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Abstract
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Communication in social networks has influenced investors since equity trading started

in trading clubs connected to Amsterdam Stock Exchange. In fact, London Stock Exchange

started in coffee houses in the 17th century, and the social dynamics in these coffee houses

gave rise to such events as the South See Bubble.1 More recently, social media have made

social networks larger and more observable to researchers, but how do social networks affect

asset markets?

This paper presents a model of how investment ideas can propagate through a social

network and affect market behavior and prices. When investors learn through their social

network, they can disagree for extensive time periods, and their disagreement is time-varying

and predictable based on the social network. This disagreement can generate a trading frenzy

with a spike in turnover, high volatility, price momentum as a bubble builds, and a value

effect as the bubble bursts. Rational investors exploit network dynamics and may initially

ride the bubble, but eventually bet on reversal to fundamentals. As an illustration of these

insights of the model, the paper presents the dramatic events related to the GameStop stock

in early 2021 as well as broader connections to historical bubbles and market dynamics.

To study social network effects in the simplest possible way, I introduce rational agents

and financial markets into an otherwise standard DeGroot (1974) model.2 In the DeGroot

model, people update their beliefs by listening to other people in their social network. While

this method of updating may initially be rational, the continued updating over multiple

rounds of communication does not take into account that the same information may echo

back many times (DeMarzo et al. (2003)). While standard network models assume that

everyone behaves in this naive way, I introduce rational learners into the model to capture

the effects of sophisticated professional investors (or arbitrageurs).

Characterizing rational behavior in a network can be highly complex, 3 but I show that the

updating of rational agents becomes very tractable when they can use the rational strategy

of listening to everyone. The tractability afforded by my setting allows me to solve all agents’

1 De la Vega (1688) and Petram (2014) describe how Amsterdam Stock Exchange started in 1602 with
social elements. Standage (2006) ch. 8 describes how London’s stock trading started in what the author calls
the “coffeehouse internet,” pointing out that “the drama of the South Sea Bubble, a fraudulent investment
scheme that collapsed in September 1720, ruining thousands of investors, was played out in coffeehouses.”

2 In doing so, I contribute to the network literature by developing a tractable dynamic model of finan-
cial markets with network effects, showing the separate equilibrium effects of influencers, thought leaders,
naive agents, and rational forward-looking agents who exploit predictability arising from network dynamics.
Surveys on network economics include Jackson (2010) and Golub and Sadler (2016).

3 E.g., DeMarzo et al. (2003) state that “We should emphasize that the calculations that agents must
perform even in this simple case where the network is common knowledge can be very complicated” (p. 927).
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beliefs at all times in closed form, and, further, allows me to derive closed-form solutions for

portfolios and market prices, as well as their limits as time increases.

The model has several important implications for how social networks affect opinions

and asset prices. First, the model shows how rational agents can have a large effect on

prices, both via their own trades and via their effect on the general opinion. Rational agents

are initially extremely flexible, listening to all available information, and paying no special

attention to their own initial view. However, once a rational agent has processed all the

available information, the agent becomes completely “stubborn” in the sense that seeing a

different view presented again and again does not sway the rational agent if the different view

does not contain any new information. Therefore, rational agents quickly become stubborn.

Hence, they keep repeating their rational view, and this anchored opinion has an increasing

influence on naive investors over time. This effect, which I denote the “stubbornness of

truth,” makes the market rational in the long term when the only stubborn agents are the

rational ones.

However, “fanatic” agents who are stubborn about their own personal view, however

irrational, can also have a large influence over time if others are willing to listen. In the long

run, all agents’ views are dominated by stubborn views, but investors differ in their reliance

on rational or fanatic views. I show that the aggregate importance (or “thought leadership”)

of each stubborn view is the sum-product of the attention it gets from its followers and the

“influencer values” of their followers. Influencer values can be easily computed, and I show

how thought leadership and influencer values affect asset prices.4

The resulting differences of opinions lead to trading activity, but the trading activity dies

down over time as views stabilize (since trading arises from view changes). Nevertheless,

investors’ portfolios differ, even in the long run, in contrast to the prediction of the standard

capital asset pricing model (CAPM). These network effects can further lead to high prices

(bubbles), low prices (anti-bubbles or deep value), and large and prolonged price swings.

The model can therefore help explain pervasive market effects such as price momentum

and reversal effects (see Asness et al. (2013) and references therein), large trading volume

with poor performance of the retail investors who trade the most (Odean (1999)), the relation

between volume and momentum (Lee and Swaminathan (2000)), and excess volatility (Shiller

4 Thought leadership is a generalization of the concept “social influence” used in the literature following
DeGroot (1974) while influencer values are new to the literature, to the best of my knowledge.
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(1980)) driven by chat in social media (Antweiler and Frank (2004)). Also, while rational

investors and efficient prices react almost immediately to earnings announcements and other

news, investors learning via a social network react only gradually, so the model can also

help explain post-earnings announcement drift (Ball and Brown (1968)) and other kinds of

fundamental momentum and announcement effects.

While there already exist theories for several of these phenomena,5 the key distinguishing

feature of my theory is that it predicts that trading behavior spreads via a social network.

This specific prediction of the theory is confirmed by Bailey et al. (2018) who use Facebook

data to show that people with friends who experienced recent house price gains increase

their housing market expectations and “buy larger houses and pay more for a given house.”

Further, investors’ local social network can also help explain their local bias in their equity

investments, and the resulting social network effects have an impact on firm values (Kuchler

et al. (2020)).

To test the model’s predictions on thought leadership, suppose that fanatics cheering

for a stock are more likely to reside in the same county as the firm’s headquarter (e.g., the

executives of the firm). Then these fanatics can elevate prices more if they have greater

thought leadership, that is, are more connected to investors, and Kuchler et al. (2020) create

a measure of Facebook friends between the firm’s county and institutional investors’ counties,

denoted the firm’s “social proximity to capital.” They find that firms with stronger social

proximity to capital indeed have higher institutional ownership and higher valuations. Also,

Cookson et al. (2020) provide evidence of echo chamber effects in investor beliefs.

Social networks have also been shown empirically to affect equity market participation

of retail investors (Hong et al. (2004), Brown et al. (2008), Kaustia and Knüpfer (2012)),

affect the portfolios of money managers (Hong et al. (2005), Cohen et al. (2008)) and retail

investors (Bhamra et al. (2021)), and potentially serve as a useful source of information (Chen

et al. (2014)). Moreover, social media facilitate pump-and-dump schemes in cryptocurrencies

(Li et al. (2020)) and professional traders’ discussions on social media have been central to

5 Differences of opinions can generate bubbles (see Harrison and Kreps (1978) for a seminal model) and
turnover (Harris and Raviv (1993)). Theories of momentum and reversal based on psychological biases
include Barberis et al. (1998), Daniel et al. (1998), and Hong and Stein (1999). Models of information
percolation via random search (rather than a network) include Duffie et al. (2009), Andrei and Cujean
(2017), Burnside et al. (2016) who apply such a framework to housing booms and busts, and Hirshleifer
(2020) who assumes that each random interaction is associated with a “social transmission bias.” Han et al.
(2018) show how social transmission bias can spread active strategies.
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litigation of financial market misconduct (see, e.g., Financial Times, 11/12/14, “Traders

forex chatroom banter exposed”).

In the GameStop case, investors on social media signaled their stubborn commitment

to buying and holding the stock via the meme “diamond hands.” They spurred each other

via Reddit, Twitter, YouTube, and other social media, and signaled an extreme view of

the potential valuation via the “rocket” meme. The price increased when Elon Musk, an

influencer on social media (and much more), tweeted a link to the Reddit site hosting the most

fanatic GameStop traders, WallStreetBets. The stock increased by orders of magnitude at

enormous trading volume and volatility, coinciding with an increase in social media attention.

Eaton et al. (2021) exploit platform outages for the broker used by many GameStop

traders, Robinhood, to identify the causal effects of retail traders on financial markets.

The paper finds that exogenous negative shocks to Robinhood participation leads to lower

return volatility among stocks favored by Robinhood investors. Barber et al. (2020) also

study trades by customers of Robinhood, reporting that “intense buying by Robinhood

users forecast negative returns.”

GameStop can be viewed as the latest example in a long history of bubbles, and my model

sheds new light on the “anatomy” of bubbles described by Kindleberger (2000) and Shleifer

(2000), ch. 6.2. As illustrated in Table 1, the anatomy starts with an “initial displacement,”

which is captured in my model by fanatic agents who observe positive news and decide to

focus all their attention on this positive aspect of the asset.

Next, the price increases further due to “speculation for price increases” by sophisticated

short-term traders. Short-traders are also modelled by De Long et al. (1990), but in my

model their speculation is based on an understanding of predictability due to the network

communication. In the spirit of my model, Soros (2003) reports riding bubbles based on

the communicated sentiment among investors, e.g.: “if an idea was appealing enough to

attract me on first hearing, it was likely to have the same effect on others. If, on further

investigation, I found it to be flawed I could always turn around and liquidate my position

with a profit provided I was not the last one to hear it” (p. 36).6

The bubble is then sustained as a “larger and larger group of people seeks to become

6 Likewise, De la Vega (1688) states that “means are not lacking to recognize what political or business
opinions are held by persons of influence. He who makes it his business to watch these things conscientiously,
without blind passion and irritating stubbornness, will hit upon the right thing innumerable times, though
not always” (p. 41).
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rich without a real understanding of the processes involved.”7 This “mania” is captured in

my model via the social network that enables the idea to spread across people, detailing this

“emulation” step by step.

