to construct the Gormsen & Koijen (2020) expected dividend growth measure.

20I use the twelve-month horizon JLN index. In the robustness checks discussed in Section 6.3 I find that
the one and three-month indices yield similar results.
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represents an empirical analogue to the theoretical quantity discussed in Section 1. Jurado,

Ludvigson & Ng (2015) model the joint time series dynamics of the macroeconomic series as

a factor-augmented VAR and derive the dynamics of the forecast error covariance matrix.

Macroeconomic uncertainty is then the average of the conditional forecast error standard

deviations across all series.

To obtain a daily index, I run a monthly regression of the JLN index on the average

monthly implied volatilities of the seven underlyings (corn, crude oil, gold, soybean, S&P

500, ten-year Treasury notes, and wheat)21:

JLNt=α+
7∑
i=1
βiIV it+εt. (18)

Internet Appendix H Table H.1 displays the results of this regression. I then apply the

obtained weights to daily implied volatilities to construct a daily JLN index.22 Figure 1

displays the daily and original monthly JLN indices. The daily index tracks the monthly

index well, with a monthly correlation of 0.826.

The robustness checks in Section 6.3 consider alternative measures of macroeconomic

uncertainty. I reproduce my main results using variants of the Jurado, Ludvigson & Ng

(2015) index that measure uncertainty over different horizons, an out-of-sample daily JLN

index constructed by performing regression (18) in a rolling window, and S&P 500 implied

volatility.
21In principle, since implied volatilities are measures of risk-neutral volatility, they will also respond to

daily changes in risk aversion. However, this potential contamination by risk aversion does not undermine my
empirical analysis. Recall from the first-stage regression (7) that I only care about the difference in average
changes in macroeconomic uncertainty on announcement and non-announcement days. Section 4.3 verifies
that other proxies for risk aversion do not correlate with the timing of macroeconomic announcements. Thus,
even if daily changes in risk aversion do contaminate this daily measure of macroeconomic uncertainty, they
do not contaminate the estimated βσ2,1 coefficient from (7). For this reason, daily changes in risk aversion
will also not contaminate my empirical estimate of λσ2 .

22I take a volume-weighted average of implied volatilities of all contracts. See Internet Appendix B for
details.
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Figure 1: Time Series of Monthly and Daily JLN Indices
This figure displays the time series of the monthly uncertainty index from Jurado, Ludvigson & Ng
(2015) and the daily JLN uncertainty index constructed in Section 3.1.

3.2 Measuring Daily Changes in Expected Returns

In this section I discuss how I measure daily changes in expected returns. Recall from

Section 1 that I seek to measure the difference between the announcement-day and non-

announcement day average changes in expected returns. This difference in average changes

in expected returns is the ARU effect (λARU) and allows for estimation of the causal effect

of macroeconomic uncertainty (λσ2).

In particular, I consider daily changes in long-run expected log returns. The present value

identity of Campbell & Shiller (1988) decomposes the log price-dividend ratio into long-run

expected cash flow growth and long-run expected returns:

pt−dt=
k

1−ρ+
∑
j≥0
ρjEt[∆dt+1+j]︸ ︷︷ ︸

Long-run expected cash flow growth

−
∑
j≥0
ρjEt[rt+1+j],︸ ︷︷ ︸

Long-run expected returns
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where dt is log dividends paid on day t, rt is log return on day t, and ρ and k are log-

linearization constants that depend on the average log price-dividend ratio.23 Let µr,t =∑
j≥0ρ

jEt [rt+1+j] and µd,t =∑
j≥0ρ

jEt [∆dt+1+j] represent the long-run expected return and

long-run expected cash flow growth at the end of day t, respectively. The daily change in

long-run expected returns is given by24:

∆µr,t=−Et−1[rt]+µr,t−ρEt−1[µr,t].

The average change in long-run expected returns on announcement days is given by

E[∆µr,t | t=announcement]=−E[rt | t=announcement]+(1−ρ)E[µr,t | t=announcement].

This equality follows from the law of iterated expectations. For any day t+j,j≥0

E[−Et−1[rt+j] | t=announcement]=E[−Et−1[rt+j | t=announcement] | t=announcement],

because the timing of the announcements is known in advance (i.e. 1(t=announcement) is in

the information set at time t−1). At day t−1, investors know if day t is an announcement.

Therefore, applying the law of iterated expectations yields

E[−Et−1[rt+j] | t=announcement]=E[−rt+j | t=announcement]

E[µr,t−ρEt−1[µr,t] | t=announcement]=(1−ρ)E[µr,t | t=announcement].

A symmetric argument holds for non-announcement days.

Thus, the difference between the announcement-day and non-announcement day average
23Specifically, ρ=1/(1+exp[E[dt−pt]]), and k=−ln(ρ)−(1−ρ)ln(1/ρ−1).
24Note that

µr,t−1 =
∑
j≥0

ρjEt−1[rt+j ]=Et−1[rt]+ρ
∑
j≥0

ρjEt−1[rt+1+j ]=Et−1[rt]+ρEt−1[µr,t].
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changes in long-run expected returns is

λARU =−(E[rt | t=announcement]−E[rt | t 6=announcement])

+(1−ρ)(E[µr,t | t=announcement]−E[µr,t | t 6=announcement]). (19)

The first term is just the negative difference between average announcement-day and non-

announcement day realized log returns. The second term involves the difference between the

average announcement-day and non-announcement day levels of long-run expected returns.

Note that a difference in the average levels of long-run expected returns would very likely

imply a difference in the average levels of the price-dividend ratio (Cochrane (2008)).25 As

it turns out, however, average end-of-day price-dividend ratios are not significantly different

between announcement-day and non-announcement days. Using the daily estimate ρ =

0.99998 from Pettenuzzo, Sabbatucci & Timmermann (2020), a regression of (1−ρ)(pt−dt)

on the announcement timing indicator

(1−ρ)(pt−dt)=b0+b11(t=announcement)+εt

yields an insignificant b1 =2.36×10−8 (standard error of 1.72×10−7).26 I take this null result

as evidence that the second term in (19) is approximately zero.27

Thus, I measure the difference between the announcement-day and non-announcement
25In principle, average announcement-day and non-announcement day long-run expected return levels

could be different without announcement-day and non-announcement day average price-dividend ratios dif-
fering. For this to be the case, average announcement-day and non-announcement day long-run expected
cash flow growth levels would have to exactly offset the difference in long-run expected returns:

E[µr,t | t=announcement]−E[µr,t | t 6=announcement]=E[µd,t | t=announcement]−E[µd,t | t 6=announcement].

However, this situation proves unlikely since expected returns and expected cash flow growth are usually
assumed to be negatively correlated (Gormsen & Koijen (2020); Lochstoer & Tetlock (2020)).

26Note heterogeneity in the set of firms paying renders the time series of daily dividends noisy. Thus,
I view the daily dt as a noisy realization of the true level of dividends investors price, which I proxy by
smoothing over the last year. In a model where noise in the observed level is large relative to the daily
growth rate, smoothing yields more efficient estimates of the true level. I use the sum of the previous four
quarterly dividends as it better removes seasonality than a daily rolling sum. Using a daily rolling sum as
well as alternative smoothing horizons yields similar results. See Internet Appendix H Table H.2 for details.

27Indeed a significant difference in the level of expected returns between announcement and non-
announcement days would cast doubt on the exogeneity of announcement timing.
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day average changes in long-run expected returns as:

λARU≈−(E[rt | t=announcement]−E[rt | t 6=announcement]). (20)

Note that a regression of negative realized log returns (−rt) on the announcement timing

indicator (1(t=announcement)) will estimate λARU in (20):

−rt=λ0+λARU1(t=announcement)+εt. (21)

As suggested by the form of regression (21), the negative of the reduced-form macroeco-

nomic announcement premium documented by Savor & Wilson (2013) is an estimate of the

structural parameter of interest here: λARU .

What is the role of finite-sample variation? In any finite sample, empirical averages

may differ from population means. The realized log return decomposition of Campbell (1991)

implies

rt=Et−1[rt]+(Et−Et−1)
∞∑
j=0
ρj∆dt+1+j︸ ︷︷ ︸

Cash Flow Growth Shock

−(Et−Et−1)
∞∑
j=1
ρjrt+1+j︸ ︷︷ ︸

Discount Rate Shock

(22)

By the martingale property of conditional expectations, the cash flow and discount rate

shocks have true conditional expectations of zero, so (22) implies E[rt | t=announcement]=

E[Et−1[rt] | t=announcement]. Yet in any finite sample the empirical average announcement-

day cash flow growth shock may be non-zero.28 If the in-sample average announcement-day

and non-announcement day cash flow growth shocks differ, then the estimate of λARU from

(21) will reflect this finite-sample variation.29 Specifically, if the in-sample announcement-
28Law, Song & Yaron (2018) and Cieslak & Pang (2020) find FOMC and non-farm payroll announcements

can have large growth expectations shocks depending on announcement content and state of the business
cycle. Savor & Wilson (2013) consider and reject the possibility that the average announcement in a finite
sample involves a non-zero cash flow shock.

29On the other hand, note that finite-sample differences in the average announcement-day and non-
announcement day discount rate shocks are changes in long-run expected returns. Thus, they prove less
problematic for the interpretation of the estimated λARU .
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Table 1: Summary Statistics
rt ∆σ2

t 1(t=announcement)
Count 7561 7561 7561
Mean 0.0369 -2.9953e-06 .22100
Std 1.1230 7.8697e-03 .41495
Min -18.7956 -8.0745e-02 0
Median 0.0813 -1.1239e-04 0
Max 10.8749 9.8578e-02 1

Summary statistics for daily log realized returns (rt, in percentage points), changes in the daily
JLN macroeconomic uncertainty index (∆σ2

t ), and the daily announcement timing indicator 1(t=
announcement). Units are in percentage terms (i.e. 1.0 is 100 basis points). The time period is
1986-11-20:2016-12-22.

day average cash flow growth shock is higher than the non-announcement day average, then

the estimated λARU from (20) will be smaller (i.e. more negative and larger in magnitude)

than the true parameter.

The robustness checks in Section 6 rule out the possibility that finite-sample variation

in cash flow growth shocks drives my results. In Section 6.1 I reproduce my main results

by directly measuring conditional expected returns using the options-implied Martin (2017)

equity premium lower bound and Gao & Martin (2019) log equity premium lower bound.

As direct measures of conditional expected returns, these lower bounds cannot suffer from

finite-sample variation in cash flow growth shocks. In Section 6.2 I provide evidence that the

average announcement-day and non-announcement day changes in expected cash flow growth

do not differ using the Pettenuzzo, Sabbatucci & Timmermann (2020) expected dividend

growth series, the Gao & Martin (2019) options-implied expected log dividend growth lower

bound, and the Gormsen & Koijen (2020) dividend-strip-implied expected dividend growth

measure.

Table 1 exhibits summary statistics for daily log realized returns for the CRSP value-

weighted market portfolio, changes in the daily JLN index, and the announcement timing

indicator variable.
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4 Empirical Results

This section presents my main empirical results. First, Section 4.1 establishes that macroeco-

nomic uncertainty falls on average on announcement days more than on non-announcement

days, which means announcement timing is a relevant instrument for uncertainty. Second,

Section 4.2 demonstrates that this announcement resolution of uncertainty causes decreases

in expected returns. Third, Section 4.3 justifies Assumption 4 and estimates the pure effect

of macroeconomic uncertainty on expected returns.

4.1 Macroeconomic Uncertainty Falls on Announcements

Macroeconomic uncertainty falls significantly on announcement days. Motivated by the

first-stage regression (7), I run the following regression of the change in the daily JLN index

constructed in Section 3.1 on a set of timing indicators representing how many days j after

an announcement day t is:

∆σ2
t =β0+

5∑
j=−5

βj1(t−j=announcement)+εt, (23)

where ∆σ2
t is the change in the daily JLN index. To facilitate interpretation, I scale ∆σ2

t

to have mean zero and standard deviation one. Figure 2 graphically displays the regression

results.

The daily JLN index experiences a highly significant additional 0.21 standard deviation

drop on macroeconomic announcement days than on non-announcement days (with a t-

statistic of over 7 in magnitude). Internet Appendix H Table H.3 reports the full regression

results.30 These results validate the relevance condition of βσ2,1 6= 0 in Assumption 3 from

Section 1.1. In the parlance of instrumental variables, the announcement timing is a relevant
30Several other coefficients βj ,j 6= 0, are also statistically significant, in part since many announcements

cluster at the start of the month. The subsequent analysis only uses the resolution of uncertainty on the
announcement day and so ignores βj for j 6= 0. A placebo test running regression (23) in random 11-day
windows instead of windows centered at announcements yields all insignificant coefficients (Internet Appendix
H Figure H.1).
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Figure 2: Response of Daily JLN Index to Announcement Timing
Coefficients and 95% confidence intervals from regression (23) (full results in Internet Appendix
H Table H.3). Y-axis units are standard deviations (i.e. ∆σ2

t is scaled to have mean zero and
standard deviation one).

instrument for macroeconomic uncertainty.31

Having established the relevance of announcement timing, going forward I will only use

the timing of announcements (1(t = announcement)), not the timing of adjacent days, as

discussed in Section 1.