The bubble is further expanded by an “authoritative blessing,” captured in my model

via the effect of influencers. When an influencer listens to fanatics, the influencer spreads

the idea to a broader group of people, further increasing the price (as Elon Musk did in the

GameStop case).

At the bubble’s late stage, rational “insiders sell out,” just as rational investors do in

my model.8 The final stage is a “crash,” which can start from a “revelation of a swindle”

or a “revulsion.”9 I capture the former by modeling the possibility that the true asset value

is revealed, which leads to an abrupt crash (or “panic”). I capture the latter via fanatics

who are optimistic due to the positive displacement, but not entirely stubborn. In this

case, their initial optimism creates a bubble, but, as they learn the rational truth over time,

their optimism turns to revulsion, and the bubble peters out. As seen in Table 1, these

model elements also describe the GameStop case and help explain several key asset pricing

anomalies (as discussed earlier).

The related literature also includes models of “rational bubbles,” in which bubbles may

exist simply because they can (in some of multiple equilibria). In contrast, I model the eco-

nomics underlying the anatomy of bubbles as people learn via their network. My framework

is also fundamentally different from standard models of “private information” where people

learn from prices. Said simply, my framework captures the situation where your cab driver

tells you about the opportunity in bitcoin that he learned about from this friends, not from

the price. People in my model seek to learn the facts directly via communication and their

trades inform the price – not the other way around. My model thus captures situations

in which information is “out there” to be found by rational investors, but naive investors

nevertheless learn gradually and imperfectly via their network.10

Consistent with my premise, Shiller and Pound (1989) report survey evidence that “inter-

7 Kindleberger (2000) p.16, who traces the ideas of “overtrading” to Adam Smith and John Stuart Mill,
also cites Minsky for the element of expansion of credit, from which I abstract.

8 Brunnermeier and Nagel (2004) provide evidence that hedge funds initially rode the internet bubble
and eventually reduced or reversed their positions, just like the short-term investors in my model.

9 Kindleberger (2000) p.17.
10 Tirole (1982) shows that bubbles cannot exist in many situations in which all agents are fully rational,

while Allen et al. (1993) show that rational bubbles can exist when people have private information, short-sale
constraints, and trade is not common knowledge.
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Model elements Bubble anatomy GameStop 2021 Asset pricing

A Investors receive news, fa-
natics focus on one element

Initial displacement Retail investors focus on
plan to pivot online

Announcement effects,
e.g.post-earnings drift

B Short-term investors bet on
network spillovers

Speculation Some institutional in-
vestors are long

Momentum and funda-
mental momentum

C Opinions spread through
the network

Mania and emulation More and more people
hear about GameStop

Local bias and network
spillover effects

D Influencers follow a fanatic Authoritative blessing Elon Musk tweets a link
to WallStreetBets

Excess volatility

E Rational traders bet on re-
versal

Insiders sell out Institutional investors
sell

Value investing

F Fundamentals are revealed
or fanatics gradually learn

Crash: revelation or
revulsion

Drops in January, March
earnings announcement

Long-run reversal and
value effect

Table 1: Model implications. The first column contains the key elements of my model, showing how

an investment idea starts in the model (A), initially affects prices (B), evolves over time (C,D), and how

rationality ultimately sets in (E,F). The second column shows how these model elements capture the stylized

evolution of historical bubbles, that is, the bubble anatomy of Kindleberger (2000) and Shleifer (2000). The

third column shows how each element played a role in the GameStop case. Finally, the last column shows

how these model elements help explain certain general asset-pricing effects in financial markets.

personal communications are very important in investor decisions” and Shiller (2001) argues

that “word-of-mouth communications, either positive or negative, are an essential part of

the propagation of speculative bubbles.” Shiller (2001) also considers a standard epidemic

model to capture this phenomenon, discussing how people can “infect” each other with an

investment idea. Hirshleifer (2020) considers a time-varying infection rate or “buzz” and,

more broadly, calls for a greater focus on social interaction in finance. My model contributes

to this approach by deriving equilibrium prices when different rational and fanatic ideas

compete for attention among investors who communicate in a social network in which some

people are more influential than others (rather than a single idea spreading via random

matching among identical myopic investors).

Lastly, my paper is related to the emerging literature on expectation formation (see,

Bordalo et al. (2019) and references therein). My model shows how inter-personal commu-

nication can spread the intra-personal judgment biases documented in this literature.

In summary, this paper contributes to the literature by developing a simple model of

rational and naive investors who interact via a social network in order to trade assets. 11 The

11 Relative to the seminal paper by DeMarzo et al. (2003), my contribution is to consider rational and
stubborn agents, to define and analyze influencers and thought leaders, and to combine the network model
with an economic equilibrium in an asset market. As cited earlier in the introduction, the paper is also related
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model yields closed-form beliefs, prices, and portfolios, and provides a new mechanism of a

number of financial market properties such as social-network spillover effects, the effects of

influencers and thought leaders, momentum, reversal, high trading volume, the anatomy of

bubbles in general, and the GameStop case in particular.

1 Model

The economy has N investors who communicate with each other and trade an asset in

discrete time indexed by t = 0, 1, 2, ..., as described in this section.

Asset and signals. The asset has a supply of shares given by s. Its fundamental value is

given by v +u(t) ∈ R, where u(t) is a publicly observed random walk and v is an unobserved

random variable that investors try to learn about. The random walk has innovations with

constant variance given by σ2
u = Var(u(t) − u(t − 1)). We can think of u(t) as the value

of assets in place (e.g., GameStop’s retail stores) and v as the value of a new uncertain

investment opportunity (e.g., GameStop’s opportunity to sell games online).

At time 0, each person i starts with a signal about the value v given by the random

variable xi(0) = vi. This signal gives each agent a useful, but incomplete, piece of information

about v. Collectively, all agents have full information about v, which is modeled via the

relation v =
∑N

i=1 κivi, where the known weights sum to one,
∑N

i=1 κi = 1. Each weight, κi,

is a measure of the importance of agent i’s signal; for example, if all agents receive signals

of the same importance, then the weights are equal, κi = 1
N

. In any event, agents have an

incentive to communicate with others to learn about v.12

The unobserved value, v, is revealed each time period with probability π and remains

unknown with probability 1 − π. Said differently, v is revealed at the random time τ , with

a geometric distribution. When v is revealed, the price equals its total value, v + u(τ). For

example, the firm could be acquired or liquidated for v + u(τ), or the firm could continue

to behavioral finance (see survey by Hirshleifer (2015)). One challenge to behavioral finance is that investor
mistakes would not matter in aggregate if they were uncorrelated, but a standard response is that people
make correlated mistakes because they have common biases. My response is simply: people talk. Mackay
(1850) starts his classic treatment of the “madness of crowds” by stating that “Popular delusions began so
early, spread so widely, and have lasted so long, that instead of two or three volumes, fifty would scarcely
suffice to detail their history.” See Kuchler et al. (2020) for a survey on the empirical finance literature on
social networks.

12 The information structure is slightly simpler than the standard information-theoretic framework (e.g.,
Hellwig (1980)) in which the signals equal the true v plus random noise. The standard framework yields the
same solution, except that one must adjust the definitions of xr and σ2

u, as shown in Appendix A.3.
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with investors knowing the fundamental value v + u(t) when t ≥ τ . The objective of the

model is to understand how beliefs, trading, and prices evolve before the value is revealed. 13

Naive and rational learning in a social network. People communicate with each

other as follows. At each time t, everyone states their current views, collected in the vector

x(t) = (x1(t), ..., xN (t))′, to everyone who listens.14 The economy consists of people with two

methods of paying attention, “rational learners” and boundedly-rational ones denoted as

“naive” for brevity. Each naive learner i selectively follows a subset of people that he views

as most informative or most entertaining. Further, he uses the same method for updating

each round. Specifically, he uses the row vector Ai ∈ R
1×N
≥0 to make the update, such that

his view in the next time period becomes

xi(t + 1) = Ai x(t) (1)

where the weights add up to one,
∑

j Aij = 1. The network is therefore characterized by A,

which is called the adjacency matrix (or weight matrix) in the DeGroot (1974) model. The

i’th row, Ai, can have many zeros, representing all the people that i does not “follow.” The

non-zero elements represent the list of people that i “follows” and the amount of attention

paid to each of them. Similarly, the i’th column contains the list of i’s “followers.” DeMarzo

et al. (2003) show that the first-round updating can be seen as rational Bayesian updating

given that an agent only listens to the people with non-zero weights. Hence, the naivety of

this investor comes from his selective listening and from the fact that the agent keeps using

the same method of updating, which can be justified based on imperfect recall (Molavi et al.

(2018)). In particular, the naive agent does not take into account that the same information

may be received many times, which DeMarzo et al. (2003) denote as “persuasion bias.”

Naive agents who only listen to themselves Ajj = 1 are denoted as fanatics, and they play a

special role in my analysis.

In the literature that follows the standard DeGroot model, everyone is naive, but I also

consider rational learners to capture the effects of sophisticated investors. A rational learner

13 The model is intended to be as simple as possible, but note that the model could easily be extended
in several ways. For example, while the model is focused on a single asset, the analysis is straightforward
to extend to the case of any number of assets (e.g., by letting xi(t) be a row vector with investor i’s views
about the different assets, implying that x(t) becomes a matrix of all investors’ views about all assets).