4.2 Announcement Resolution of Uncertainty Effects

The announcement resolution of uncertainty causes a significant decrease in expected re-

turns. As discussed in Section 3.2, I estimate the ARU effect via the following reduced-form
31As displayed in Table 3, the F-statistic of the univariate regression of ∆σ2

t on 1(t=announcement) is
64.26, much greater than the standard threshold of 10 in weak instrument tests.
Additionally, announcements resolve uncertainty up to intermediate horizons. I construct fixed-horizon

counterparts to my baseline daily JLN index by applying the coefficients from regression (18) to the implied
volatilities of subsets of options with the same time to expiration. Internet Appendix H Figure H.2 displays
significant resolutions of uncertainty up to 7 months. Measurement error increases with maturity as volume
falls and so may explain the loss of significance after 7 months.
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Table 2: Announcement Resolution of Uncertainty Effect Regressions
−rt

Announcement -0.0781**
(0.0304)

const -0.0196
(0.0148)

N 7561
R2 0.00

Results of reduced form regression (9) of negative log realized excess returns −rt on the announce-
ment timing indicator 1(t=announcement). Units are in percentage terms (i.e. a coefficient of 1.0
is 100 basis points).

regression:

−rt=λ0+λARU1(t=announcement)+εt,

where rt is the log realized return for the CRSP value-weighted market portfolio on day

t. Table 2 displays the regression results and finds a significant λARU =−7.8 basis points.

Thus, given Assumptions 1, 2, and 3, the resolution of uncertainty on macroeconomic an-

nouncements causes long-run expected log returns to fall 7.8 basis points.32 This estimate

is consistent with the reduced-form macroeconomic announcement premium from Savor &

Wilson (2013).33

32Since Et[rt+1] = logEt[Rt+1]− 1
2Vt[rt+1], one may worry this reduction in expected log returns reflects

an increase in conditional volatility, not a decrease in expected returns. Section 6.3 shows S&P 500 implied
volatility falls more on announcement days than on non-announcement days, which suggests log expected
returns for the CRSP value-weighted market portfolio fall more than expected log returns.

33These results are also consistent with pre-announcement drift (Lucca & Moench (2015)), attributed by
some work to the resolution of uncertainty (Ai & Bansal (2018); Laarits (2019); Hu et al. (2019)). Lucca
& Moench (2015) find that the high average returns on FOMC announcement days accrue mostly in the
hours prior to the announcement at 2:30 P.M. Hu et al. (2019) document that uncertainty (as measured by
VIX) also falls in those same hours prior to the announcement. Both the high-frequency pre-announcement
returns and change in uncertainty will be picked up by my daily measures. Ai & Bansal (2018) note that
the resolution of uncertainty on the announcement day but prior to the announcement is consistent with
information leakage, for which they cite empirical evidence from Bernile, Hu & Tang (2016) and Cieslak,
Morse & Vissing-Jorgensen (2019).
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4.3 Macroeconomic Uncertainty Moves Expected Returns

This section provides evidence of Assumption 4 and estimates λσ2 via two-stage least squares.

Recall Assumption 4: no expected return driver other than macroeconomic uncertainty

correlates with the announcement timing. From (17) in Section 1.2, scaling the ARU effect

by the first-stage coefficient allows the econometrician to estimate

λARU
βσ2,1

=λσ2 + δ
′

1θ1,1

α
′
1θ1,1

. (24)

Under Assumption 4 though,

λARU
βσ2,1

=λσ2 .

That is, Assumption 4 implies that the only channel through which the ARU effect operates is

through a reduction in macroeconomic uncertainty. To justify this assumption, I demonstrate

that proxies for other theoretically-motivated expected return drivers do not load on the

timing of announcements.

Specifically, I use daily measures from theories of time-varying risk aversion, time-varying

disaster risk, and intermediary asset pricing. First, as a measure of time-varying risk aver-

sion I use the risk aversion index from Bekaert, Engstrom & Xu (2019), which comes from

structural estimation of an external habit model. Second, I use two measures of disaster

risk. First, I use the options-implied risk-neutral weekly left-tail volatility and negative ten-

percent crash probability for the S&P 500 from Bollerslev, Todorov & Xu (2015). These

risk-neutral crash-risk measures also move due to changes in risk-aversion and so provide a

robustness check for the risk aversion index from Bekaert, Engstrom & Xu (2019). Addition-

ally, to gauge disaster risk at longer horizons I use the options-implied crash probabilities

from Martin (2017). These measures track the probability of a negative twenty percent de-

crease in the S&P 500 over the next one, three, six, and twelve months that a log-utility

investor would perceive from options prices. Third, I use the squared intermediary leverage
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ratio from He, Kelly & Manela (2017), which is the squared ratio of aggregate market equity

and book debt to aggregate market equity of all primary dealers for the Federal Reserve

Bank of New York.

Theory suggests daily changes in all of these variables should positively correlate with

daily changes in expected returns. Internet Appendix H Table H.4 illustrates that daily

changes in all of these variables correlate positively with changes in the daily JLN index.

However, all of these correlations prove relatively mild in magnitude, which already begins

to assuage omitted variable bias concerns.

To demonstrate that none of these alternative variables correlate with the announcement

timing, I run the following regression:

∆yt=β0+β11(t=announcement)+εt,

where yt is one of: risk aversion index, risk-neutral crash risk, log-utility crash risk, squared

intermediary leverage, or daily JLN index. To facilitate comparison, I standardize all left-

hand side variables to have mean zero and standard deviation one. Table 3 demonstrates

that none of the alternative expected return drivers load significantly negatively on the

announcement timing.34 The highest F-statistic for any of these alternative variables is 3.40

for the risk-neutral left-tail volatility of Bollerslev, Todorov & Xu (2015), which is far below

the conventional threshold of ten for weak instrument tests and actually corresponds to a

positive β1 estimate. Moreover, the largest negative difference between announcement-day

and non-announcement day average changes in any of the alternative variables is −0.04

standard deviations (for the 12-month log-utility crash probability). On the other hand, the

daily JLN index declines an additional 0.21 standard deviations on announcement days than

on non-announcement days with an F-statistic of over sixty.

These results lend credence to Assumption 4. In principle, the announcement resolution

of uncertainty could impact expected returns through many channels. In practice however,
34To maximize power, I use the longest available time series for each left-hand side variable. Using the

longest sample common to all variables (2000-2012) yields similar results.
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macroeconomic uncertainty appears to be the only relevant channel since it is the only driver

of expected returns that correlates with the timing of announcements. Thus, I proceed by

taking Assumption 4 as given and interpreting the ratio λARU/βσ2,1 as λσ2 . To cast doubt

on the results I present below, an omitted driver of expected returns would have to: 1)

correlate significantly positively with expected returns and 2) load significantly negatively

on the announcement timing (or correlate negatively and load positively).

I estimate λσ2 via the following two-stage least squares regression

∆σ2
t =β0+β11(t= announcement)+εt

−rt=λ0+λ1∆σ2
t

∧

+νt. (25)

Since the first-stage regression here estimates βσ2,1 and the reduced-form regression of −rt

on 1(t = announcement) estimates λARU , the second-stage coefficient from (25) estimates

λARU/βσ2,1 =λσ2 .

Table 4 displays the results of the two-stage least squares regression (25). The fourth

column indicates that a positive one standard-deviation move in ∆σ2
t causes a λ1 = 36

basis point increase in long-run expected returns. This estimate implies that a positive one

standard deviation change in the level of σ2
t causes a 173 basis point increase in expected

returns.

We can also view these results through the lens of a variance decomposition. The following

expression represents the proportion of variance of daily changes in long-run expected returns

explained by changes in macroeconomic uncertainty:

λ̂2
1Var[∆σ2

t ]
Var[∆µrt]

=10.35%, (26)

where I use the variance of the price-dividend ratio to approximate the denominator variance

of long-run expected returns.35

35This approximation is justified since expected-return variation drives most of the variation in the price-
dividend ratio (Cochrane (2008)). Moreover, note that by the present value identity of Campbell & Shiller
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Table 4: Two-Stage Least Squares Regression Results for Expected Returns
OLS First Stage Reduced Form 2SLS

∆σ2
t 0.2986*** 0.3619***

(0.0326) (0.1380)
Announcement -0.2158*** -0.0781**

(0.0269) (0.0304)
const -0.0368*** 0.0473*** -0.0196 -0.0367***

(0.0125) (0.0131) (0.0148) (0.0125)
N 7561 7561 7561 7561
R2 0.07 0.01 0.00 -

Results for two-stage least squares regression (25). The first stage regresses ∆σ2
t (standardized to

have mean zero and standard deviation one) on 1(t= announcement). The second stage regresses
−rt on ∆σ2

t

∧

. Units are in percentage terms (i.e. a coefficient of 1.0 represents 100 basis points).

The aggressive interpretation of this result is, in light of the evidence supporting As-

sumption 4, macroeconomic uncertainty accounts for about 10% of daily long-run expected

return variation.36 A less aggressive interpretation would be to allow for Assumption 4 to

potentially not hold and acknowledge that λ̂1 from (25) may suffer from omitted variable

bias due to other expected return drivers. In this case, we can provide an upper bound for

the variance proportion in (26). To do so, I plug the upper bound of the 95% confidence

interval for the estimate of λ̂1 into (26) to obtain37

(
λ̂1+1.96·SE

λ̂1

)2
Var[∆σ2

t ]
Var[∆µrt]

=31.62%.

(1988):
Var[∆µrt]=Var[pt−dt]−Var[∆µdt]+2·Cov(∆µrt,∆µdt).

Under the usual assumption that expected returns and expected cash flow growth are negatively correlated
(Gormsen & Koijen (2020); Lochstoer & Tetlock (2020)), Var[∆µrt]<Var[pt−dt]. Thus, using Var[pt−dt] to
measure Var[∆µrt] provides a conservative estimate (i.e. an underestimate) of the true variance proportion
in (26).

36For comparison, Bekaert, Engstrom & Xing (2009) and Bekaert, Engstrom & Xu (2019) find in structural
models that “uncertainty” accounts for 17% and 3% of quarterly and monthly equity premium variation.
However, one must be careful with this comparison. First, these papers use different the definitions of
uncertainty than Jurado, Ludvigson & Ng (2015) and this work. Second, the expected return horizon differs
as this paper focuses on long-run expected returns. Lastly, these papers force uncertainty and risk aversion
to explain all expected return variation whereas the reduced-form setting here allows for many expected
return drivers.

37This expression gives an upper bound for the variance explained proportion if the second term in (24)
is positive. If the second term is negative, then λ̂1 underestimates λσ2 .
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Thus, a less aggressive interpretation of the two-stage least squares results in Table 4 is that

macroeconomic uncertainty can account for at most 32% of daily long-run expected return

variation.

In summary, the results in this section demonstrate that time-varying macroeconomic

uncertainty causes significant changes in and accounts for an important part of the daily

variation in long-run expected equity returns.

5 Evidence from Other Asset Classes

This section presents evidence of external validity for my baseline results by examining the

effect of macroeconomic of uncertainty on other assets: government bonds, corporate bonds,

currencies, and the variance risk premium. Motivated by the present value identity of Camp-

bell & Shiller (1988), the baseline analysis measures the difference between announcement-

day and non-announcement day average changes in long-run expected returns using the

negative difference between average realized returns. Justifying this measurement method-

ology for alternative assets proves beyond the scope of this paper. Instead, I demonstrate

macroeconomic uncertainty causally impacts prices of other assets and appeal to these results

as corroborating evidence of a causal effect on expected returns. In principle, many disparate

objects (e.g. expected future interest rates, expected future cash flows, etc.) could move

to deliver coordinated average price changes across assets on announcements. I view this

scenario, however, as less likely than the simpler explanation that discount rate movements

drive all these price changes.

I run the following two-stage least squares regression in the style of (25):

∆σ2
t =β0+β11(t= announcement)+εt

∆Pt=λ0+λ1∆σ2
t

∧

+νt, (27)

where Pt is a measure of price (bond yields, level of variance risk premium, or exchange rate).
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Figure 3 displays the proportions of price variance explained by macroeconomic uncertainty

for each asset, while Internet Appendix H Table H.5 reports full regression results. Over-

all, macroeconomic uncertainty explains a significant amount of the variation in government

bond yields, corporate bond yields, and the variance risk premium. I summarize these results

below.

Government Bond Yields: I consider U.S. Treasury bonds with 1,2,5,7,10,20, and 30-year

maturities, term structure slope (10-year minus 2-year yield), and term structure curvature

(5-year yield minus average of 10-year and 2-year yields). Per column one in Table H.5,

the announcement resolution of uncertainty lowers yields across maturities (with stronger

effects for maturities of at least 5 years), and flattens the term structure. The second-stage

coefficients in column four imply that macroeconomic uncertainty drives 11% of the variation

in 2-year yields, over 20% of the variation in yields for maturities of at least 5 years, and

6% of variation in term structure slope. The second-stage coefficients for 1-year yields and

curvature are insignificant.

Corporate Bond Yields: For corporate bonds I use Moody’s seasoned AAA and BAA

corporate bond yields, as well as the credit spread between these two yields. The ARU effect

lowers both AAA and BAA yields between 0.4 and 0.5 basis points but is insignificant for

credit spreads. Macroeconomic uncertainty explains 24% and 23% of the variation in AAA

and BAA yields, respectively, and an insignificant amount of variation in credit spreads.

Variance Risk Premium (VRP): I calculate the VRP in two ways. Following Bollerslev,

Tauchen & Zhou (2009) I measure the daily VRP level as the squared VIX minus the realized

variance of the S&P 500 calculated from non-overlapping five-minute returns over both the

past 22 days and the past day.38 I find both VRP measures fall significantly on average

on announcements with the 22-day version exhibiting a stronger response. Macroeconomic

uncertainty explains 17% and 45% of the variation in the 1-day and 22-day versions.

TIPS Spreads: I do not find 5 or 10-year TIPS spreads (nominal Treasury minus TIPS
38Measuring realized variance over the past day (and multiplying by 22 to scale it to the monthly level)

assuages concerns of a timing discrepancy since VIX updates more quickly than monthly realized variance.
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Figure 3: Price Variation Proportion due to Macroeconomic Uncertainty
Price variance proportions explained across assets: λ̂2

1Var[∆σ2
t ]/Var[∆Pt], where λ̂1 is estimated

from 2SLS regression (27) and Pt is a price measure (bond yields, level of variance risk premium,
or exchange rate). Internet Appendix H Table H.5 reports full regression results.

yields) correlate significantly with announcement timing or that macroeconomic uncertainty

explains a significant amount of their variation.