14If agent i prefers to stay silent, then this can be captured by having an adjacency matrix A in which
column i has zeros outside the diagonal, but I assume that rational agents still have a way of getting this
information. The conclusion discusses pump-and-dump and other forms of strategic communication.
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i listens to everyone in the first round of communication (as this is the rational way to

listen with unbounded attention).15 Based on hearing everyone’s views, the rational learner

updates her view to xi(1) = xr, where the rational view xr is given by:

xr = E(v|x1(0), . . . , xN(0)) = (κ1, . . . , κN )x(0) = v (2)

Naturally, the rational view uses the information contained in all signals, and here the

weighted average of all signals in fact reveals v for simplicity. Further, the rational person

never changes her view about v after the first round since no new information arrives, xi(t) =

xi = xr for all t ≥ 1. In other words, a rational agent i can also be seen as updating her

views using the adjacency matrix as in (1), but she initially uses the row κ′ and thereafter

she uses Ai = ei, where ei = (0, ..., 0, 1, 0, ..., 0) is the i’th unit vector.

Portfolios and prices. Trading starts at time 1, after the first round of communication.

At any time t after the value of v has been revealed (i.e., t ≥ τ), the price naturally equals

the commonly known total value, v + u(t). Before revelation, the endogenous price of the

asset at time t is denoted by p(t). So the price can be written as

price(t) = p(t)1(t<τ) + [v + u(t)]1(t≥τ) (3)

All agents take this price as given and the equilibrium market price is determined such that

the total demand equals the supply of shares s, that is,

s =
N∑

i=1

di(t) (4)

where di(t) is the demand of agent i at time t, which depends on the price as described next.

The agents behave as either long-term investors or short-term traders, where long-term

investors think in terms of the long-term asset value at revelation, whereas short-term in-

vestors think in terms of the one-period expected gains each time period. Specifically, naive,

fanatic, and some of the rational learners behave as long-term investors, while the remaining

rational learners behave as short-term investors — so the economy has these four types of

agents (naive, fanatic, rational long-term, rational short-term).

15 If rational agents could only listen to a subset of agents, they could still learn all signals in finite time
under certain conditions, after which time the model would be the same.
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Any naive, fanatic, or rational long-term investor i chooses his investment demand to

maximize his mean-variance utility at the revelation time, τ . To compute this utility, note

that the investor earns a profit per share of v +u(τ)−p(t) from buying at time t for p(t) and

selling at time τ when the asset is worth v + u(τ). Hence, the utility of buying di shares is

max
di

diEt [xi(t) + u(τ) − p(t)] −
1

2wi

Vart [di(xi(t) + u(τ) − p(t))] (5)

where v is replaced by xi(t) because rational investors have learned the true value of v at

time 1, and naive and fanatic investors behave as if their current belief is also the true value.

The utility also depends on wi, which is investor i’s absolute risk tolerance, that is, the ratio

of the agent’s wealth and relative risk aversion, wi = wealthi/γi. To ease the discussion, I

refer to wi simply as wealth, so risk aversion can be taken to be equal across agents, say

γi = 1, or simply think of the word “wealth” as shorthand for risk-bearing capacity. 16

Maximizing the utility (5) with a risk given by Vart(uτ ) = σ2
u/π, the investor’s optimal

portfolio is seen to be17

di(t) =
πwi

σ2
u

(xi(t) + u(t) − p(t)) (6)

Naturally, the asset demand increases in the perceived gap between the value and the price,

and the price sensitivity is larger if the agent is wealthier (larger wi), the value is realized

sooner (larger π), and if the risk (σu) is smaller.

Turning to rational short-term traders, any such agent i maximizes her one-period mean-

variance utility, which depends on the difference between the current price and the price

in the next time period. The expected price in the next time period is the average of the

price without and with revelation of the fundamental value, weighted by their respective

probabilities, 1 − π and π:

Et(pricet+1) = (1 − π)Et(p(t + 1)) + π(xr + u(t)) (7)

Given this expected price and the one-period risk of σ2
u = Vart(u(t + 1)− u(t)), the demand

16 Differences in real-world investors’ risk tolerance is mostly driven by wealth since relative risk aversion
varies only by one order of magnitude (γi is usually between 1 and 10) while invested wealth varies by many
orders of magnitude (between $1000 and billions of dollars).

17 The risk is Vart(uτ ) = Var(Δuτ + ... + Δut+1) = E(Δuτ + ... + Δut+1)2 = σ2
uE(τ − t) = σ2

u/π, based
on the optional stopping theorem and using E(τ − t) =

∑∞
k=1 k(1 − π)k−1π = 1/π.
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of any short-term investor is18

di(t) =
wi

σ2
u

[(1 − π)Et(p(t + 1)) + π(xr + u(t)) − p(t)] (8)

What is special about the short-term investors is that they seek to exploit predictable price

changes due to the network spillover effects in the equilibrium price.

Notation. In summary, the economy has four types of agents who communicate to learn

about an asset that they are trading: Naive investors, fanatics, rational long-term investors,

and rational short-term traders. Agents are ordered such that the first Nn agents are naive,

the next Nf are fanatics, the next Nl are long-term investors, and the last Ns are short-term

investors, where N = Nn + Nf + Nl + Ns.

The latter three types are denoted as “hardheaded” (h) since these investors keep constant

views after time 1. The column vector of all views can be decomposed as x(t) = (xn(t); xh),

where xn(t) = (x1(t); ...; xNn(t)) contains the naive views and xh = (xf ; xl; xs) contains

the hardheaded views. Note that xh is not indexed by t since these hardheaded views are

constant after time 1, but I use the notation xh(0) for the initial views of these investors.

I use a similar notation for the vector of all agents’ wealth, w = (w1, ..., wN )′ and its

naive and hardheaded components, w = (wn; wh), where wh = (wf ; wl; ws).

All notation is summarized in Table 2 in the appendix.

2 Belief Formation in a Social Network

To get some intuition for how beliefs are formed over time in a social network, I first consider

the special cases in which all agents are naive (section 2.1), or all but one agent are naive

(sections 2.2–2.3). Then I show how beliefs are formed in the main model (section 2.4) when

naive agents are influenced by many different fanatic and rational agents.

18 When computing the risk of price changes, short-term investors focus on Var t(u(t + 1) − u(t)) and are
risk-neutral with respect to uncertainty about the revelation time, for simplicity. Note that idiosyncratic
event risk, τ , may be largely diversified away in a model with many assets, and, more broadly, the model
retains its tractability for any linear demand.
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2.1 Social influence when everyone is naive and connected

Suppose first that everyone is naive, which is the classic DeGroot model. In this case, agents’

views after t rounds of communication is

x(t) = Atx(0) (9)

If all agents are “strongly connected” (everyone indirectly influences everyone) and listen to

themselves, then DeGroot (1974) and DeMarzo et al. (2003) show that a unique z ∈ RN

exists such that z′A = z′ and, as t → ∞,19

x(t) = Atx(0) → 1Nz′x(0) (10)

In other words, everyone ends up with the consensus view z′x(0). The consensus view weights

the different agents’ signals by their “social influence” zi, whereas the rational solution would

weight all agents’ signals by the precision κi. In particular, person i’s social influence, zi,

is the weighted-average of the social influence of everyone that listens to i, that is, zi =
∑

j Aijzj . So a person becomes influential by having the ear of influential people. This

eigenvector property is also the idea behind Google’s PageRank.

2.2 A fanatic in an echo chamber: Stubborn fake news

Consider next the case in which one agent is completely stubborn and all other agents

are naive as above. The stubborn agent can be interpreted as a fanatic or someone who

deliberately tries to shut down all alternative views. In particular, suppose that agent N is

stubborn, meaning that N ’th row of A is the N ’th unit vector, AN = e′N . Mathematically,

this corresponds to a Markov chain with an absorbing state, and opinions evolve as follows

x(t) = Atx(0) → 1Ne′Nx(0) = 1N xN(0) (11)

19 Strongly connected means that A is irreducible, that is, any agent j can influence any other agent i
(specifically, agents k1, ..., kz exist such that Aik1 > 0, Ak1k2 > 0, ..., Akzj > 0). Further, A is aperiodic since
people listen to themselves, Ajj > 0, meaning that infinite cycles cannot arise. Hence, A corresponds to an
irreducible aperiodic positive matrix, which ensures convergence of views via the Perron-Frobenius Theorem,
and z can also be seen as the stationary distribution of the corresponding Markov chain.
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meaning that everyone ends up having the same view as the stubborn person (a special case

of Proposition 1 below). So, in this case, the stubborn agent becomes the only person with

social influence as he listens to no one but himself. What happens is that, each time period,

the other agents move a little toward the stubborn agent (and toward each other) and, since

the stubborn agent never moves, all other agents end up mover closer and closer to the

stubborn view. Said differently, the naive agents keep hearing the stubborn view, and other

views influenced by the stubborn view, so this situation can be seen as an “echo chamber”

in which these agents are cut off from rational opinions and fail to realize that the stubborn

opinion echoes through the system many times.

This phenomenon does not arise with Google’s PageRank, because a website does not

get credit for linking to itself, so, perhaps as a result, social influence via stubbornness is not

the standard case in economics. However, stubbornness is important in this model because

people can be stubborn and, in fact, rationality is a form of stubbornness, as discussed next.

2.3 Rationality in an echo chamber: The stubbornness of truth

Suppose alternatively that one agent is fully rational, while the rest are naive and connected.

Recall that, after one round of communication, the rational agent already knows the “truth,”

that is, the best possible estimate of the value, v, given by xr. Hence, from time 1 and

onwards, the rational agent does not further update her views. Said differently, the rational

behaves as if she is completely stubborn. Therefore, by the same logic as above, views

converge as follows

x(t) → 1N xr (12)

meaning that everyone ends up having the same rational view.

Note that fanaticism and rationality look similar to a casual observer since such agents

behave similarly in all rounds of communication except the first one. Indeed, a rational

person is completely flexible in the first round of communication, seeking out all sources of

information, having no special attachment to her own information, and logically aggregates

all of this information. However, once all the information is aggregated, the rational person

has no interest in hearing the same views again, does not budge to hearing a particular view

repeated many times, and simply sticks to the same opinion forever (or at least until truly
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new information arrives).

Golub and Jackson (2010) describe another way to ensure rationality, even when all

agents are naive. They show “that all opinions in a large society converge to the truth if

and only if the influence of the most influential agent vanishes as the society grows.” While

a mathematically beautiful benchmark, the condition that the most influential agent has

a vanishingly small influence seems clearly violated in the modern world of social media

where, for example, Kim Kardashian West has more than 200 million followers on Instagram

as of this writing. Hence, for rationality to prevail, the mechanism developed here based on

the presence of rational agents and the stubbornness of truth may have a better chance of

success.

2.4 Fanaticism vs. rationality: main model of a social network

In the most general and realistic case, the economy has some of all the types of agents:

naive, fanatic, and rational. This framework is the focus of the rest of the paper. After

time 1, all rational agents are completely stubborn since they know the truth, and fanatics

are stubborn for other reasons. So a central ingredient to the model is understanding the

dynamics of an economy in which some agents are hardheaded (“h”) and others are naive.

Recall that agents are ordered such that the first agents Nn are naive and the rest are

hardheaded — specifically, the next Nf are fanatics, the last Nl + Ns ones are rational. In

this case, the adjacency matrix has the form:

A =



Ann Anh

0 I



 (13)

where Ann ∈ RNn×Nn is a matrix that determines how the naive agents listen to each other,

and Anh ∈ RNn×(Nf+Nl+Ns) is a matrix that determines how they listen to the hardheaded

agents. The lower rows of A consists of a matrix of zeros and the identity matrix since

each hardheaded agent only listens to himself. The top rows of A must satisfy the following

natural assumption, which is imposed from now on.

Assumption 1 Any agent i is hardheaded (rational or fanatic) or influenced by a hard-

headed agent j, either directly (i.e., Aij > 0) or indirectly (i.e., there exist agents k1, ..., kz

such that Aik1 > 0, Ak1k2 > 0, ..., Akzj > 0).
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This assumption says that any naive agent either listens to one of the hardheaded agents

or listens to someone who listens to someone who does. Whereas the literature is focused

on “strongly connected” agents (Section 2.1), my focus on “hardheaded-connected” agents

is dictated by the existence of rational agents and possibly also fanatic agents.

Example 1. To illustrate how the model works, consider the following numerical exam-

ple:













x1(t)

x2(t)

x3(t)

xf

xr













=













70% 0 0 20% 10%

40% 40% 0 10% 10%

40% 0 40% 10% 10%

0 0 0 1 0

0 0 0 0 1

























x1(t − 1)

x2(t − 1)

x3(t − 1)

xf

xr













(14)

As seen in the first row, agent 1 gives 70% weight to his own previous opinion, no weight

to each of the other two naive agents, 20% to the fanatic agent, and 10% to the rational.

Agents 2 and 3 also give 40% weight to their own respective views, 40% weight to agent 1,

none to each other, and 10% on the fanatic and rational agents. The zeros in this example

illustrate in a simplified way that, in the real world, each row has millions of entries – one for

each person – but usually all but a few hundred entries are zero as most people only follow a

limited number of others. Nevertheless, some columns can have millions of non-zero entries

as some people have many followers. For example, agent 1 in this example is an “influencer”

in the sense that other agents pay strong attention to his views. Finally, the last two rows

in (14) show that the views of the fanatic and a rational learner (agents 4 and 5) do not

change after time 1.

The first step in solving the model is to determine the vector of naive views, xn(t), at each

point in time. Naturally, the vector of naive views depends on itself, on the vector of beliefs by

fanatics and rational agents after the rational agents have learned the truth, xh = (xf ; xl; xs),

and their views before rational agents have learned anything, xh(0) = (xf ; xl(0); xs(0)). The

following proposition shows that the hardheaded views dominate over time as these opinions

continue to “echo” through the population. All proofs are in the appendix.

Proposition 1 (Network belief spillover and convergence) The views of naive agents
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at time 1 is xn(1) = Annxn(0) + Anhxh(0) and, for t = 2, 3, ..., their views are

xn(t) = At−1
nn xn(1) +

t−2∑

k=0

Ak
nnAnhxh (15)

In the limit as t → ∞, each naive agent’s view is a convex combination of the views of

fanatics and rational agents

xn(t) → (I − Ann)−1Anhxh (16)

The first part of the proposition shows how the naive agents are initially influenced by each

other and by rational and fanatic views (equation (15)). The second part of the proposition

shows how the naive investors end up with views that are a mixture of the fanatic and

rational views, xh. The relative weights given to the views of different fanatic and rational

people have a natural interpretation as discussed next.

2.5 Influencers versus thought leaders

Recall that the standard strongly-connected DeGroot model of section 2.1 has the property

that everyone reaches a consensus in the long run, which implies a simple measure of social

influence, namely the weight of agent i’s opinion in the consensus. Social influence works

differently, however, in my setting of section 2.4 with hardheaded-connected agents. In this

case, people never reach a consensus, but the focus on the consensus can be replaced by a

focus on the average opinion, defined as

x̄(t) =
N∑

i=1

wi

w∙
xi(t) =

1

w∙
w′x(t) (17)

The opinions are weighted by each agent’s wealth wi, using the notation w = (w1, ...wN)′ for

the vector of all agents’ wealth and w∙ =
∑N

i=1 wi for the aggregate wealth. I focus on wealth-

weighted opinions since this is what matters for prices (as shown in the next section), but the

results in this section obviously hold for any weighting vector w, including equal-weighted.

Proposition 1 shows that each agent’s opinion converges over time, so the average opinion

also has a well-defined limit. This limit, the “long-run average opinion,” is important to the

equilibrium. The long-run average opinion is determined by agents’ thought leadership, as
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defined next.

Definition 1 (Thought leadership) The vector of all agents’ thought leaderships is

θ′ =
1

w∙
w′ lim

t→∞
At (18)

which adds to one,
∑N

j=1 θj = 1, and provides agents’ weights in the long-run overall view:

x̄(t) → θ′ x(1) =
N∑

j=1

θjxj(1) (19)

Proposition 1 shows that naive agents’ views disappear in the long term (except in how

they initially affect rational views) so their thought leadership is zero. Nevertheless, the

communication of naive agents still matters, because this communication determines the

thought leadership of the various fanatic and rational views. To capture this idea, I introduce

the following definition of the influencer value of any naive agent.

Definition 2 (Influencer value) The vector μ of naive agents’ influencer values is

μ′ =
1

w∙
w′

n(I − Ann)−1 (20)

These influencer values determine hardheaded agents’ thought leadership as follows.

Proposition 2 (Influencers and thought leaders)

A. The thought leadership of any naive agent is zero, θi = 0, and the vector of thought

leaderships of hardheaded agents, θh, depends on how much attention they get from naive

agents, Anh, and their influencer values, μ:

θ′h = μ′Anh +
w′

h

w∙
(21)

B. If naive agent i increases his following Aij of hardheaded agent j by ε at the expense of

a lower following of other hardheaded agents, then

∂θj

∂ε
= μi (22)
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The intuition behind this result is that hardheaded agents become thought leaders due to

their commitment to their views. Influencers, on the other hand, are not committed to any

particular view, and their fluid opinions end up without thought leadership. Nevertheless,

naive agents affect which hardheaded agents have most thought leadership. Specifically, ( 21)

shows that the thought leadership of any hardheaded agent j is:

θj =
Nn∑

i=1

μiAij +
wj

w∙
(23)

The last term,
wj

w∙
, simply means that the hardheaded agent influences his own opinion,

which counts towards the overall opinion based on his own share of aggregate wealth. More

interesting, the first term says that thought leadership comes from the sum-product of the

following of naive agents, Aij , and the followers’ influencer values, μi. Hence, a thought

leader can increase his impact by acquiring the following of an “influencer,” that is, an agent

with a large influencer value. In fact, the influencer value is precisely the impact on the

thought leadership of a greater following, as seen in (22).

Interestingly, my framework implies separate roles for influencers and thought leaders,

while these are intertwined in the standard strongly-connected DeGroot model of section

2.1. In the strongly-connected case, an agent essentially becomes a thought leader by being

an influencer, that is, by having many influential followers. What is different here, is that

the fluid opinion of an influencer changes over time and ends up being dominated by the

views of thought leaders. Hence, over time, an influencer’s impact comes from influencing

the relative popularity of the various thought-leading ideas.20

To understand this at a deeper level, note that the influencer values are wealth-weighted

sums of the columns in the “echo matrix,” (I −Ann)−1 as seen in (20). The echo matrix can

be written as

(I − Ann)−1 =
∞∑

k=0

Ak
nn (24)

so agent i’s influencer value can be seen as an infinite sum. In other words, if i follows a

hardheaded agent, then this changes the overall opinion via a series of terms that capture

20Mathematically, in the strongly-connected DeGroot model, social influence is determined via z′ = z′A.
In my framework, it also holds that θ′ = θ′A, but this relation does not pin down θ because of the N − Nn

dimensions of this eigenspace. Instead, thought leadership is determined via a similar relation (21).
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how the idea spreads, step by step. The first term is the effect on agent i’s own view, which

is simply the agent’s wealth multiplied by 1 (coming from the i’th column in A0
nn = I).