Currencies: I do not find the dollar exchange rate versus broad or major trade-weighted

baskets of currencies correlates significantly with announcement timing or that macroeco-

nomic uncertainty explains a significant amount of its variation.

6 Robustness Checks

This section provides robustness checks for the baseline results. Section 6.1 considers di-

rect measures of expected returns to supplement the baseline analysis, which relies on the

difference between announcement-day and non-announcement day average realized returns.

Section 6.2 provides measures of expected cash flow growth to rule out the possibility that

finite-sample variation in cash flow growth shocks drives my results. Section 6.3 repro-

duces the baseline results using alternative macroeconomic uncertainty measures. Section
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6.4 discusses heterogeneity across announcement types to assuage the concern that partic-

ular subsets of announcements (e.g. FOMC announcements) drive my results. I relegate

robustness check tables to Internet Appendix G unless noted otherwise.

6.1 Alternative Expected Return Measures

I consider two direct daily measures of expected returns and also provide corroboratory

evidence from the cross section of equity returns. Using the Martin (2017) equity premium

lower bound and Gao & Martin (2019) log equity premium lower bound over horizons of

two to six months, I find that macroeconomic uncertainty explains 7%−12% of expected

return variation (see Table G.1), which is very similar to the baseline result of 10%. In the

cross section I find that portfolios with higher discount rate betas earn lower announcement-

day average returns, which is consistent with announcements involving decreases in discount

rates.

Options-Implied Equity Premium Lower Bounds

First, I use the equity premium lower bound from Martin (2017). Martin (2017) derives a

lower bound for the conditional equity premium over the next h ∈ {1,2,3,6,12} months in

terms of the risk-neutral variance of the market, which can be expressed in terms of market

index option prices. Martin (2017) uses the S&P 500 as a proxy for the market equity

portfolio and argues this lower bound might actually be a tight bound.

Table G.1 displays two-stage least squares results for the following regression using the

equity premium lower bounds:

∆σ2
t =β0+β11(t= announcement)+εt

∆Expected Returnht =λ0+λ1∆σ2
t

∧

+νt.

These results corroborate those from Table 4: increases in macroeconomic uncertainty cause

significant increases in the equity premium lower bounds. These results imply macroeconomic
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uncertainty explains 7%−12% of the variation in expected returns at horizons of two and

six months, which is quantitatively similar to the baseline result of 10.35%. At longer and

shorter horizons, macroeconomic uncertainty explains a larger proportion of expected return

variation (42% and 30% at one and twelve months, respectively).39

Second, I calculate the “LVIX” log equity premium lower bound over the next h ∈

{1,2,3,6,12} months from Gao & Martin (2019), which takes a similar functional form to the

equity premium lower bound from Martin (2017). Table G.1 exhibits quantitatively similar

results using this measure to those using the Martin (2017) lower bound. For horizons of two

to six months, macroeconomic uncertainty explains 8%−11% of expected return variation.

At longer and shorter horizons, macroeconomic uncertainty explains a larger proportion of

expected return variation (80% and 27% at one and twelve months, respectively).

As direct measures of expected returns, the Martin (2017) and Gao & Martin (2019)

lower bounds allow for estimation of λARU and λσ2 without relying on the law of iterated

expectations argument from Section 3.2. For this reason, the estimates in this section prove

immune to any potential finite-sample variation in cash flow growth shocks that could impact

the baseline results. But since both the lower bounds and my daily JLN index are calculated

from options prices, I prefer the baseline methodology to avoid concerns of a mechanical link.

Nonetheless, the quantitative similarity of the results in this section to my baseline results

suggests that the latter are not driven by finite-sample variation in cash flow growth shocks.

Evidence from the Cross Section of Equity Returns

Internet Appendix F provides corroboratory evidence from the cross section of equity re-

turns. Sorting stocks into decile portfolios based on discount-rate betas (estimated as in

Campbell & Vuolteenaho (2004)), the highest decile portfolio has a 7 basis point lower av-

erage announcement-day return than the lowest decile portfolio, which is consistent with
39The large variance explained proportion for the one-month lower bound is consistent with macroeconomic

uncertainty explaining much of the variation in the variance risk premium (Section 5), which itself contributes
primarily to short-run expected equity returns. The variance explained proportions for the other horizons
lie within the 95% percent confidence interval around the baseline 10.35% result.
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discount rates falling on announcements. This result further establishes that the baseline

λARU estimated from the difference between announcement-day and non-announcement day

average realized returns is not driven by finite-sample variation in cash flow growth shocks.

6.2 Expected Cash Flow Growth Measures

In this section I provide further evidence that finite sample variation in cash flow growth

shocks does not drive the baseline results by directly measuring expected cash flow growth.

Recall from Section 3.2 that if the in-sample announcement-day average cash flow growth

shock is higher than the non-announcement day average, then the estimated λARU from (20)

will be smaller (i.e. more negative and larger in magnitude) than the true ARU effect. To

rule out this possibility, I use the Pettenuzzo, Sabbatucci & Timmermann (2020) expected

dividend growth series, the Gao & Martin (2019) options-implied expected log dividend

growth lower bound, and the Gormsen & Koijen (2020) dividend-strip-implied expected

dividend growth measure. Even though these three measures are derived under very different

assumptions, they all yield the same result: average expected cash flow growth changes are

not more positive on announcement days than on non-announcement days (see Table G.2).

These results imply that the negative baseline λARU estimate from Section 4.2 is not an

artifact of finite sample cash flow growth shock variation. In the cross section I find that

cash flow betas do not correlate with announcement-day returns, which further corroborates

the lack of problematic finite sample cash flow growth shock variation.

Pettenuzzo, Sabbatucci & Timmermann (2020) Expected Dividend Growth

First I consider the expected dividend growth series form Pettenuzzo, Sabbatucci & Tim-

mermann (2020). They begin with a time-series model of the daily year-over-year growth

rate in dividends announced. The authors define Di
t and I it as the dividend announced by

firm i on day t and an indicator for if firm i announces a dividend on day t, respectively. For

all firms that announce dividends today (I it = 1), let t̃(i,t) represent the day t̃ in the same
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quarter of the previous year when firm i announced its dividend. The authors define the

aggregate growth rate of dividends on day t then as

Gt=
∑Nt
i=1I

i
tD

i
t∑Nt

i=1I
i
t̃(i,t)D

i
t̃(i,t)

,

where Nt is the total number of firms on day t. This expression for Gt is the ratio of the

total amount of dividends announced by the same set of firms in the same quarter in two

consecutive years. Denoting the yearly growth rate in dividends announced ∆dAt+1 =log(Gt),

Pettenuzzo, Sabbatucci & Timmermann (2020) provide the following structural time-series

decomposition

∆dAt+1 = µ̃d,t+1+ξd,t+1Jd,t+1+εd,t+1, (28)

where µ̃d,t+1 is a smoothly evolving expected component, ξd,t+1Jd,t+1 is a (mean-zero) jump

process with time-varying probability and magnitude, and εd,t+1 is a (mean-zero) normally

distributed noise term with stochastic volatility. Internet Appendix C provides the details

and motivation for this decomposition. The authors model the expected component as a

mean-reverting AR(1) process40:

µ̃d,t+1 =µd+φµ(µ̃d,t−µd)+σµεµ,t+1, εµ,t+1∼N (0,1). (29)

I then scale this expected growth component µ̃d,t to a daily growth rate and convert it to a

measure of long-run expected cash flow growth41:

µPSTd,t+1 =
∑
j≥0
ρjEt[∆dt+1+j]=

φµ
1−ρφµ

µ̃d,t+1,

where Pettenuzzo, Sabbatucci & Timmermann (2020) estimate φµ= .998 and ρ= .9998.
40Figure C.1 in Internet Appendix C illustrates the daily time series of µ̃d,t+1.
41While Pettenuzzo, Sabbatucci & Timmermann (2020) model the growth rate of dividends announced

(dAt ), the Campbell & Shiller (1988) identity uses dividends paid (dt). I thus impose the following restriction
on expected cash flow growth: Et[∆dt+1]=Et[µ̃dt+1] (i.e. the expected growth rate in dividends paid equals
the expected growth rate in dividends announced).
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Table G.2 reports results from this two-stage least squares regression:

∆σ2
t =β0+β11(t= announcement)+εt

∆µPSTd,t =λ0+λ1∆σ2
t

∧

+νt.

The first row reports an insignificant estimate for the reduced-form regression coefficient of

∆µPSTd,t on 1(t= announcement) (λ1β1 = 0.06 basis points). Thus, average changes in this

Pettenuzzo, Sabbatucci & Timmermann (2020) long-run expected cash flow growth measure

are not significantly different on announcement and non-announcement days.

Gao & Martin (2019) Subjective Expected Log Dividend Growth Lower Bound

Second, I consider the lower bound on subjective expected log dividend growth from Gao &

Martin (2019). Using the LVIX lower bound on one-year market (S&P 500) expected excess

log returns, Gao & Martin (2019) provide the following lower bound on subjective expected

log dividend growth:

Et[gt+1]=Et[rt+1]−Et[rt+1−gt+1]

≥rf,t+1+LV IXt−Et[rt+1−gt+1],

where gt+1 is log dividend growth. They then derive a dynamic generalization of the Gordon

growth model and find that if either log dividend-price ratio (dpt=log(Dt/Pt)) or log dividend

yield (yt = log(1 +Dt/Pt)) follows an AR(1) process, then Et[rt+1− gt+1] is linear in that

quantity and can be replaced with the fitted value from linear regressions of rt+1−gt+1 on

dpt or yt. Thus, let:

µGMdt ≡rf,t+1+LV IXt−(av0+av1vt)

where vt is dpt or yt. Internet Appendix D details the construction of µGMdt .42

42Internet Appendix D Figure D.1 plots µGMdt calculated from dpt and yt.
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Table G.2 reports results from this two-stage least squares regression:

∆σ2
t =β0+β11(t= announcement)+εt

∆µGMdt =λ0+λ1∆σ2
t

∧

+νt.

The second and third rows report negative estimates for the reduced-form regression coef-

ficient of ∆µPSTd,t on 1(t= announcement) (λ1β1 ≈−2 basis points). These results suggest

that average changes in expected cash flow growth are lower on announcement days than

on non-announcement days, which would imply that my baseline λARU =−7.8 basis points

underestimates (in magnitude) the true ARU effect.43

Gormsen & Koijen (2020) Dividend-Strip-Implied expected Dividend Growth

Third, I use options-implied dividend strip prices to construct the expected dividend growth

measure from Gormsen & Koijen (2020). Van Binsbergen, Brandt & Koijen (2012) show one

can recover prices on dividend strips — claims to all dividends paid by an asset over a fixed

horizon — from put-call parity:

Pt,T =pt,T−ct,T +St−Xe−rt,T (T−t), (30)

where Pt,T is the price at time t for a claim to all dividends paid from time t to T , pt,T and

ct,T are prices on put and call options that expire at time T and have strike price X, St is

the spot price, and rt,T is the risk-free rate.44 I extract 12 and 24 month S&P 500 dividend

strip prices from index options.45

43Internet Appendix D details an alternative lower bound using the 95% av1 confidence interval upper
bounds to assuage concerns that the av1 estimates are too small (e.g. attenuation bias from measurement
error), which would render µGMdt too dependent on LV IXt and insufficiently dependent on dpt or yt. This
alternative µGMdt also does not correlate significantly positively with the announcement timing (Internet
Appendix G Table G.2).

44I construct synthetic dividend strip prices because data on traded dividend futures are not available for
a long enough time period.

45Following Van Binsbergen, Brandt & Koijen (2012), I minimize measurement error by using index option
tick data to match put, call, and spot prices at high-frequency (e.g. within 1 second). This matching yields
thousands of prices per maturity per day, among which I take the median. See Internet Appendix E for
details.
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Following Gormsen & Koijen (2020), I convert dividend strip prices to expected dividend

growth via the following quarterly forecasting regression:

∆(h)Dt=β
(h)
0 +β(h)

1 e
(h)
t +ε(h)

t , (31)

where ∆(h)Dt=(Dt+4h−Dt)/Dt is h-year dividend growth and e(h)
t is the h-year equity yield

e
(h)
t = 1

h
ln
(

Dt

Pt,t+4h

)
,

for current level of dividends Dt. I use fitted values g(h)
t ≡ ∆̂(h)Dt from (31) for h= 1 and 2

years as expected cash flow growth measures.46

As with all prices, variation in both cash flow expectations and discount rates drives

dividend strip price variation. Thus, the equity yields e(h)
t and fitted expected dividend

growth g(h)
t also respond to discount rate movement. Yet since dividend strips are short-term

assets, discount rate variation should impact their prices less than stock prices. Moreover,

if expected dividend growth rates and discount rates are negatively correlated, then ∆g(h)
t

provides an upper bound in magnitude for the true change in expected cash flow growth.

Table G.2 reports results from this two-stage least squares regressions:

∆σ2
t =β0+β11(t=announcement)+εt

∆g(h)
t =λ0+λ1∆σ2

t

∧

+νt.