The next term captures the agent’s direct following among other naive investors (i.e., the

i’th column of Ann). Then comes his indirect following (i.e., the i’th column of A2
nn), his

next-order indirect following (i.e., the i’th column of A3
nn), and so on. In other words, the

echo matrix provides the overall effect (or echo) of a hardheaded agent influencing a naive

agent, and, through him, other naive agents.

An implication of Proposition 2 is that the economy is more rational if there are more

rational people to begin with, if fanatics have views closer to the rational view, and if the

naive people listen more to the rational ones, especially if the influential naive people do so.

So education makes the economy more rational if it teaches naive people to be rational or

to listen to those who are, and education of influencers is particularly effective.

As another example, religious beliefs may become thought leading partly by committing

to a fixed text such as the bible. Simultaneously, science becomes thought leading by col-

lecting as much data as possible and committing to a scientific understanding of the laws of

nature. Continuously preaching these relatively fixed principles creates thought leadership.

Example 1, continued. Revisiting the numerical example in equation (14), we can

calculate the influencer values of agents 1, 2, and 3 using equation (20) assuming, for example,

that all agents have equal wealth. In this case, their influencer values are 1.56, 0.33, and

0.33, respectively. Naturally, agent 1 has the largest influencer value since other people pay

most attention to him. The thought leadership of the fanatic is 57.8% based on (21), and

the thought leadership of the rational agent is 42.2%. The fanatic has a larger thought

leadership because of her larger following by the influencer.

It is interesting to consider what happens if agent 1 increases his following of the fanatic

by 1 percentage point (i.e., from 20% to 21%) at the expense of a lower following of the

rational agent (from 10% to 9%). This increases the thought leadership of the fanatic to

59.3%. The increase in the fanatic agent’s thought leadership of 59.3%-57.8%=1.56% equals

agent 1’s influencer value 1.56 times the 1% view change, which helps explain the meaning

of influencer value. If instead agent 2 increases his following of the fanatic by 1 percentage

point (from 10% to 11%) at the expense of a lower following of the rational, then the fanatic’s

thought leadership only increases by 0.33%, again matching the 0.33 influencer value of agent

2 times the 1% view change.
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The next section shows that influencer values and thought leadership are also useful in

quantifying the social network effects on prices.

3 Market Behavior with a Social Network

3.1 Prices with a social network

When the fundamental asset value is revealed, the price equals the fundamental, v +ut, and,

before that time, the equilibrium price is determined by equalizing the supply s and the total

demand. The equilibrium condition (4) can be written as:

p(t) =(1 − c)

[
wn∙

w∙
x̄n(t) +

wf ∙

w∙
x̄f +

wl∙ + ws∙

w∙
xr + u(t) −

sσ2
u

πw∙

]

+ cEt(p(t + 1)) (25)

which depends on the wealth-weighted average view among naive investors, x̄n(t), the weighted

average view among fanatics, x̄f , and the aggregate wealth of naive agents (wn∙), fanatics

(wf ∙), long-term rationals (wl∙), and short-term rationals (ws∙), relative to that of all agents

(w∙). Further, the constant c is defined as

c =
1

1 + w∙
ws∙

π
1−π

∈ (0, 1) (26)

Iterating this equation forward to infinity yields the equilibrium price.

Proposition 3 (Rational price) If all wealth is in the hands of rational long-term or

short-term investors (i.e., wi = 0 for all naive and fanatic agents), then the equilibrium

price is

pr(t) = xr + u(t) −
sσ2

u

πw∙
(27)

The rational price, pr(t), is the expected fundamental value, xr+u(t), less a risk premium that

depends on the supply of shares (s), the fundamental risk (σ2
u), the speed of revelation(π),

and the aggregate wealth (or risk-bearing capacity) of investors (w∙). This rational price is a

useful benchmark when considering the equilibrium price in the presence of naive investors

and fanatics. As seen in the next proposition, the general price also depends on the average
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view among naive investors, x̄n(t), and among fanatics, x̄f , weighted by their wealth.21

Proposition 4 (Network effects on price) The equilibrium price before the fundamental

value is revealed is the sum,

p(t) = pr(t) + pn(t), (28)

of the rational price, pr(t), and the following social network price component:

pn(t) =
wn∙(1 − c)

w∙

∞∑

k=0

ck (x̄n(t + k) − xr) +
wf ∙

w∙
(x̄f − xr) (29)

where c and pr are given in (26)–(27). This equilibrium price is unique under the transver-

sality condition that, state by state, pt − ut is bounded in t. As t → ∞, the network part of

the price converges to

p∞n =

Nn+Nf∑

j=Nn+1

θj(xj − xr) (30)

which depends on the fanatics’ mispricings, xj −xr, weighted by their thought leadership, θj.

The market price when investors learn through a social network can deviate significantly

from the rational price. In particular, equation (29) shows how the price depends on all

investors’ views, which are determined via their social network interactions. These network

effects are seen from the price dependence on the naive view x̄n(t), which can be traced

back to the investors’ original views and their spillover through the network as seen from

Proposition 1. The price also depends on expected future network effects, since the rational

short-term investors anticipate these future network effects and adjust their asset demand

accordingly, as seen from the terms depending on x̄n(t + k) with k > 0 in equation (29).

Over the longer term, naive investors’ views are completely dominated by the fanatic and

rational views, and therefore the long-term prices depend on these hardheaded views and

their thought leaderships, as seen in (30). These social dynamics can generate prices way

above the fundamentals (bubbles) and way below fundamentals (anti-bubbles, or deep value).

21The weighted average opinion of naive agents is computed as x̄n(t) = 1
wn∙

w′
nxn(t) and similarly for x̄f .
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Naturally, the bubble gets larger if fanatics have more extreme valuations. Interestingly, this

effect is larger if the fanatics have greater thought leadership.

Proposition 5 (Fanatic effect on price) The price increases in the valuation, xj, of fa-

natic agent j. This price sensitivity is larger if the agent has greater thought leadership θj:

∂p∞n
∂xj

= θj (31)

Another aspect of the social network dynamic is the effect of influencers.

Proposition 6 (Influencer effect on price) If naive agent i with influencer value μi in-

creases his following Aij of fanatic agent j by ε at the expense of a lower following of a

rational agent, then the effect on price is:

∂p∞n
∂ε

= μi (xj − xr) (32)

This proposition shows that a naive agent can affect the price by elevating the thought

leadership of a fanatic. This effect is naturally larger if the naive agent has a greater influencer

value. For example, when Elon Musk tweeted a link to WallStreetBets with its fanatically

high valuation of GameStop, the price of GameStop increased.

In summary, Propositions 4–6 show that the price deviates more from the rational price

when (i) a larger fraction of wealth is held by the fanatic or naive; (ii) fanatic views are more

extreme, (iii) fanatics have higher thought leadership because more naive people listen to

them, people devote more attention to fanatics, more wealthy people listen, or influencers

listen, thus affecting other naive investors indirectly; and (iv) investors are uncertain about

a larger fraction of the stock value (i.e., v is a larger part of v + ut).

Example 1, continued. Suppose that the rational expected value of v is xr = 400 and

the supply is s = 0, such that the rational price is pr(t) = 400 + u(t) regardless of σ2
u and π

as seen in (27). If the fanatic assigns a value to the asset of xf = xr + 100 = 500, then the

long-term network price can be calculated from (30) to be p∞n = 57.8, corresponding to a

long-term total price before revelation of 457.8+u(t), which is 57.8% toward the valuation of

the fanatic relative to that of the rational because of the fanatic’s 57.8% thought leadership

(as calculated in the end of Section 2.5).
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If the fanatic increases his valuation to 600, then the long-term price increases to 515 .6+

u(t), a price increase of 57.8. This price increase is a 100 times the fanatic’s thought leader-

ship of 57.8%, consistent with (31). If instead the rational view changes by 100, this leads

to a price change of 42.2, which is a smaller price move due to the lower thought leadership

of the rational agent.

To illustrate the importance of influencers, suppose that agent 1 increases his following

of the fanatic by 10 percentage points. Then the long-term network price increases from

p∞n = 57.8 to 73.3. As seen from as (32), the price increase of 15.6 can be computed directly

as Δp∞n = (ΔA1f )μ1(xf − xr) = 10% × μ1 × 100 = 10μ1 = 15.6, where Δ indicates change

and agent 1’s influencer value, μ1 = 1.56, is calculated in Section 2.5. If instead agent 2

increases his following of the fanatic by 10 percentage points, then the price increases only

by 3.3, again 10 times the influencer value, Δp∞n = 10μ2. The price is clearly more sensitive

to the actions of agent 1 because of his larger influencer value.