The last two rows reports mixed and insignificant estimates for the reduced-form regression

coefficient of ∆g(h)
t on 1(t= announcement) (λ1β1≈ 13 and −3 basis points at the 1 and 2

year horizons, respectively). Thus, I do not find consistent evidence that average changes

in expected cash flow growth are higher on announcement days than on non-announcement

days in my sample.47

46Internet Appendix H Table H.6 reports the forecasting regression results. Internet Appendix E Figure
E.1 plots Pt,t+4h and g(h)

t .
47The equity market beta on ∆g(1)

t is 0.1008 (Internet Appendix H Table H.7), which likely overestimates
the true beta due to omitted variable bias (i.e. omitted discount rate shock). Per Table G.2, g(1)

t rises 13.32
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Evidence from the Cross Section of Equity Returns

Internet Appendix F provides corroboratory evidence from the cross section of equity re-

turns. Average announcement-day returns do not correlate significantly with cash-flow betas

(estimated as in Campbell & Vuolteenaho (2004)), which is consistent with expected cash

flow growth not correlating with the announcement timing. This result further establishes

that the baseline λARU estimated from the difference between announcement-day and non-

announcement day average realized returns is not driven by finite-sample variation in cash

flow growth shocks.

6.3 Alternative Macroeconomic Uncertainty Measures

I consider three alternative measures of macroeconomic uncertainty and also provide corrob-

oratory evidence from the cross section of equity returns. Specifically, I use variants of the

Jurado, Ludvigson & Ng (2015) index that measure uncertainty over different horizons, an

out-of-sample daily JLN index constructed by performing regression (18) in a rolling win-

dow, and S&P 500 implied volatility. The estimated effect of macroeconomic uncertainty λσ2

from two-stage least squares regression (25) using these alternative measures ranges from 40

to 93 basis points (see Table G.3), which is similar to the baseline second-stage coefficient

estimate of 36 basis points.

Alternative Horizons for JLN Index

First, I construct daily macroeconomic uncertainty series using the 1 and 3-month horizon

JLN indices, which measure uncertainty over shorter horizons than the baseline 12-month

index, via the same projection procedure discussed in Section 3.1. Table G.3 reports the

basis points on announcements. The implied expected dividend growth contribution to announcement-day
returns is 13.32·0.1008=1.34 basis points out of the total ARU effect on realized returns of 8.31 basis points
(i.e. 16.1%). However, this figure is not significant at the 5% level and, since some discount rate variation
contaminates ∆g(1)

t , likely overstates the true contribution. Still, even a charitable interpretation implies
that finite-sample variation in expected cash flow growth shocks can account for very little of the estimated
ARU effect.
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two-stage least squares regression results from (25) using these alternative measures. A one

standard deviation increase in these measures raises long-run expected returns by 41 and 40

basis points for the 1 and 3-month indices, respectively, which is quantitatively similar to

the baseline result of 36 basis points.

Out-of-Sample JLN Index

Second, I construct an out-of-sample version of the baseline 12-month horizon daily JLN

index. Specifically, I run the monthly regression (18) of the original JLN index on the

average option implied volatilities in a rolling five-year look-back window and then apply the

fitted weights to one month out of sample.48 Table G.3 exhibits the two-stage least squares

regression results using this alternative measure. The second-stage coefficient estimate is

qualitatively similar to and quantitatively larger than the baseline result. A one standard

deviation increase in this out-of-sample measure raises long-run expected returns by 93 basis

points as compared to the baseline result of 36 basis points. I prefer the in-sample JLN index

for the baseline analysis, however, since the first-stage regression for the out-of-sample index

is weaker, due in part to the shorter sample period (five years lost to the rolling window)

and measurement error from the time-varying weights.49

S&P 500 Futures Implied Volatility

Third, I use S&P 500 futures implied volatility.50 Table G.3 displays that the effect of macroe-

conomic uncertainty on long-run expected returns proves significant under this measure as
48Internet Appendix H Figure H.3 displays the time-varying weights. For each day in the out-of-sample

month, I use are a convex combination of the previous window’s fitted weights (w̃) and those from this
window (w). For day t in a month with T days, the convex combination weight on w is t/T . This smooth
evolution of weights prevents artificially large daily changes at the start of each month.

49The 1st-stage F-statistic for the out-of-sample index is 10.98 — much smaller than the 64.26 for the
in-sample index, though greater than the conventional threshold (10). Moreover, a weak instrument biases
the 2nd stage coefficient towards the OLS coefficient, so 93 basis points might underestimate the true effect.

50As in Section 3.1, I use the volume-weighted average implied volatility of all contracts. Thus, this index
is not the VIX, which applies a particular weighting scheme to options with one month until expiration. I
use the volume-weighted average implied volatility of all outstanding contracts so that the option maturities
of this index align with those of the baseline daily JLN index. Moreover, the VIX time series only starts in
1990 and so is three years shorter. Nevertheless, using VIX yields similar results.
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well. A one standard deviation increase in this measure raises long-run expected returns by

41 basis points as compared to the baseline result of 36 basis points. Since macroeconomic

uncertainty is not just uncertainty about the S&P 500 (as illustrated by Table H.1), I prefer

the daily JLN index for the baseline analysis.

Evidence from the Cross Section of Equity Returns

Internet Appendix F provides corroboratory evidence from the cross section of equity returns.

Sorting stocks into decile portfolios based on betas to the original monthly JLN index, the

highest decile portfolio has a 7 basis point lower average announcement day return than

the lowest decile portfolio, which is consistent with uncertainty falling on announcements.

This result further corroborates the first-stage result that macroeconomic uncertainty falls

on average more on announcement days than on non-announcement days.

6.4 Heterogeneity Across Announcements

This paper’s main results prove qualitatively robust to taking subsets of different announce-

ment types.

Table G.4 performs the two-stage least squares analysis from (25) using four subsets of

announcements: output, price, monetary policy, and all but monetary policy. The reduced

form and two-stage least squares results across all subsets prove similar in magnitude to the

baseline results in Table 4, though not all attain statistical significance since we lose power

by dropping many of the announcements. In particular, FOMC announcements do not drive

the baseline results. Dropping all FOMC announcements from the set of announcement

dates yields an estimated λσ2 = 29 basis points, which is similar to the baseline result of

λσ2 =36 basis points.51

51Cieslak, Morse & Vissing-Jorgensen (2019) and Cieslak & Pang (2020) raise the concern unexpectedly
dovish monetary policy news has driven the high equity returns on FOMC announcements since 1994. Since
my empirical results are robust to dropping FOMC announcements from the set of announcement dates,
any such unexpectedly dovish monetary policy news does not drive my baseline results. Moreover, Savor &
Wilson (2013) document higher average returns on announcement days than on non-announcement days in
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Additionally, I run Sargan’s overidentification test for two-stage least squares regression

(25) by labeling alternating announcements as even and odd. I cannot reject the null hy-

pothesis that the overidentifying restrictions are valid.52

7 Conclusion

I estimate the causal effect of macroeconomic uncertainty on time-varying expected returns.

Previous work has provided suggestive evidence for such an effect and for an unconditional

risk premium for uncertainty. Yet previous causal estimates require strong structural as-

sumptions.

My main contribution in this work is to propose a novel identification strategy to isolate

exogenous variation in macroeconomic uncertainty at high frequency. I exploit the exogenous

timing of prescheduled macroeconomic announcements to instrument for macroeconomic un-

certainty and quantify its impact on expected returns. While the content of announcements

is surely endogenous to the contemporaneous state of the economy, the timing is not. The

only source of variation I exploit is the timing of prescheduled announcements, not their

content.

My results reveal four main findings. First, announcements resolve a significant amount

a sample going back to 1958, which predates the dovish monetary policy cycle of concern in Cieslak, Morse
& Vissing-Jorgensen (2019) and Cieslak & Pang (2020).
Ernst, Gilbert & Hrdlicka (2019) raise the concerns that the subset of announcements focused on in

the macroeconomic announcement literature may not be representative of the entire set of macroeconomic
announcements and that high returns on announcement days may be due simply to a correlation between
announcement timing and other important market events (e.g. monthly capital flows from institutional
investors). These concerns do not undermine my analysis. First, I do not focus on particular announcement
types and instead treat all announcements homogeneously. Using a larger set of announcement types, Ernst,
Gilbert & Hrdlicka (2019) also find that announcement days experience higher average returns than non-
announcement days. This result holds even after controlling for day-of-the-month fixed effects, although this
latter estimate is not statistically significant, likely in part due to the shorter sample used (1990-2018) as
compared to this paper (1986-2016) or Savor & Wilson (2013) (1958-2009).
Second, the alternative explanations in Ernst, Gilbert & Hrdlicka (2019) for high average returns on

announcement days (e.g. the timing of capital flows) do not explain why these days experience large decreases
in macroeconomic uncertainty. Indeed, the smaller difference between average announcement and non-
announcement day returns they find may be due to their inclusion of announcement types that do not
resolve a significant amount of uncertainty.

52The test statistic is χ2
1 =1.0217 with p-value 0.3121.
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of uncertainty. Second, this announcement resolution of uncertainty causes an 7.8 basis point

drop in long-run expected returns. Third, macroeconomic uncertainty accounts for up to

32% of long-run expected return variation. Fourth, I present evidence that other expected

return drivers do not correlate with the timing of announcements, in which case I can tighten

this upper bound to conclude macroeconomic uncertainty explains 10% of long-run expected

return variation. Moreover, a one standard deviation increase in the level of macroeconomic

uncertainty raises long-run expected returns 173 basis points. I also find macroeconomic

uncertainty explains a significant proportion of price variation in other asset classes.

These results have implications for asset pricing and macroeconomics. In asset pricing,

models of time-varying expected returns should consider macroeconomic uncertainty as one

driver and should be calibrated to match the quantitative results above. In macroeconomics,

heightened macroeconomic uncertainty may depress investment through a discount rates

channel.

Immediate extensions of this work include assessing the causal impact of macroeconomic

uncertainty in other markets and asset classes. More generally however, the exogenous timing

of prescheduled events can provide an instrument for uncertainty in other applications as

well. Furthermore, the success of my empirical strategy motivates future research using

high-frequency measures to isolate exogenous variation in expected return drivers in order

to pin down their causal effects. Identifying causality at the frequencies employed in most

asset pricing research proves difficult; too many variables co-move at monthly or quarterly

frequencies. At daily or even higher frequencies, however, one can potentially disentangle

these effects and shed light on how and why discount rates move.
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Appendix

A Identifying Assumptions in Generalized Environment

Assumptions 1 and 2 generalize as follows:

Assumption 5. (Exclusion with respect to other economic shocks) The timing of prescheduled macroeco-

nomic announcements is uncorrelated with all other relevant shocks:

Cov(ε·,t ·1(t=announcement))=0,

and in the following reduced-form regressions

∆Ht=θ1,0+θ1,11(t=announcement)+ν1,t

∆Et=θ2,0+θ2,11(t=announcement)+ν2,t,

we have Cov(ν·,t,1(t=announcement))=0.

Assumption 6. (Exclusion with respect to conditional expectations) The timing of prescheduled macroeco-

nomic announcements does not systematically affect the investor’s conditional expectations of macroeconomic

variables:

Cov(∆Et,1(t=announcement))=0.

That is, θ2,1 =0 in (16).

All of the intuition from Section 1.1 persists. Assumption 5 still proves reasonable because announcements

are scheduled far in advance to follow a fixed schedule. The justification for Assumption 6 also remains the

same: failure of this assumption would violate the martingale property of conditional expectations.

In this generalized environment, the first-stage coefficient βσ2,1 from (7) becomes βσ2,1 = α
′

1θ1,1. As-

sumption 3 does not change:

Assumption 7. (Relevance) The loading βσ2,1 of macroeconomic uncertainty ∆σ2
t on the announcement

timing 1(t=announcement) in first-stage regression (7) is non-zero.

Under Assumptions 5, 6, and 7, the econometrician can still identify the announcement resolution of

uncertainty (ARU) effect:

λARU =λσ2α
′

1θ1,1+δ
′

1θ1,1. (32)
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The ARU effect is now the causal effect of the announcement-induced change in uncertainty on expected

returns, where uncertainty broadly includes all higher moments of all state variables. It still accounts for all

channels through which changes in uncertainty can affect expected returns: both macroeconomic uncertainty

and the residual term ∆µ̌t. As in Section 1.1, however, λARU is still a causal effect of uncertainty on expected

returns because it is not at all polluted by contemporaneous shifts in first moments. The reduced-form

regression (9) will still estimate the ARU effect.

Given estimated regressions (7) and (9), in this generalized environment, the econometrician can also

identify:
λARU
βσ2,1

=λσ2 + δ
′

1θ1,1

α
′
1θ1,1

. (33)

Assumption 4 generalizes as follows:

Assumption 8. (Exclusion with respect to other expected return drivers) Announcements do not system-

atically affect any driver of expected returns except macroeconomic uncertainty:

Cov(∆µ̌t,1(t=announcement))=0.

Assumption 8 implies that βr,1 =0 in the following reduced-form regression:

∆µ̌t=βr,0+βr,11(t=announcement)+εt,

where βr,1 =δ
′

1θ1,1. Thus, the second term in (33) vanishes and the econometrician can identify the effect of

macroeconomic uncertainty:
λARU
βσ2,1

=λσ2 .
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A Internet Appendix A: Model with HARA Utility

In this appendix I provide a simple example of a model in which the risk premium depends on two

factors: macroeconomic uncertainty and risk aversion. For simplicity, this model features only

time-varying physical macroeconomic volatility, but can easily be extended to include posterior

variance of macroeconomic fundamentals.

Following Bekaert, Engstrom & Xu (2019), I assume there is a representative investor with

HARA-type period utility over consumption:

U(Ct)= (Ct/Qt)1−γ

1−γ ,

where Qt is a function of consumption Ct and an exogenous process Ht (i.e. external habit):

Qt=
Ct

Ct−Ht

.

Here Qt is a quantity proportional to the representative investor’s time-varying relative risk

aversion:

RRAt=−Ct
∂2U/∂C2

t

∂U/∂Ct
=γQt.

In this economy, log consumption growth and log dividend growth are i.i.d. with stochastic

volatility:

∆ct+1 =µc+σcεn,t+1+ρcσtεt+1

∆dt+1 =µd+σdεd,t+1+ρdσtεt+1

σ2
t+1 =σ2

0 +ν(σ2
t−σ2

0)+σνεν,t+1+ρσεc,t+1.

Note that both consumption and dividend growth are exposed to idiosyncratic shocks (εn,t+1 and

1



εd,t+1, respectively) as well as a common shock (εt+1). The time-varying variance σ2
t of this

common shock is macroeconomic uncertainty. I also model qt=logQt as a mean-reverting AR(1)

process:

qt+1 =q0+δ(qt−q0)+σq
√
qtεq,t+1+ρqεc,t+1+αq(∆ct+1−µc),

where εc,t+1 is a common shock to both macroeconomic uncertainty and risk aversion (e.g. a

recessionary shock). All shocks ε·,t+1 are i.i.d. and have standard normal distributions. The

representative investor’s stochastic discount factor (SDF) here is:

Mt+1 =β
(
Ct+1

Ct

)−γ( Qt

Qt+1

)−γ

↔mt+1≡ logMt+1 =logβ−γ∆ct+1+γ∆qt+1,

for subjective discount factor β. The gross returns Rt+1 for the asset that pays out dividends Dt

here must satisfy

Et

β(Ct+1

Ct

)−γ( Qt

Qt+1

)−γ
Rt+1

=1.

I derive an approximate log-linearized solution using the decomposition of Campbell & Shiller

(1988), under which log returns have the following form:

rt+1 =κ0+κ1zt+1−zt+∆dt+1,

where rt+1 =logRt+1, zt=log(Pt/Dt), and κ0 and κ1 are constants that depend only on the average

level of zt. I solve the model by guess and verify. I conjecture the following form for zt:

zt=A0+A1qt+A2σ
2
t .

Plugging this expression into

Et[exp[mt+1+rt+1]]=1 (34)
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and solving yields53

A1 =
−(2γκ1+κ1δ−1)σq−

√
(2γκ1+κ1δ−1)2σ2

q−4κ2
1σ

2
q (γσ2

q+δ−1)γ
2κ2

1σ
2
q

A2 = −1
κ1ν−1(γαqρc(A1+1)−γρc+ρd)2.

The log returns expression is then:

rt+1 =κ0+A0(κ1−1)+A1(κ1qt+1−qt)+A2(κ1σ
2
t+1−σ2

t )+∆dt+1.

Since returns Rt+1 are log-normal in this model, the log risk premium on this asset is given by:

µt≡ logEt[Rt+1−Rf,t]=Et[rt+1]−rf,t+
1
2Vt[rt+1]

=Et[rt+1]+
(
Et[mt+1]+ 1

2Vt[mt+1]
)

+ 1
2Vt[rt+1]

=−Covt(mt+1,rt+1),

where Rf,t is the risk-free rate from time t to t+1 and the last equation follows from (34) and

using that mt+1 and rt+1 are jointly log-normally distributed. Plugging in the expressions for mt+1

and rt+1 yields

∆µt=λσ2∆σ2
t +λq∆qt, (35)

where

λσ2 =γρc(αq−1)(A1κ1αqρc+ρd)

λq=γρq(A1κ1ρq+A2κ1ρσ).

One can further extend this model by introducing “announcements” that exogenously move

macroeconomic uncertainty:

σ2
t+1 =σ2

0 +ν(σ2
t−σ2

0)+σνεν,t+1+ρσεc,t+1+ασ1(t=announcement),
53This expression for A1 is one root of a quadratic equation. In principle the other root also provides a valid

solution.
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where:

1. The announcement timing is known in advance (i.e. 1(t=announcement) is in the

information set at time t−j for all j>0 and is not a “shock” at time t).

2. All shocks ε·,t+1 are uncorrelated with 1(t=announcement):

Et[ε·,t+1 ·1(t=announcement)]=0

↔Et[ε·,t+1

∣∣∣1(t=announcement)=0]=Et[ε·,t+1

∣∣∣1(t=announcement)=1]. (36)

Note that (36) is the standard exclusion restriction for a binary instrument.

The same guess and verify procedure from above yields the following returns expression for this

economy with announcements:

rt+1 =κ0+A0(κ1−1)+A1(κ1qt+1−qt)+A2(κ1σ
2
t+1−σ2

t )+
∑

i,j∈{A,NA}
Aij(κ11(t+1= i)−1(t=j))+∆dt+1,

for A=Announcement and NA=Non-Announcement where 54

AA,A=0

AAN =−A2κ1ασ(1−2κ1)
2κ1(1−κ1)

ANA=−A2κ1ασ
2(κ1−1)

ANN =A2ασ
2 .

Note that the expression for the risk premium (35) does not change since 1(t=announcement) is

uncorrelated with all shocks. But since ∆σ2
t now depends on the announcement timing, so does

∆µt.
54One coefficient Aij is undetermined, so I set AA,A=0 for simplicity.
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B Internet Appendix B: Details of Implied Volatility Cal-

culation

In this appendix I discuss the construction of the daily implied volatility series. I consider all

outstanding weekly and monthly expiration options from the CME for the following underlyings:

• S&P 500 futures

• Crude oil futures

• Gold futures

• Wheat futures

• 10-year Treasury note futures

• Corn futures

• Soybean futures

I back out implied volatility for all these contracts using the Black Scholes formula given the

observed options price, time to expiration, strike price, spot price, and risk-free rate. I linearly

interpolate the risk-free rate to match time to expiration based on the prevailing yields to 4, 13,

and 26-week Treasury bills from the CRSP Treasuries Riskfree series. For longer expiration

options I interpolate using the 1-year yield from the CRSP Treasury Fixed Term Index.

Due to measurement error in the data as well as the potential illiquidity of daily options, I exclude

contracts that satisfy any of the following conditions:

• Contracts with non-positive price

• Contracts with non-positive volume55

• Contracts with non-positive time to expiration
55The CME data contains a field for purported total volume of each contract on each day as well as separate fields

for Globex, Floor, and PNT volumes. For my measure of volume I use the maximum of the former volume field and
the sum of the latter three fields.
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• Any other contracts where calculated implied volatility is non-positive or greater than one

Furthermore, if on this day there are any contracts for this underlying with time to expiration of

at least two days (after applying the above filters), then I drop all contracts with one day to

expiration. Otherwise, I retain contracts with only one day to expiration. Lastly, I exclude

contracts with calculated implied volatility outside two standard deviations from the mean implied

volatility for all contracts for the same underlying and date that survive the above filtering.

I then take a volume-weighted average of the calculated implied volatilities of all remaining

contracts for each underlying on each day. Internet Appendix H Table H.8 displays some summary

statistics for this options data.
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C Internet Appendix C: Motivation for Functional Form

of Pettenuzzo, Sabbatucci & Timmermann (2020) De-

composition

In the interest of self-containment, in this appendix I provide the motivation from Pettenuzzo,

Sabbatucci & Timmermann (2020) for the functional form of the decomposition of announced

dividend growth in (28).

Assume that aggregate dividend growth has the following dynamics:

∆dA,t+1 = µ̃d,t+1+σAεA,t+1, εA,t+1∼N(0,1), (37)

where the conditional mean µ̃d,t+1 follows the dynamics in (29):

µ̃d,t+1 =µd+φµ(µ̃d,t−µd)+σµεµ,t+1, εµ,t+1∼N (0,1), E[εA,t+1εµ,t+1]=0.

In reality, we do not observe aggregate dividend growth daily, but instead the dividend growth of

a time-varying subset of firms. Thus, let ∆dAit+1 be firm i’s observed year-over-year growth rate in

dividends announced and assume it follows

∆dAi,t+1 =βi∆dA,t+1+σiεi,t+1, εi,t+1∼N(0,1), (38)

where εi,t+1 is uncorrelated across firms. We keep track of time-variation in the set of announcing

firms using weights

ωi,t=
Di
t∑Nd,t

i=1 D
i
t

,

where Di
t and Nd,t are the dividend announced by firm i on day t and the total number of firms

announcing dividends on day t, respectively. Thus, ωi,t is the weight of dividends announced by

firm i on day t relative to the total dividends announced on day t . Aggregating (38) across all
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announcing firms on day t+1 yields:

∆dAt+1 =
Nd,t+1∑
i=1

ωi,t+1∆dAi,t+1

=
Nd,t+1∑
i=1

ωi,t+1(βi∆dA,t+1+σiεi,t+1)

=
Nd,t+1∑

i=1
ωi,t+1βi


︸ ︷︷ ︸

≡βt+1

∆dAt+1+
Ndt+1∑

i=1
ω2
i,t+1σ

2
i

 1
2

εt+1︸ ︷︷ ︸
≡σd,t+1εt+1

, εt+1∼N (0,1) (39)

Here, βt+1 is the time-varying weighted-average cash flow beta of all announcing firms on day t+1

and

σd,t+1 =

√√√√Ndt+1∑
i=1

ω2
i,t+1σ

2
i ,

since εit+1 are uncorrelated across firms. Pettenuzzo, Sabbatucci & Timmermann (2020) note that

total dividends announced on a day can be dominated by a small number of firms or by firms

within the same industry. Systematic variation in cash flow betas across these firms or industries

will lead to time-variation in βt+1, especially since Ndt is not always large. Nevertheless, these

shifts in composition prove temporary and so βt+1 is mean-reverting toward its unconditional

mean β̄. Hence, we can rewrite (39) as

∆dAt+1 = β̄∆dA,t+1+(βt+1−β̄)∆dA,t+1+σd,t+1εt+1

= β̄(µ̃d,t+1+σAεA,t+1)+(βt+1−β̄)(µ̃d,t+1+σAεA,t+1)+σd,t+1εt+1

∝ µ̃d,t+1+ (βt+1−β̄)
β̄

µ̃d,t+1+
(

1+βt+1−β̄
β̄

)
σAεA,t+1+σd,t+1

β̄
εt+1. (40)

Pettenuzzo, Sabbatucci & Timmermann (2020) note that, compared to the law of motion for

unobserved aggregate dividend growth (37), the observed dividend growth law of motion (40) has

three additional time-varying components:

1. A term with a time-varying loading (βt+1−β̄)
β̄

on µ̃d,t+1.

2. A term with time-varying loading
(
1+ βt+1−β̄

β̄

)
σA on the aggregate dividend shock εA,t+1.

3. A term with a time-varying loading σd,t+1
β̄

on the shock εt+1.
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The time-varying loading in the first component can be very volatile due to large time-variation in

the number and types of firms that announce dividends each day. The last two components

introduce stochastic volatility into the dynamics of ∆dAt+1. If firms with similar βi and σi (e.g.

firms in the same industry) cluster temporally in their dividend announcements, then this

stochastic volatility will be persistent.

Pettenuzzo, Sabbatucci & Timmermann (2020) introduce two components to absorb this

time-variation. First, they add a jump component ξd,t+1Jd,t+1 to account for the large effect of

daily changes in βt+1. Since time variation in βt+1 will be largest on days with few announcing

firms, they let the jump probability depend on Nd,t+1:

P (Jdt+1 =1)=Φ(λ1+λ2Nd,t+1),

where Φ is the standard normal CDF. Given a jump occurs, the magnitude of the jumps has a

time-invariant distribution: ξd,t+1∼N
(
0,σ2

ξ

)
. Second, they explicitly model the stochastic

volatility process by introducing a new shock

εd,t+1∼N
(
0,ehdt+1

)
,

where the log-variance follows a mean-reverting AR(1) process

hd,t+1 =µh+φh(hd,t−µh)+σhεh,t+1, εh,t+1∼N (0,1),

and

E[εd,t+1εµ,t+1]=E[εd,t+1εt+1]=0.

Therefore, Pettenuzzo, Sabbatucci & Timmermann (2020) arrive at the following model from (28)

as their decomposition for daily dividend announced growth:

∆dAt+1 = µ̃d,t+1+ξd,t+1Jd,t+1+εd,t+1.

The authors estimate the model using Bayesian structural estimation. I refer the reader to the

original paper for the estimation details.
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Figure C.1 illustrates the time series of µ̃d,t (expressed as an annualized growth rate).

Figure C.1: Time Series of Expected Dividend Growth µ̃dt (Annualized)

This figure displays the time series of expected dividend growth µ̃d,t from Pettenuzzo, Sabbatucci
& Timmermann (2020), scaled to a annual growth rate. Y-axis units are in percentage terms (i.e.
1.0 is 100 basis points per year).
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D Internet Appendix D: Details of Construction of Gao &

Martin (2019) Expected Dividend Growth Lower Bound

As discussed in Section 6.2, the Gao & Martin (2019) lower bound on subjective expected log

dividend growth takes the following form:

Et[gt+1]≥rf,t+1+LV IXt−Et[rt+1−gt+1]

=rf,t+1+LV IXt−(av0+av1vt)

≡µGMdt ,

where vt is dpt=log(Dt/Pt) or yt=log(1+Dt/Pt). Here Pt is the price level of the CRSP

value-weighted market portfolio and I measure the level of dividends Dt as the sum of the

previous four quarterly dividend payments. I use the following coefficient estimates for av0 and av1
in Gao & Martin (2019) obtained from annual regressions of rt+1−gt+1 on dpt and yt:

adp0 =0.43

adp1 =0.111

ay0 =−0.073

ay1 =3.541.