3.2 Value, momentum, trading volume, and volatility

The model has interesting predictions for asset returns, which are defined as r(t + 1) =

Δprice(t + 1), where Δ means the change over time and the price is given in (3). The

expected return is Et(r(t + 1)) = 0 after the revelation of v since the price becomes a

random walk after that time. Before revelation, t < τ , the expected return is:

Et(r(t + 1)) = (1 − π)Et(Δp(t + 1)) + π(xr + u(t) − p(t)) (33)

= (1 − π) Δpn(t + 1)
︸ ︷︷ ︸

momentum

+π b(t)
︸︷︷︸
value

because Δp(t + 1) = Δpn(t + 1) + Δu(t + 1) and Δu(t + 1) is unpredictable. We see that

returns are predicted by value and momentum factors. To understand this, note that the

second term is the “valuation metric,” defined as the difference between the fundamental

value and the price, b(t) := xr + u(t)− p(t), similar to book-to-price and other metrics used

by value investors. This value metric is multiplied by the probability of revelation, that is,

the mean reversion toward the fundamental value.

The first term is the future momentum of the network effect, Δpn, which can be pre-

dicted by rational investors. This network momentum is multiplied by the probability that
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the network dynamics continue, 1 − π, that is, no revelation (or the bubble does not burst).

Interestingly, this network momentum can be proxied by standard price momentum. Indeed,

given that the network effect is a smooth function of time, the recent network price momen-

tum tends to be a good proxy for its future momentum, Δpn(t + 1) ∼= Δpn(t). Further,

the recent price momentum is a noisy, but unbiased, estimate of this network momentum,

r(t) = Δp(t) = Δpn(t)+Δu(t). Hence, the model can help explain why value and momentum

predict returns.

This finding, which relies on an approximation, can be made precise in specific settings.

For example, consider the case in which naive agents have equal wealth, they listen to each

other in a symmetric way (their adjacency matrix can be written as Ann = a01Nn1′Nn
+ a1I

for scalers a0, a1 ∈ R), and there exist non-zero numbers of naive and fanatic agents (Nn > 0

and Nf > 0). The model has a particularly simple solution in this “symmetric naive case”

as shown in appendix, leading to the following result.

Proposition 7 (Value and momentum effects) In the symmetric naive case, there ex-

ists a number a > 0 such that the value-momentum strategy, b(t) + aΔp(t), has a positive

expected return, E [(b(t) + aΔp(t))rt+1] > 0, for all t.

It is also interesting to consider how short-term investors trade in light of the network

dynamics driving the price. The demand (8) of short-term investors before revelation can

be rewritten as

di(t) =
(1 − π)wi

σ2
u

Δpn(t + 1) +
πwi

σ2
u

b(t) (34)

which is proportional to the expected return in (33). The first term shows that a short-term

investor has an incentive to “ride” a bubble in the sense that the short-term investor looks

at the expected network price change if the fundamental is not revealed. This first term

captures the “momentum of the bubble,” a more sophisticated form of momentum trading

than looking simply at past prices changes, Δp(t), but I refer to this term also as a form of

“momentum trading.”

The second term in (34) shows that a short-term investor also worries about the mag-

nitude of the bubble, realizing that a revelation of the fundamental will burst the bubble,

leading to an expected price move equal to the difference between the price and the fun-

damental, b(t) = xr + u(t) − p(t). At any point in time, short-term traders act as either
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momentum traders, value investors, or both (i.e., di(t) must have the same sign as the first

term in (34), the second term, or both) and the next proposition shows how their portfolios

evolve in the simple case of symmetry.

Proposition 8 (Value and momentum trading) Consider an economy in the symmet-

ric naive case as defined above. In case of a positive bubble, p∞n > 0, short-term investors

initially buy a rising undervalued asset (value and momentum investing), continue to hold

when the asset becomes over-valued (momentum), and finally shorts when the over-valuation

is large enough (value on the short side). Short-term investors only go through the latter one

or two phases (momentum buying and value shorting) depending on the initial price p(1)

(i.e., depending on the initial signals).

Conversely, in case of an anti-bubble, p∞
n < 0, the short-term investor initially shorts

a falling over-valued asset (momentum and value shorting), continues to short as the asset

becomes cheap (momentum), and eventually buys when the asset is cheap enough (value), or

only goes through the latter one or two phases depending on p(1).

Short-term traders face a trade off between riding a bubble and betting on its burst.

Proposition 8 shows that this trade off leads them to initially ride the bubble when the

network component of the price drifts quickly upward due to strong network-spillover effects

and, at the same time, the cost of a potential bursting bubble is limited due to its moderate

initial size. Eventually, however, naive investors’ views converge as the echo resides, implying

that further price moves become small, and, moreover, the size of the bubble grows large, so

the short-term traders ultimately trade against the bubble. Further, social network effects

increase the trading volume and create another source of price variation, as shown next.

Proposition 9 (Spike in volume and excess volatility) With naive and fanatic agents,

the trading volume is greater but dies down over time (until the fundamental is revealed when

final trading may happen) and the valuation metric b(t) varies more, relative to when all

agents are rational.

The model has the property that, initially when investors receive signals that lead to

disagreement, trading volume is high (Proposition 9) and the momentum effect is strong

(Proposition 7), creating a bubble that later reverses. So momentum is strong when the

trading volume is high, and this interaction between volume and momentum is consistent
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with the empirical findings of Lee and Swaminathan (2000). Indeed, these authors find that

momentum is strongest among high-volume stocks (their Table II) and that this momentum

return partially reverses after 5 years (Table VI).

The model also has implications for when bubbles burst and trading volume dies down.

The price can stay a bubble as long as fanatics remain unmoved by rational opinion and

fundamentals remain unrevealed. Indeed, agents disagree until revelation in contrast to

standard DeGroot models in which all agents converge to the same opinion exponentially

fast (see Section 2.1). Such long-term disagreement leads to a long-term bubble in the price

and long-term differences in portfolios across agents. But, interestingly, even as the bubble

stays high, the trading volume declines fast.22 This decline in trading volume happens as

the level of bubble steadies and opinions settle over time because trading arises from new –

not existing – differences of opinions. This prediction appears consistent with the GameStop

case as discussed in Section 4.

Example 2. The economy has N = 100 investors with equal wealth wi = .2, 96 of

which are naive, 2 are fanatics, 1 is a long-term investor, and 1 is a short-term investor. The

supply of shares is normalized to s = 1 and the asset’s fundamental value is v + u(t), where

u(t) = Δu(1)+ ...+Δu(t) with Δu(t) ∼ N(0, 22). Investors’ initial signals are xi(0) = v̄+εi,

where v̄ ∼ N(100, 02) and εi ∼ N(0, 52), except that the fanatics draw a signal of xf = 500.

The unobserved value is v =
∑100

i=1 κixi(0), where each fanatic j have weight κj = 25% while

other agents share the remaining weight, 50%/98 each. Revelation happens with probability

π = 4%. After receiving these initial signals, the agents communicate in a social network.

Any naive agent i puts a weight of Aii = 50% on his own previous view, splits 10% across

naive agents, and, once and for all, randomly allocates the remaining 40% across fanatic and

rational agents. Rational agents initially listen to everyone, learn the truth xr = v ∼= 300,

and keep this updated view from time 1 and onwards. I consider two versions of fanatic

investors: In the “fully fanatic” case, they only listen to themselves, Ajj = 1; in the “nearly

fanatic” case, they put 3% weight on the rational view, Ajj = 97% and Aj,100 = 3%, so

strictly speaking they are very self-reliant optimists rather than true fanatics.

Figure 1 shows how investors’ beliefs evolve over time. The left panel shows the views

22 Beliefs evolve based on At, which has an eigenvalue of 1 and other eigenvalues of smaller magnitudes.
Denoting the magnitude of the second largest eigenvalue by φ ∈ (0, 1), we see that belief dynamics and other
endogenous quantities converge to their limit at the same speed as φt converges to zero.
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Figure 1: Investor beliefs over time. The left panel shows how investors’ beliefs about
the fundamental asset value change over time in Example 2. The red line on top shows the
fanatic view, the dotted line shows the rational view, and the solid curves show the naive
investors’ views. Naive investors converge to different limits because of their differing social
ties to fanatic or rational agents. The right panel shows the same, except that “fanatics”
are not completely fanatic, they put 3% weight on the rational view.

when fanatics are fully fanatic, and the right panel shows the nearly fanatic case. The

“initial displacement” (using Kindleberger’s terminology as discussed on the introduction)

is that fanatics receive positive news. Rational investors learn about this displacement at

time 1, but their rational update is smaller than that of fanatics, who overweight their own

signals. Naive investors learn about this positive news only gradually as they communicate

via their social network. Hence, naive views start too low, grow as they learn about the

initial displacement, and eventually end up between the rational and fanatic view. Some

naive investors develop views close to the fanatic view while others become close to rational,

depending on who they listen to the most, but all naive investors are too optimistic in the

end – a “mania.” In the left panel with full fanaticism, beliefs converge to different limits

(long-term polarized opinions), while all views eventually converge to the rational view in

the right panel when fanatics eventually learn the truth as a revulsion against their extreme

views sets in.