For the ninety-five percent upper bounds (in magnitude) for these coefficients I use the following

values implied by the standard errors reported in Gao & Martin (2019):

adp0 =0.43+1.96(0.144)=0.712

adp1 =0.111+1.96(0.41)=0.915

ay0 =−0.073−1.96(0.048)=−0.0211

ay1 =3.541+1.96(1.302)=6.093.
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Figure D.1: Time Series of Expected Dividend Growth µGMdt

This figure displays the daily time series of expected dividend growth µ̃dt from Pettenuzzo, Sab-
batucci & Timmermann (2020) (expressed as an annual rate) as well as the twelve-month subjective
expected log dividend growth lower bounds (extracted from dp= log(D/P ) and y= log(1+D/P ))
from Gao & Martin (2019). Y-axis units are in absolute terms (i.e. 0.100 is an annual expected
growth rate of 10%).

Note that since my regressions only use ∆µGMdt the values of av0 are not important. Since I

calculate the lower bound on expected twelve-month log dividend growth, I use the twelve-month

LVIX, which I calculate following the procedure in Gao & Martin (2019) using S&P 500 index

options data from OptionMetrics via WRDS. Figure D.1 displays the twelve-month subjective

expected log dividend growth lower bounds µGMdt extracted from dpt and yt.
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E Internet Appendix E: Details of Dividend Strip Price

Calculation

I follow the procedure from Van Binsbergen, Brandt & Koijen (2012) to extract dividend strip

prices from the following put-call parity relationship:

Pt,T =pt,T−ct,T +St−Xe−rt,T (T−t). (41)

In particular, I use S&P 500 index options tick data from Market Data Express. On each day I

collect all call option quotes between 10:00 A.M. and 2:00 P.M. and match each with the put

quote of equal strike price and maturity that occurs temporally closest.56 Each call and put quote

is accompanied by a spot index quote.57 This matching process usually yields thousands of

matched call-put pairs over the course of the day. I calculate the interest rate by linearly

interpolating among the zero-coupon interest rate curve from OptionMetrics. I apply (41) to each

matched pair. For each maturity on each day I then take the median over all calculated prices to

mitigate the effect of outliers. To obtain constant-maturity prices (for 12 and 24 months), I

linearly interpolate among the median prices for the available maturities on each day.

Unfortunately, the Market Data Express data contains data entry errors for a small number of

days. On some days, either strike prices or spot prices are missing for a large number of quotes.

For each day, I calculate the number of full-information call quotes available for each of my fixed

maturities (by linearly interpolating among the number of call quotes available at each of the

actual maturities on that day). For each fixed maturity, I drop all days with less than one thousand

full-information call quotes available (note that the number of matched call quotes will be less

than the number individual full-information call quotes). This process leads me to drop 86 days

for the twelve-month series and 263 days for the twenty-four-month series, all out of 5277 total

days from 1996-01-02 to 2016-12-22. Many of these dates (76 days) occur in the first half of 2003.
56As noted by Van Binsbergen, Brandt & Koijen (2012), bid-ask spreads are largest at the start and end of each

day, especially the end of the day since the options exchange closes fifteen minutes after the equity exchange. Taking
quotes from only the middle of the day bypasses these microstructure issues.

57Usually the matched call and put quotes fall within the same second and have the same quoted spot price. If the
spot quotes do not match, I use the average of the two spot quotes.
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Figure E.1 displays the time series of the twelve and twenty-four-month dividend strip prices as

well as their implied fitted expected dividend growth series, constructed as described in Section

6.2.
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Figure E.1: Time Series of Dividend Strip Prices and Fitted Expected Dividend Growth

Top: The daily time series of prices for twelve and twenty-four-month dividend strips on the S&P
500, which are extracted from S&P 500 index options using the following put-call parity relationship:

Pt,T =pt,T−ct,T +St−Xe−rt,T (T−t),

where Pt,T is the price at time t for a claim to all dividends paid out from time t to T , pt,T and
ct,T are time t prices on put and call options that expire at time T and have strike price X, St is
the spot price at time t, and rt,T is the interest rate between time t and T . Internet Appendix E
discusses the details of the construction of this series. Y-axis units are in dollars.
Bottom: The fitted expected dividend growth series g(h)

t ≡ β̂
(h)
0 + β̂

(h)
1 e

(h)
t for h = 1 and 2 years,

as well as the baseline measure of expected dividend growth µ̃dt from Pettenuzzo, Sabbatucci &
Timmermann (2020) (expressed as an annual rate). Table H.6 displays the estimated coefficient
values β̂(h)

0 and β̂(h)
1 . Y-axis units are in absolute terms (i.e. 0.2 is an expected growth rate of 20%,

not annualized).
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F Internet Appendix F: Evidence from the Cross Section

of Equity Returns

The main analysis in this paper concerns itself with aggregate shocks (macroeconomic uncertainty)

and outcomes (returns and expected returns for the entire equity market). In this appendix I

leverage cross-sectional heterogeneity to provide corroboratory evidence for my baseline results.

Heterogeneous Cash-Flow and Discount-Rate News Exposures

In this section I provide further evidence that discount rates fall on average on announcement

days while expected cash flow growth does not correlate with the announcement timing by

exploiting cross-sectional heterogeneity in exposures to cash-flow and discount-rate news. If on

average expected returns fall and expected cash flow growth does not change on announcement

days, then ceteris paribus we should see:

1. Stocks with higher (more positive) discount-rate betas experience lower average

announcement-day returns than stocks with lower (more negative) discount-rate betas.

2. Average announcement-day returns should not significantly correlate with cash-flow betas.

I will not attempt to isolate exogenous variation in cash-flow and discount-rate betas and will

simply use the results in this section as corroboratory suggestive evidence of the results in

Sections 6.1 and 6.2.

To this end, I follow the methodology of Campbell & Vuolteenaho (2004) to construct monthly

time series of cash-flow (NCF,t) and discount-rate (NDR,t) news. I then use these series to

construct cash-flow (βi,CF ) and discount-rate (βi,DR) betas in three-year rolling windows for all

stocks i in CRSP.

To construct the monthly time series of cash-flow (NCF,t) and discount-rate (NDR,t) news, I begin

with the following returns decomposition from Campbell (1991):

(rt+1−rf,t+1)−Et[rt+1−rf,t+1]︸ ︷︷ ︸
≡re

Mt−Et−1[re
M,t]

=(Et+1−Et)
 ∞∑
j=0
ρj∆dCFt+1+j


︸ ︷︷ ︸

≡NCF,t

−(Et+1−Et)
 ∞∑
j=1
ρjrt+1+j


︸ ︷︷ ︸

,

≡NDR,t
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where rt is the aggregate equity market return. Only realized returns are observed in this identity.

To empirically estimate NCF,t and NDR,t Campbell & Vuolteenaho (2004) imposes the following

VAR dynamics:

zt+1 =a+Γzt+ut+1, (42)

where the vector zt contains four variables:

1. Monthly realized log CRSP value-weighted market returns in excess of the log risk-free

(90-day T-Bill) rate (in the first element of zt).

2. The term spread between yields on 10-year and 3-month U.S. Treasury notes and bills

(Series GS10 and TB3MS from FRED).

3. The log S&P 500 cyclically-adjusted price-earnings ratio (CAPE) from Robert Shiller’s

website.58

4. The small-stock value spread, which is the difference in the book-to-market ratios between

two value-weighted small-value and small-growth portfolios. Specifically, in June of each year

I divide all stocks in CRSP into six portfolios based on whether:

(a) Market equity is above (big) or below (small) the median market equity of all NYSE

stocks as given by the breakpoint data on Ken French’s website.59

(b) Book-to-market ratio is below the 30th percentile (growth), between 30th and 70th

percentiles, or above 70th percentile (value) of all NYSE stocks as given by the

breakpoint data on Ken French’s website.

Once all stocks are partitioned into these six portfolios, take the value-weighted average

book-to-market ratio of each portfolio. The small-stock value spread in June of each year t is

computed as the difference in the log book-to-market ratios of the small-value and

small-growth portfolios. To compute the value spread for each month until June of the next

year t+1, simply add the cumulative log return to the small-growth portfolio since June of
58http://www.econ.yale.edu/~shiller/data.htm.
59http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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year t and subtract the cumulative log return to the small-value portfolio since June of year

t.

For complete details on how to construct these state variables, please refer to the online appendix

of Campbell & Vuolteenaho (2004).60

Given the estimated VAR (42), we can construct the time series NCF,t and NDR,t. Note that

rt+1 =e′zt+1,

where e is a four-element vector with 1 in the first element followed by all zeros. Then note that

we can write

(Et+1−Et)[∆rt+1+j]=e′Γjut+1,

and so

NDR,t=(Et+1−Et)
 ∞∑
j=1
ρj∆rt+1+j

=e′ρΓ(I−ρΓ)−1︸ ︷︷ ︸
≡λ

ut+1.

This last equation in turn implies

NCF,t=e′(I+λ)ut+1.

I then use these estimated news series to construct cash-flow (βi,CF ) and discount-rate (βi,DR)

betas in three-year rolling windows for all stocks i in CRSP as follows:

βi,CF ≡
Cov(ri,t,NCF,t)

V ar
(
reMt−Et−1

[
reM,t

])= Cov(ri,t,NCF,t)
V ar(NCF,t−NDR,t)

+ Cov(ri,t,NCF,t−1)
V ar(NCF,t−NDR,t)

βi,DR≡
Cov(ri,t,NDR,t)

V ar
(
reMt−Et−1

[
reM,t

])= Cov(ri,t,NDR,t)
V ar(NCF,t−NDR,t)

+ Cov(ri,t,NDR,t−1)
V ar(NCF,t−NDR,t)

.

For motivation behind using both the contemporaneous and first-lag covariances between returns

and the news series, please refer to the online appendix of Campbell & Vuolteenaho (2004).

After constructing the cash-flow and discount-rate betas, I construct two sets of decile portfolios

sorted on each type of beta. In each month t, I sort all stocks into ten decile buckets based on the
60https://assets.aeaweb.org/asset-server/articles-attachments/aer/contents/appendices/dec04_app_campbell.pdf.
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βi,CF and βi,DR coefficients calculated in the window ending in the previous month t−1. I

construct a value-weighted portfolio of all the stocks in each bucket and calculate daily portfolio

returns for the current month t. Thus, we have daily returns for ten portfolios sorted on cash-flow

betas and ten portfolios sorted on discount-rate betas that are rebalanced monthly. The first

portfolio in each set contains stocks with the smallest (most negative) exposures.

I then run the following daily regression for each set of portfolios:

rd,t=β0+β11(t=announcement)+
10∑
j=2
β1,j1(j=d)1(t=announcement)+εd,t,

where d is the portfolio decile number. Table F.1 column three illustrates that portfolios more

positively exposed to discount rate news experience significantly lower average announcement-day

returns than lower-exposure portfolios. On the other hand, Table F.2 demonstrates that average

announcement-day returns do not vary significantly with cash-flow beta decile.61 Both of these

results prove consistent with announcement days involving significant decreases in expected

returns and no significant changes in expected cash flow growth.

61Even the coefficient point estimates are not monotonic. For example, since β̂1,2 < 0 the implied loading of the
second portfolio on 1(t=announcement) (i.e. β̂1 + β̂1,2) is less than the corresponding loading for the first portfolio
(i.e. β̂1).

Note that the slight, insignificant positive correlation between cash-flow beta decile and average announcement-day
return arises in part due to the negative correlation between cash-flow and discount-rate betas.
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Table F.1: Regression Results for Discount-Rate Beta-Sorted Portfolios

(1) (2) (3)
Announcement 0.147*** 0.158*** 0.158***

(0.0463) (0.0529) (0.0529)
2nd Decile × Announcement -0.0355 -0.0489 -0.0489**

(0.0591) (0.0679) (0.0208)
3rd Decile × Announcement -0.0414 -0.0606 -0.0606**

(0.0572) (0.0657) (0.0242)
4th Decile × Announcement -0.0608 -0.0777 -0.0777***

(0.0552) (0.0635) (0.0275)
5th Decile × Announcement -0.0685 -0.0846 -0.0846***

(0.0539) (0.0620) (0.0305)
6th Decile × Announcement -0.0748 -0.0969 -0.0969***

(0.0532) (0.0611) (0.0326)
7th Decile × Announcement -0.0576 -0.0715 -0.0715**

(0.0529) (0.0606) (0.0343)
8th Decile × Announcement -0.0781 -0.0864 -0.0864**

(0.0520) (0.0597) (0.0366)
9th Decile × Announcement -0.0786 -0.0838 -0.0838**

(0.0521) (0.0597) (0.0379)
10th Decile × Announcement -0.0695 -0.0658 -0.0658*

(0.0533) (0.0611) (0.0390)
const 0.0288*** 0.0288*** 0.0288*

(0.00554) (0.00554) (0.0159)
Decile FE N Y Y
Robust SE Y Y N
Time-Clustered SE N N Y
N 75610 75610 75610
R2 0.000875 0.000903 0.000903

This table presents results for the following regression:

rd,t=β0+β11(t=announcement)+
10∑
j=2
β1,j1(j=d)1(t=announcement)+εd,t,

where d is the decile number of the discount-rate-beta sorted portfolio. Each column indicates the
inclusion or exclusion of fixed effects as well as the method of calculating standard errors. Units are
in percentage terms (i.e. a coefficient of 1.0 represents 100 basis points). All GDP, Unemployment,
CPI, PPI, Employment Cost Index, and scheduled FOMC announcements are included. The time
period is 1986-11-20:2016-12-22.
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Table F.2: Regression Results for Cash-Flow Beta-Sorted Portfolios

(1) (2) (3)
Announcement 0.0574*** 0.0656*** 0.0656***

(0.0209) (0.0230) (0.0230)
2nd Decile × Announcement -0.00908 -0.0168 -0.0168

(0.0289) (0.0330) (0.0130)
3rd Decile × Announcement 0.00210 -0.00841 -0.00841

(0.0304) (0.0349) (0.0154)
4th Decile × Announcement 0.0245 0.0129 0.0129

(0.0323) (0.0369) (0.0190)
5th Decile × Announcement 0.0167 0.00163 0.00163

(0.0340) (0.0390) (0.0209)
6th Decile × Announcement 0.0138 0.00633 0.00633

(0.0357) (0.0410) (0.0230)
7th Decile × Announcement 0.0317 0.0186 0.0186

(0.0380) (0.0437) (0.0273)
8th Decile × Announcement 0.0482 0.0401 0.0401

(0.0416) (0.0478) (0.0324)
9th Decile × Announcement 0.0676 0.0620 0.0620

(0.0474) (0.0543) (0.0401)
10th Decile × Announcement 0.0646 0.0619 0.0619

(0.0533) (0.0614) (0.0485)
const 0.0304*** 0.0304*** 0.0304*

(0.00571) (0.00571) (0.0159)
Decile FE N Y Y
Robust SE Y Y N
Time-Clustered SE N N Y
N 75610 75610 75610
R2 0.000713 0.000721 0.000721

This table presents results for the following regression:

rd,t=β0+β11(t=announcement)+
10∑
j=2
β1,j1(j=d)1(t=announcement)+εd,t,

where d is the decile number of the cash-flow-beta sorted portfolio. Each column indicates the
inclusion or exclusion of fixed effects as well as the method of calculating standard errors. Units are
in percentage terms (i.e. a coefficient of 1.0 represents 100 basis points). All GDP, Unemployment,
CPI, PPI, Employment Cost Index, and scheduled FOMC announcements are included. The time
period is 1986-11-20:2016-12-22.
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Heterogeneous Macroeconomic Uncertainty Exposures

Section 4.1 presents first-stage results demonstrating that announcement days involve significant

decreases in macroeconomic uncertainty. Here I provide further evidence of this result by

exploiting cross-sectional heterogeneity in exposures to macroeconomic uncertainty across stocks.

If there is indeed a drop in macroeconomic uncertainty on announcement days, then ceteris

paribus stocks with lower (more negative) uncertainty betas should experience greater average

announcement-day returns than stocks with higher (more positive) betas. As in the previous

section, I will not attempt to isolate exogenous variation in uncertainty betas and will simply use

the results in this section as corroboratory suggestive evidence of the baseline results in Section

4.1.

To test this proposition, I estimate uncertainty betas by running the following monthly regression

(following Bali, Brown & Tang (2017)) in three-year rolling windows for all stocks i in CRSP:

ri,t−rf,t=αi+βi,JLN∆JLNt+εi,t,

where rf,t is the 90-day T-Bill return and JLNt is the original monthly Jurado, Ludvigson & Ng

(2015) uncertainty index. In each month t, I then sort all stocks into ten decile buckets based on

the βi,JLN coefficients calculated in the window ending in the previous month t−1. I construct a

value-weighted portfolio of all the stocks in each bucket and calculate daily portfolio returns for

the current month t. Thus, we have daily returns for ten portfolios sorted on uncertainty betas

that are rebalanced monthly. Portfolio one contains stocks with the smallest (most negative)

uncertainty exposures.

I then run the following daily regression:

rd,t=β0+β11(t=announcement)+
10∑
j=2
β1,j1(j=d)1(t=announcement)+εd,t,

where d is the portfolio decile number. Table F.3 displays the results of this regression with and

without decile fixed effects. In the third column, the β1,j coefficients are mostly significantly

negative and decreasing. This pattern indicates that stocks with higher (more positive)

uncertainty betas experience lower average returns on announcement days, which is consistent
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with announcement days entailing a drop in macroeconomic uncertainty.
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Table F.3: Regression Results for Uncertainty Beta-Sorted Portfolios

(1) (2) (3)
Announcement 0.143*** 0.148*** 0.148***

(0.0432) (0.0495) (0.0495)
2nd Decile × Announcement -0.0194 -0.0135 -0.0135

(0.0580) (0.0667) (0.0185)
3rd Decile × Announcement -0.0432 -0.0566 -0.0566**

(0.0542) (0.0625) (0.0222)
4th Decile × Announcement -0.0626 -0.0720 -0.0720***

(0.0528) (0.0608) (0.0258)
5th Decile × Announcement -0.0766 -0.0840 -0.0840***

(0.0518) (0.0596) (0.0268)
6th Decile × Announcement -0.0725 -0.0757 -0.0757**

(0.0506) (0.0583) (0.0298)
7th Decile × Announcement -0.0703 -0.0803 -0.0803**

(0.0499) (0.0575) (0.0316)
8th Decile × Announcement -0.0757 -0.0845 -0.0845**

(0.0495) (0.0571) (0.0333)
9th Decile × Announcement -0.0748 -0.0764 -0.0764**

(0.0492) (0.0567) (0.0348)
10th Decile × Announcement -0.0728 -0.0731 -0.0731**

(0.0510) (0.0588) (0.0359)
const 0.0300*** 0.0300*** 0.0300*

(0.00551) (0.00551) (0.0159)
Decile FE N Y Y
Robust SE Y Y N
Time-Clustered SE N N Y
N 75610 75610 75610
R2 0.000823 0.000837 0.000837

This table presents results for the following regression:

rd,t=β0+β11(t=announcement)+
10∑
j=2
β1,j1(j=d)1(t=announcement)+εd,t,

where d is the decile number of the uncertainty-beta sorted portfolio. Each column indicates the
inclusion or exclusion of fixed effects as well as the method of calculating standard errors. Units are
in percentage terms (i.e. a coefficient of 1.0 represents 100 basis points). All GDP, Unemployment,
CPI, PPI, Employment Cost Index, and scheduled FOMC announcements are included. The time
period is 1986-11-20:2016-12-22.
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G Internet Appendix G: Robustness Check Tables

Table G.1: Two-Stage Least Squares Regression Results for Alternative Expected Return Measures

ARU 1 STD Effect 1 Level
STD Effect

% Variance
Explained

Upper Bound
% Variance Explained

EP Lower Bound - 1 -0.0188*** 0.0884*** 0.4083 42.36 95.87
(0.0045) (0.0228)

EP Lower Bound - 2 -0.0162** 0.0764** 0.3528 12.42 42.57
(0.0071) (0.0332)

EP Lower Bound - 3 -0.0138* 0.065* 0.3 6.91 31.81
(0.0082) (0.038)

EP Lower Bound - 6 -0.0192** 0.0906** 0.4184 10.56 36.96
(0.0087) (0.0402)

EP Lower Bound - 12 -0.0504*** 0.2374*** 1.096 29.71 72.49
(0.0139) (0.0681)

LVIX - 1 -0.0327*** 0.154*** 0.7111 80.15 156.95
(0.0052) (0.0314)

LVIX - 2 -0.0086** 0.0405** 0.1871 11.39 39.8
(0.0038) (0.018)

LVIX - 3 -0.0084** 0.0396** 0.183 9.19 35.95
(0.0043) (0.0198)

LVIX - 6 -0.0091* 0.0429** 0.1982 8.48 33.39
(0.0047) (0.0216)

LVIX - 12 -0.0245*** 0.1152*** 0.5319 27.02 67.98
(0.0071) (0.0345)

This table presents two-stage least squares regression and variance decomposition results for alter-
native expected return measures. I run the following two-stage least squares regression:

∆σ2
t =β0+β11(t= announcement)+εt

∆Expected Returnt=λ0+λ1∆σ2
t

∧

+νt,

for two different expected return measures:

1. Equity premium lower bound of Martin (2017) over several horizons in months (Date range:
1996-01-05:2016-12-22).

2. Log equity premium lower bound of Gao & Martin (2019) (LVIX) over several horizons in
months (Date range: 1996-01-05:2016-12-22).
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The first stage involves a regression of the change in the daily JLN index (standardized to have

standard deviation one) on an indicator for if day t is an announcement. The second stage regresses

the daily change in the expected return measure on the fitted change in the daily JLN index.

The first column reports the announcement resolution of uncertainty (ARU) effect, which is the

estimated coefficient λ1 · β1 from the regression of ∆Expected Returnt on 1(t = announcement).

The second column reports the estimated second-stage coefficient λ1, which is the causal effect of

a positive one standard deviation daily change in macroeconomic uncertainty on expected returns.

The third column reports the causal effect of a positive one standard deviation change in the level

macroeconomic uncertainty on expected returns (a simple rescaling of the second column). The

fourth column reports the proportion of variance in the expected return measure explained by

variation in macroeconomic uncertainty:

λ̂2
1Var[∆σ2

t ]
Var[∆ERt]

.

The fifth column reports an upper bound on this variance decomposition by replacing λ̂1 in the

previous equation with λ̂1+1.96·SEλ̂1
.

Units are in percentage terms (i.e. a coefficient of 1.0 represents 100 basis points). All GDP, Unem-

ployment, CPI, PPI, Employment Cost Index, and scheduled FOMC announcements are included.
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Table G.2: Two-Stage Least Squares Regression Results for Expected Cash Flow Growth Measures

Reduced Form
µPSTdt 0.0006

(0.0012)
µGMdt - 12M (y) -0.0188***

(0.0061)
µGMdt - 12M (dp) -0.0154**

(0.0061)
µGMdt - 12M (y, Version 2) -0.015**

(0.0061)
µGMdt - 12M (dp, Version 2) -0.009

(0.0073)
Div Strip - 12M 0.1332*

(0.0704)
Div Strip - 24M -0.0256

(0.0954)

This table presents two-stage least squares regression results for expected cash flow growth measures.
I run the following regression:

∆Expected Cash Flow Growtht=β0+β11(t= announcement)+εt,

for four different expected cash flow growth measures:

1. Long-run expected dividend growth from Pettenuzzo, Sabbatucci & Timmermann (2020)
(µPSTdt ) (Date range: 1986-11-20:2016-12-22).

2. Subjective expected log dividend growth lower bound of Gao & Martin (2019) (µGMdt ), calcu-
lated from dpt=log(Dt/Pt) and yt=log(1+Dt/Pt) for the twelve-month horizon, constructed
as discussed in Internet Appendix D (Date range: 1996-01-05:2016-12-22).

3. Subjective expected log dividend growth lower bound of Gao & Martin (2019) (µGMdt ), calcu-
lated from dpt=log(Dt/Pt) and yt=log(1+Dt/Pt) for the twelve-month horizon, constructed
using the ninety-five percent upper bound coefficient values as discussed in Internet Appendix
D (Date range: 1996-01-05:2016-12-22).

4. Fitted expected dividend growth for the S&P 500 over the next X months (Div Strip - XM),
constructed as discussed in Section 6.2 and Internet Appendix E (Date range: 1996-01-02:2016-
12-22).

The regression regresses the daily change in the expected cash flow growth measure on an indicator
for if day t is an announcement. Units are in percentage terms (i.e. a coefficient of 1.0 represents 100
basis points). All GDP, Unemployment, CPI, PPI, Employment Cost Index, and scheduled FOMC
announcements are included.
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Table G.3: Two-Stage Least Squares Regression Results for Alternative Macroeconomic Uncertainty
Measures

OLS First Stage Reduced Form 2SLS
σ2

12,t 0.2986*** -0.2158*** -0.0781** 0.3619***
(0.0326) (0.0269) (0.0304) (0.138)

σ2
1,t 0.2708*** -0.191*** -0.0781** 0.4088***

(0.0304) (0.0272) (0.0304) (0.1582)
σ2

3,t 0.2891*** -0.197*** -0.0781** 0.3964***
(0.0315) (0.0272) (0.0304) (0.1523)

σ2
SP500,t 0.4008*** -0.1918*** -0.0781** 0.4071***

(0.037) (0.0285) (0.0304) (0.1522)
σ2
OOS,t 0.195*** -0.098*** -0.0908*** 0.9266**

(0.031) (0.0296) (0.0339) (0.4264)

This table presents two-stage least squares regression results for alternative macroeconomic uncer-
tainty measures. I run the following two-stage least squares regression:

∆Macro Uncertaintyt=β0+β11(t= announcement)+εt
−rt=λ0+λ1∆Macro Uncertainty
∧

+νt.

for three different macroeconomic uncertainty measures:

1. 12-month (baseline), 1-month, and 3-month horizon daily JLN indices (σ2
h,t) (Date range:

1986-11-20:2016-12-22).

2. Out-of-sample daily JLN index (σ2
OOS,t) (Date range: 1991-11-01:2016-12-22).

3. S&P 500 implied volatility (σ2
SP500,t) (Date range: 1986-11-20:2016-12-22).

The first stage involves a regression of the change in the macroeconomic uncertainty measure (all
standardized to have standard deviation one) on an indicator for if day t is an announcement. The
second stage regresses the negative daily log return on the fitted change in the macroeconomic
uncertainty measure. The first column reports the OLS regression of the negative daily log return
on the change in the macroeconomic uncertainty measure. The second column reports the first-
stage results. The third column reports the reduced-form regression of the negative daily log return
on 1(t = announcement) (i.e. the estimated coefficient is the ARU effect). The fourth column
reports the estimated second stage coefficient of this two-stage least squares regression (i.e. the
estimated coefficient is the effect of macroeconomic uncertainty). Units are in percentage terms (i.e.
a coefficient of 1.0 represents 100 basis points). All GDP, Unemployment, CPI, PPI, Employment
Cost Index, and scheduled FOMC announcements are included.
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Table G.4: Heterogeneity Across Announcement Types

OLS First Stage Reduced Form 2SLS
Output Announcements 0.2986*** -0.1471*** -0.0660 0.4486
(GDP and Unemployment) (0.0326) (0.0356) (0.0412) (0.2748)
Price Announcements 0.2986*** -0.2281*** -0.0434 0.1902
(CPI, PPI, and ECI) (0.0326) (0.0383) (0.0423) (0.1815)
Monetary Policy Announcements 0.2986*** -0.1512*** -0.2269*** 1.5006**
(FOMC) (0.0326) (0.0580) (0.0703) (0.6724)
All but Monetary Policy Announcements 0.2986*** -0.2186*** -0.0635** 0.2906**
(GDP, Unemployment, CPI, PPI, ECI) (0.0326) (0.0283) (0.0319) (0.1424)

This table presents results for the two-stage least squares regression:

∆σ2
t =β0+β11(t= announcement)+εt

−rt=λ0+λ1∆σ2
t

∧

+νt.