The top panels of Figure 2 show the resulting equilibrium price. As before, the left

panel illustrates the case when fanatics are fully fanatic, and the right panel shows the

nearly fanatic case. Further, in the left panel, the bubble bursts at time 50 because the

fundamental value is revealed at this time. In the right panel, the fundamental value is never
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Figure 2: Price bubble and volume. The top left panel shows the evolution of the asset
price over time in Example 2 when fanatics are fully fanatic and the bubble bursts at time
50 when the fundamental value is revealed. The top right figure shows the price when
fanatics put a small weight on the rational view, so the bubble peters out even though the
fundamental value is not revealed over the shown time period. The bottom panes show the
trading volume with fully fanatic agents (left) and fanatics who put a small weight on the
rational view (right).
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Figure 3: Asset position of short-term investors. This figure shows the asset position
of short-term investors over time in Example 2 assuming no revelation. Fanatics are fully
fanatic in the left panel and nearly fanatic in the right panel. Short-term investors are
initially long the asset, acting as momentum traders who ride the bubble. Later in time,
short-term investors act as value investors who bet of a price reversion toward fundamentals
when the bubble bursts.

revealed over this time range, but the bubble nevertheless peters out as fanatics’ optimism

turns to revulsion. The figures illustrate how the price starts too low as the initial news is

incorporated into prices only gradually, the price grows into a bubble as naive investors are

swayed by fanatics, and ultimately the bubble bursts (left panel) or peters out (right panel).

The bottom panels of Figure 2 show the total trading volume. The figure illustrates

how trading volume is initially very high, but the trading volume dies down even before the

bubble bursts.

Finally, Figure 3 shows the asset position of rational short-term traders. These traders

initially buy the asset aggressively for two reasons: (a) the price starts below the rational

value since naive investors have not yet understood the full importance of the initial displace-

ment; and (b) the price is trending up as naive investors are expected to grow increasingly

optimistic. As the asset becomes expensive, the short-term investors continue their mo-

mentum trading with a reduced position size. Eventually, as the bubble grows too large,

short-term investors start shorting the asset.
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4 A Case Study of GameStop

The case of GameStop offers a window into the effects of social networks on asset markets

due to its well-publicized and extreme events. While the introduction cites scientific evidence

in support of the model, GameStop offers an interesting illustration that may spur ideas for

future research, hopefully ideas that also apply in less extreme cases such that they can help

explain the general principles of social market behavior.

Gamified trading of GameStop. In early 2021, the world’s largest video game retailer,

GameStop, was struggling as games were increasingly sold online and the retail industry was

hit by the Covid-19 crisis. Nevertheless, a group of investors caught an almost fanatic

liking to the stock, a trend that was reinforced through social networks. Keith Gill (better

known under various social media aliases) became the most followed of these traders and

he expressed an unwavering belief in the stock at all observed price levels — so he can be

represented in the model as one of the fanatics. Gill and others believed that GameStop

could pivot online and capture a share of the large digital software distribution market while

simultaneously benefiting from their physical locations with the help of recent block investor

and board member, Ryan Cohen, and others (the initial displacement in Kindleberger’s

terminology).

The most well-publicised group of retail investors interested in GameStop communicated

through the platform Reddit, in the community (subreddit) called WallStreetBets. Some

investors believed like Gill that GameStop was undervalued, while others stated an intention

to buy the share because of its large short interest of just over 100% of shares outstanding at

the beginning of the year (or around 140% of all floating shares). Some GameStop investors

resented shortsellers or expressed a view that pushing up the stock price could lead to a

short squeeze, but by March 2021 the focus on shortsellers dissipated. The extreme view

of the stock price was reinforced with rocket memes and by labelling GameStop a YOLO

trade. Similarly in the model, the fanatics have a larger effect on the price if they express a

more extreme valuation, x̄f , as seen in Proposition 4 and this effect is larger if the fanatics

have more thought leadership (Proposition 5).

As another sign of the importance of social media, the interest in GameStop was spurred

by a tweet by Elon Musk on January 26 with the single word “Gamestonk!!” along with a

link to WallStreetBets. In the model, Elon Musk can be represented as an influencer who
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chooses to follow the fanatic. That is, the agent i representing Musk puts a positive weight,

Aif > 0, on the fanatic’s view, and Musk is an influencer in the sense that many other

investors j follow Elon Musk, Aji > 0. In the model, when an influencer follows a fanatic

with a very bullish view, this increases the stock price (Proposition 6), as it did in the case

of GameStop. In the terminology discussed in the introduction, Musk’s tweet can be seen

as an “authoritative blessing.”

This bullish sentiment on GameStop communicated via social networks was translated

into actual trading activity. Trading by inexperienced traders was facilitated by a com-

petitive online brokerage industry offering zero-commission trading, led by the new broker,

Robinhood, which uses a business model based on payment for order flow from market mak-

ers such as Citadel. Robinhood and other brokers sought to make trading more broadly

available to a wide range of investors in a fun way, which lead to the accusation that trading

became “gamified.”

Price, volume, volatility, and social media interest. As seen in Figure 4.A,

GameStop had been trading at less than $20 per share through 2020, but increased dra-

matically in the beginning of 2021. The stock started the year at $19 per share and hit an

intra-day high of $483 on January 28, a 25 fold increase with little news. The price dropped

to $40 in February, but it started increasing significantly again in late February.

The extraordinary volatility visible in Figure 4.A is shown more explicitly in Figure 4.B,

which plots the 10-day close-to-close realized volatility, annualized by multiplying by
√

250/10.

Realized volatility peaked at over 300%, an exceptionally large price volatility. The high

volatility coincided with an enormous trading volume as GameStop temporarily became one

of the most traded stocks in the world despite the modest size of the company. Figure 4.C

shows the daily turnover computed as the daily trading volume in shares divided by the num-

ber of shares outstanding. The daily trading volume peaked at over 200% on January 22,

meaning that all the company’s shares were traded more than twice each day. 23 The spikes

23 On January 27, Robinhood increased their clients’ margin requirements for GameStop to 100%, meaning
that their clients could no longer borrow money to buy the stock. On the next day, Robinhood and other
brokers imposed temporary trading restrictions, disallowing their clients to buy GameStop and other meme
stocks, fueling speculation that they had been pushed to help shortsellers that were losing money due to the
rise of GameStop. This speculation turned out to be wrong, since Robinhood’s trading restrictions were only
enforced to prevent Robinhood from running out of money, according to CEO Vladimir Tenev’s testimony
to the U.S. House Committee on Financial Services, 2/18/2021. Indeed, Robinhood had to post margin
to their clearing houses, and the increased volatility and large and concentrated positions in GameStop by
Robinhood investors meant that Robinhood’s margin requirements increased more than 10 times over a few
days.
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Figure 4: GameStop price, volatility, turnover, and interest, 4/28/2020-
4/27/2021. Panel A shows the GameStop price over time (open-high-low-close), Panel B
shows the realized volatility, Panel C shows the daily turnover, and Panel D shows the social
media interest as proxied by Google search trends for GameStop, GME, and WallStreetBets.

in trading volume and volatility also coincided with an increase in social media interest in

GameStop as proxied by Google searches for GameStop, its ticker GME, and WallStreetBets

as seen in Figure 4.D. Interestingly, while prices remained elevated through the end of the

sample period (and as of this writing), trading volume came down to a more normal level,
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consistent with the model as explained in the end of Section 3.2.

Other effects. The real world is almost always more complex than any stylized theo-

retical model, and the case of GameStop is no exception. The trading frenzy almost surely

started in social media similarly to the model, but ultimately several effects played a role

in the meteoric rise in the price. First of all, retail investors bet on GameStop both by

buying the stock and by buying call options. Call options have embedded leverage, allowing

investors to multiply their gains or losses many times for the same dollar investment (Frazz-

ini and Pedersen (2021)). When end-investors buy call options, they are sold by market

makers who hedge their risk by buying the stock. The hedge ratio (called the “delta”) in-

creases when the stock price increases (and this change in the delta is called the “gamma”).

Therefore, an increasing stock price leads to buying from option market makers, leading to

further stock price increases, and so on (a “gamma squeeze”). In other words, buying call

options is similar to a pre-programmed trading strategy, where the end-investor buys more

and more shares as the price rises. In the model, this strategy corresponds to letting the

demand-sensitivity of naive investors depend on the stock price (or their trading gains), an

interesting extension of the model.

As the stock price of GameStop rose in late January, some shortsellers were simultane-

ously forced to close their positions, buying shares that they earlier borrowed. This reduction

in short positions further pushed the price upward (a “short squeeze”). This short squeeze

likely played a role in the price spike in January, but it was not a factor in the subsequent

price rise in March, suggesting an importance of social network effects.

Further, some newspapers reported possible buying by institutional investors, similar in

spirit to the short-term investors in the model. As the short-term investors in the model,

these investors may have chosen to ride the bubble, thus contributing to the increase in

price. Other sophisticated investors were focused on the long-term value, shorting the stock

or simply selling their positions.

In summary, GameStop started the year 2021 with a market capitalization of $1.2B and

reached a high on Jan. 28 of $34B. While certainly an economically meaningful rise in value,

GameStop’s peak market capitalization was only 0.07% of US equities, still a small corner

of the overall equity market, even when including the other meme stocks that also rose in

value at the time. GameStop did not issue any shares in January, but filed a plan of an at-

the-market offering to the Securities and Exchange Commission on April 5, perhaps seeking
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to sell shares directly to naive investors rather than selling to institutional investors via a

conventional bookbuilding. One of the other meme stocks, AMC, raised about $300m in an

at-the-market offering in January 2021, illustrating how price displacements can have real

effects as shares sales affect the survival and operation of these businesses.

Link to the model. The GameStop saga had many of the elements included in the

model: an investment thesis spreads via a social network (Proposition 1), fanatic views

gain prominence over time (Proposition 2), the contagious investment idea leads to network

effects on prices (Propositions 4), which starts a bubble (Propositions 5), prices rise further

as influencers link to the fanatics (Proposition 6), sophisticated momentum investors ride

the bubble while value investors bet against it (Propositions 7–8), and high trading volume

and volatility ensue (Proposition 9), but die down faster than the price bubble. Further,

this episode illustrates both the general anatomy of bubbles and a magnified version of more

common asset pricing effects (as seen in Table 1), one that allows us to more easily observe

how social networks affect markets.