The first stage involves a regression of the change in the daily JLN index (standardized to have
standard deviation one) on an indicator for if day t is an announcement. The second stage regresses
the negative daily log return on the fitted change in the daily JLN index. Units are in percent-
age terms (i.e. a coefficient of 1.0 represents 100 basis points). The first column reports the OLS
regression of the negative daily log return on the change in daily JLN index. The second column
reports the first-stage results. The third column reports the reduced-form regression of the neg-
ative daily log return on 1(t = announcement) (i.e. the estimated coefficient is the ARU effect).
The fourth column reports the estimated second stage of this two-stage least squares regression
(i.e. the estimated coefficient is the effect of macroeconomic uncertainty). Each row uses a different
subset of all macroeconomic announcements (specified in parentheses): GDP, Unemployment, CPI,
PPI, Employment Cost Index (ECI), and scheduled FOMC announcements. The time period is
1986-11-20:2016-12-22.
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H Internet Appendix H: Additional Empirics Tables and

Figures

Table H.1: Regression of Monthly JLN Index on Monthly Average Option Implied Volatilities
Monthly JLN

const 0.7654***
(0.0074)

S&P 500 0.1126***
(0.0319)

Crude Oil 0.1057***
(0.0177)

Gold 0.2512***
(0.0361)

Wheat -0.0249
(0.0403)

10-year Note 0.2829**
(0.1240)

Corn -0.0919*
(0.0520)

Soybean 0.2235***
(0.0400)

N 362
R2 0.62

This table presents the results from estimating

JLNt=α+
N∑
i=1
βiIV it+εt.

The left-hand-side variable is the monthly macroeconomic uncertainty index from Jurado, Ludvigson
& Ng (2015). The right-hand-side variables are the monthly averages of the daily implied volatilities
of each set options. The time period is 1986-11-20:2016-12-22.
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Table H.2: Price-Dividend Ratio Regressions
pt−dt

(Quarterly Smooth 240)
pt−dt

(Daily Smooth 240)
pt−dt

(Daily Smooth 120)
pt−dt

(Daily Smooth 60)
const 7.726e-05*** 7.823e-05*** 9.185e-05*** 1.056e-04***

(8.051e-08) (8.033e-08) (8.072e-08) (8.195e-08)
Announcement 2.360e-08 3.099e-08 2.945e-09 1.699e-08

(1.718e-07) (1.708e-07) (1.716e-07) (1.738e-07)
N 7561 7561 7561 7561
R2 0.00 0.00 0.00 0.00
Date Range 1986 - 2016 1986 - 2016 1986 - 2016 1986 - 2016

This table presents results for the regression of the end-of-day daily price-dividend ratio multiplied
by (1−ρ) (where I use the estimated daily ρ= 0.99998 from Pettenuzzo, Sabbatucci & Timmer-
mann (2020) and alternative smoothing horizons (in days) to calculate the level of dividends) on
announcement timing:

(1−ρ)(pt−dt)=b0+b11(t=announcement)+εt.

All GDP, Unemployment, CPI, PPI, Employment Cost Index, and scheduled FOMC announcements
are included. The time period is 1986-11-20:2016-12-22.
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Table H.3: Regression Results for Response of Daily JLN Index to Announcement Timing
∆σ2

t

const 0.0774**
(0.0333)

-5 -0.0903***
(0.0275)

-4 0.0510*
(0.0293)

-3 0.0095
(0.0288)

-2 0.0578**
(0.0286)

-1 0.0160
(0.0289)

0 -0.2071***
(0.0285)

1 0.0597*
(0.0318)

2 -0.0279
(0.0291)

3 -0.0722***
(0.0275)

4 -0.0916***
(0.0300)

5 -0.0544**
(0.0273)

N 7608
R2 0.01

This table presents results for the regression of the change in the daily JLN index on announcement
timing:

∆σ2
t =β0+

5∑
j=−5

βj1(t−j=announcement) .

The right-hand-side variables are set of timing indicators representing how many days j after an
announcement the current day t is. These results are displayed graphically in Figure 2. ∆σ2

t is scaled
to have mean zero and standard deviation one. All GDP, Unemployment, CPI, PPI, Employment
Cost Index, and scheduled FOMC announcements are included. The time period is 1986-11-20:2016-
12-22.
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Table H.5: Two-Stage Least Squares Regression Results for Other Assets

ARU 1 STD Effect 1 Level
STD Effect

% Variance
Explained

Upper Bound
% Variance Explained

TIPS Spread (5YR) -0.0012 0.0055 0.1343 0.96 19.78
(0.0021) (0.0099)

TIPS Spread (10YR) -0.0014 0.0067 0.1653 3.56 36.04
(0.0015) (0.0075)

1YR Treas -0.0016 0.0078 0.0626 1.92 17.96
(0.0017) (0.0082)

2YR Treas -0.0042** 0.0198** 0.1594 11.01 39.77
(0.0019) (0.0091)

5YR Treas -0.0061*** 0.0288*** 0.2323 21.14 59.72
(0.002) (0.01)

7YR Treas -0.0063*** 0.0299*** 0.2411 21.75 60.22
(0.002) (0.0101)

10YR Treas -0.0063*** 0.03*** 0.2416 24.03 64.26
(0.0019) (0.0097)

20YR Treas -0.0059*** 0.0279*** 0.2246 24.74 64.82
(0.0017) (0.0088)

30YR Treas -0.0059*** 0.0279*** 0.2244 25.61 66.3
(0.0017) (0.0087)

Treas Slope -0.0022* 0.0102* 0.0822 5.77 26.36
(0.0012) (0.0059)

Treas Curvature -0.0008 0.0039 0.0318 3.85 21.9
(0.0006) (0.0028)

AAA Corp Bond -0.0046*** 0.0238*** 0.9251 23.77 67.29
(0.0015) (0.0083)

BAA Corp Bond -0.0044*** 0.023*** 0.8941 22.97 65.71
(0.0014) (0.0081)

Credit Spread 0.0002 -0.0008 -0.031 0.14 7.75
(0.0007) (0.0034)

VRP (1) -5.2685*** 25.7762** 190.732 17.24 57.49
(1.9759) (10.861)

VRP (22) -1.3785*** 6.7954*** 50.1419 45.01 100.53
(0.311) (1.7145)

USD (Broad) -0.0001 0.0003 0.0015 1.12 16.8
(0.0001) (0.0005)

USD (Major Currencies) -0.0 0.0002 0.0007 0.12 8.43
(0.0001) (0.0006)

This table presents two-stage least squares regression and variance decomposition results for alter-
native assets. I run the following two-stage least squares regression:

∆σ2
t =β0+β11(t= announcement)+εt

∆Pt=λ0+λ1∆σ2
t

∧

+νt,
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where ∆Pt is some measure of change in price. TIPS Spreads are calculated as the difference in yield

between maturity-matched TIPS and nominal Treasury notes. Treasury Slope and Curvature are

10 YR Yield− 2 YR Yield and 5 YR Yield−AV G(10 YR Yield,2 YR Yield), respectively. Credit

spread is the difference between AAA and BAA-rated corporate bond yields. The variance risk

premium is calculated as the difference between the squared VIX and the realized variance over

either the past month (for VRP (22)) or day (and scaled to the monthly level for VRP (1)) calculated

using five-minute returns. USD is the exchange rate between the U.S. Dollar and a trade-weighted

basket of many (Broad) or only major (Major) other currencies (FRED series DTWEXB and

DTWEXM, respectively).

The first stage involves a regression of the change in the daily JLN index (standardized to have

mean zero and standard deviation one) on an indicator for if day t is an announcement. The second

stage regresses the daily change in the price measure on the fitted change in the daily JLN index.

The first column reports the announcement resolution of uncertainty (ARU) effect, which is the

estimated coefficient λ1 ·β1 from the regression of ∆Pt on 1(t= announcement). The second column

reports the estimated second-stage coefficient λ1, which is the causal effect of a positive one standard

deviation daily change in macroeconomic uncertainty on price. The third column reports the causal

effect of a positive one standard deviation change in the level macroeconomic uncertainty on price

(a simple rescaling of the second column). The fourth column reports the proportion of variance in

the price measure explained by variation in macroeconomic uncertainty:

λ̂2
1Var[∆σ2

t ]
Var[∆Pt]

.

The fifth column reports an upper bound on this variance decomposition by replacing λ̂1 in the

previous equation with λ̂1+1.96·SEλ̂1
.

Units are in percentage terms (i.e. a coefficient of 1.0 represents 100 basis points). All GDP, Unem-

ployment, CPI, PPI, Employment Cost Index, and scheduled FOMC announcements are included.

The time periods are: 1986-11-20:2016-12-22 for nominal treasury and corporate bonds, 1993-02-

02:2014-12-30 for the variance risk premium, 1995-01-05:2016-12-22 for currencies, and 2003-01-

03:2016-12-22 for TIPS spreads.
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Table H.6: Dividend Growth Forecasting Regression Results
12 Months 24 Months

e
(1.0)
t -0.4858***

(0.1423)
e

(2.0)
t -1.0021***

(0.1976)
const 0.0722*** 0.1658***

(0.0156) (0.0343)
N 83 79
R2 0.36 0.38
Date Range 1996 - 2016 1996 - 2015

This table presents the results for the following quarterly dividend forecasting regressions:

∆(h)Dt=β
(h)
0 +β(h)

1 e
(h)
t +ε(h)

t ,

where ∆(h)Dt is dividend growth over the next h years

∆(h)Dt=
Dt+4h−Dt

Dt

,

e
(h)
t is the h-year equity yield

e
(h)
t = 1

h
ln
(

Dt

Pt,t+4h

)
,

Pt,t+4h is the h-year dividend strip price, and Dt is the current level of dividends paid. The time
period is 1996-01-02:2016-12-22.
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Table H.7: Returns and Expected Dividend Growth Regression Results
Returns Returns

∆g(1)
t 0.1008***

(0.0117)
∆g(2)

t 0.0939***
(0.0132)

const 0.0195 0.0194
(0.0166) (0.0170)

N 5155 4943
R2 0.03 0.04

This table presents the results for the following regressions:

rt=β
(h)
0 +β(h)

1 ∆g(h)
t +ε(h)

t ,

where rt is the log return on the CRSP value-weighted market index in excess of the 30-day T-Bill
rate and ∆g(h)

t is the change in the fitted expected dividend growth rate for the next h years,
constructed as discussed in Section 6.2. The time period is 1996-01-02:2016-12-22.

Table H.8: Summary Statistics for CME Options Data

Num Contracts (Vol-
ume > 0)

Average Daily Volume
Per Contract (Volume
> 0)

Min Date Max Date

S&P 500 1,127,646 184 1983-01-28 2016-12-30
Crude Oil 1,284,644 342 1986-11-14 2016-12-30
Gold 892,425 123 1986-01-02 2016-12-30
Wheat 542,740 128 1986-11-17 2016-12-30
10-Year Note 382,964 2,591 1985-05-01 2016-12-30
Corn 908,777 301 1985-02-27 2016-12-30
Soybean 852,017 227 1984-10-31 2016-12-30

This table presents summary statistics for CME options data.
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Figure H.1: Placebo Test for First Stage

This figure presents the results for the placebo test of the regression of the change in the daily
JLN index (standardized to have standard deviation one) on “pseudo-announcement” timing. For
each simulation, I draw 1675 dates (since there are 1675 total announcements in the baseline time
period) at random (pseudo-announcements) and run the following regression:

∆σ2
t =β0+

5∑
j=−5

βj1(t−j=pseudo-announcement)+εt.

The right-hand-side variables are set of timing indicators representing how many days j after a
pseudo-announcement the current day t is. I run 1000 of these simulations. The point estimates are
the average regression coefficients from all simulations. The confidence intervals use the percentiles of
the distributions of regression coefficients from all simulations. The time period is 1986-11-20:2016-
12-22.
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Figure H.2: Response of Daily JLN Index to Announcements by Horizon

This figure displays a plot of the coefficients and 95% confidence intervals for βh,1 from the regression:

∆σ2
h,t=βh,0+βh,11(t= announcement)+εt.

The right-hand-side variable is a timing indicator for if day t is an announcement. ∆σ2
h,t is the change

in the h-month version of the daily JLN index, scaled to have mean zero and standard deviation one.
To construct each σ2

h,t series, I apply the coefficients from regression (18) to the implied volatilities
of subsets of options that have the same time to expiration (e.g. the subset of options for each
underlying that expire one month from now). Specifically, on each day I linearly interpolate among
all available times to maturity to get fixed-horizon indices. All GDP, Unemployment, CPI, PPI,
Employment Cost Index, and scheduled FOMC announcements are included. The time period is
1986-11-20:2016-12-22.
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Figure H.3: Time Series of Fitted Weights for Out-of-Sample Daily JLN Index

This figure displays the time-varying coefficients βi from rolling five-year regressions of the monthly
JLN index from Jurado, Ludvigson & Ng (2015) on the average monthly implied volatilities for
each of the seven underlyings (corn, crude oil, gold, soybean, S&P 500, ten-year Treasury notes,
and wheat):

JLNt=α+
7∑
i=1
βiIV it+εt.
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