5 Conclusions and Further Directions

I present a simple model of a financial market in which some investors are rational and

others learn through a social network. The model can help explain a number of observed

phenomena such as social network effects in portfolio holdings, excess volatility, momentum

and reversal effects, meme trading, the effects of repeated news, and spillover of expectations

and transaction prices across people with social links. I study the events of GameStop in

2021 in light of the model, showing how extreme price moves were related to extreme trading

volume and social media attention. Hence, belief formation via social networks may both

affect the normal day-to-day fluctuations in asset prices and the extreme events connected

to bubbles and crashes.

Social networks have been prevalent throughout history, but modern social media are

changing the nature of these networks and making them more observable, which opens up

new research possibilities to test the model predictions using data on networks and market

behavior. If social network effects are a force behind pervasive dynamics throughout global

equity, bond, currency, commodity, cryptocurrency, and housing markets such as value,

momentum, and excess volatility, then the GameStop affair is only the tip of the iceberg, a
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very extreme tip that is currently seen more clearly than the part hidden under the surface.

I end by discussing further implications and future directions.

Diamond hands. People who want to affect the opinion of others try to get attention, but

may also enforce a fanatic stubbornness. In social media related to trading, such a

stubborn willingness to keep buying and holding a stock is called “diamond hands”

(often written with diamond and hand emojis). In the case of GameStop, Keith Gill –

a trader who made an impact on social media – ended his testimony in the hearing of

the U.S. House Committee on Financial Services by saying: “In short, I like the stock,”

seemingly liking the stock at almost any price. The model shows that a stubborn view

can come to have a significant effect on naive investors (Proposition 1), leading to

bubbles (Propositions 5).

Rocket and YOLO trades. A stubborn view has a larger effect if it is more extreme

(Propositions 4). Social-media investors sometimes signal such an extreme view of the

potential rise in price via a rocket emoji and, the traders of GameStop on WallStreet-

Bets had a special category for YOLO (you only live once) trades.

Gamification of trading. Some investors are trading with broker apps with game-like

features while chatting on social media with their connections. Hence, another inter-

pretation of the model is that it may capture such a gamification of trading and future

research may shed more light on the effects of gamification.

Meme trading frenzy. A “meme” is an idea that becomes a fad and spreads by means of

imitation in a social network, in the spirit of the model considered in this paper. The

meme can lead to differences of opinions across variations of the meme (i.e., across

different fanatics in the model) and relative to rational investors, leading to a trading

frenzy (Proposition 9). This can happen even long after any news has arrived or a

meme is originated, since the meme can take a long time to gather momentum in the

social network. See Shiller (2017) for other economic effects of viral “narratives” and

Hirshleifer (2020) for the related idea of “social transmission bias.”

Echo chambers. When people communicate in a closed system insulated from rebuttal,

their opinions are amplified via confirmation bias, referred to as an “echo chamber.”

This situation can be captured in the model by letting a subset of the naive agents
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listen only to each other and one of the fanatics. In this case, these naive agents

end up having the same opinion as this particular fanatic. The other agents in the

economy have a mixture of the rational view and all the other views, but they can also

be influenced by the echo chamber if they listen to members of the chamber. Hence,

such an echo chamber can amplify the size of a bubble, especially if the echo chamber

includes – or influences – many people, wealthy people, or risk-tolerant ones.

Size of wallet vs. number of followers. In traditional models of finance, people influ-

ence prices based on the size of the wealth. Interestingly, when investors learn through

their social network, even a non-investor (or a penniless investor) can wield a large

influence on prices if the person is a thought leader or influencer, especially if the fol-

lowers are wealthy or consists of sufficiently many small investors. So an “important

agent” has a completely different meaning in traditional models and in this model of

a social network!

Excess volatility. Since the evolution of the network component of the price is largely

divorced from fundamentals, asset prices vary for reasons unrelated to news about their

fundamentals (Proposition 9), consistent with Shiller (1980), Shiller (1984). Volatility

would be even larger in an extension of the model in which naive investors trade at

random times, such that the price at any time would depend on the mix of investors

trading at that moment.

Value and momentum. Social network effects can lead to price momentum and subse-

quent reversal toward fundamentals (also called a value effect) that are seen across

many asset classes and global markets (Asness et al. (2013)). Indeed, the build-up of

naive investor demand can lead to momentum effects, and the eventual price rever-

sal as the fundamental value is revealed leads to a value premium, and it would be

interesting to empirically link these patterns more directly to social networks.

Repeat news. In the model, repeating old news can move prices, especially if the repeat

news is displayed prominently to many people, as naive investors keep reacting to the

same information, consistent with the evidence of Huberman and Regev (2001) and

Tetlock (2011).

Investor communication and fake news. In the model, fanatics may be spreading fake
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news, but they are assumed to do so because they truly hold this view. More broadly,

all agents’ report their true views, consistent with the assumption that they are price-

takers — and consistent with the idea that most investors simply have an honest talk

with their friends in order to figure things out. Nevertheless, an interesting an extension

would consider agents’ incentive to communicate strategically.

Pump and dump. An opportunistic investor could try to profit by first buying an asset,

and then pretend to have a fanatic bullish view on the asset in order to create a wave

of buying by his followers, leading to a price increase. If the opportunistic investor

then sells despite talking up the asset, he is engaging in “pump and dump,” an illegal

form of market manipulation. This behavior can be captured in the model as follows.

An investor splits herself into two parts, say i and j: The fanatic part i “pumps” up

the price via a strong attention-grabbing view (Aki > 0 for many k), but does not

trade (zero wealth to this part, wi = 0); The rational part is a short-term investor who

trades (wj > 0), but does not speak (Akj = 0 for all k 6= j). The rational side initially

rides the pump and eventually “dumps”—so viewed as a team, these agents pump and

dump.

Short squeeze. A bubble driven by social media effects can be greatly exacerbated if short-

sellers are forced to close their positions due to share recalls or risk controls. This paper

abstracts from this effect here for simplicity—see Brunnermeier and Pedersen (2005)

for a model of short squeezes and other forms of predatory trading, Duffie et al. (2002)

for a model of securities lending, and Gârleanu et al. (2021) for a model of how fears

among short sellers can become self-fulfilling. Future research may explore how short-

sale frictions interact with network effects.

Social network effects and local bias. Social network effects mean that people are af-

fected by those they are connected to, and, indirectly by the connections of their

connections, and so on. People often interact with others in their local area and work

place, which can be captured in the structure of the adjacency matrix A. So if peo-

ple hear of about local stocks via their social network, this mechanism can contribute

to investments having home bias (French and Poterba (1991)), local bias (Coval and

Moskowitz (1999)), and own-firm bias. Kuchler et al. (2020) provide evidence that

social network effects contribute to local bias and affect firm values, and this effect
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could be studied further in an extension of the model with many stocks.

Who buys early or late into a bubble? In the model, the earliest big buyers are the

most extreme fanatics (due to their bullish views) and the short-term investors (due to

a realizing that a bubble is forming) while naive investors initially hold small positions.

Fanatics continue to be large owners until the crash, but they gradually reduce their

positions as prices rise — so they sell into the crash, but still experience large losses.

Naive investors who are influenced by fanatics continue to buy the asset until the crash

as these investors grow increasingly optimistic. The last buyers are naive investors

influenced by fanatics, especially those who learn the fanatic view only slowly, e.g., via

indirect connections to the fanatic due to a peripheral position in the social network.

Attention-grabbing profits. Fanatic views may spread more quickly when their propo-

nents are seen profiting from their views. Hence, an interesting extension of the model

would let the adjacency matrix A at each time depend on the past profits of the dif-

ferent agents. Given that fanatics tend to profit early on as their views start affecting

the price, this extension could generate larger bubbles as the fanatic profits would grab

attention, the attention would increase profits, and so on.

Firm communication. Firms use their communication and advertising to try to boost

their stock prices (Lou (2014)). Such behavior could be studied in an extension of

the model in which firms participate in the social network or affect the revelation

probability π. For example, a firm has a much stronger incentive to reveal its value or

help propagate the rational view when its stock price is undervalued vs. overvalued.

Hence, a negative bubble may have a higher revelation probability π and a larger

thought leadership of rationals aided by the firm, thus leading to shorter and smaller

price distortions. In contrast, positive bubbles may be larger, more prevalent, and

initiated by the firm itself, especially when the firm needs to raise capital or insiders

need to sell out.

Central bank communication. Central banks use their communication to ensure the

transmission of their monetary policy. They may also use communication strategies to

lean against bubbles and improve market efficiency — in the language of the model,

they try to increase the thought leadership of the rational view. Indeed, many central
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banks have social media accounts and they are very deliberate with their communi-

cation. Central bank communication via a social network is thus another interesting

avenue of future research.
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A Appendix

A.1 Overview of notation

Symbol Meaning
v Part of the fundamental value that agents try to learn about

u(t) Part of the fundamental value that agents observe
σ2

u = Var(u(t) − u(t − 1)) Variance of the iid increments of the random walk u(t)
xi(0) = vi Agent i’s initial signal about the value v

κi Importance of i’s signal since v =
∑N

i=1 κivi and
∑N

i=1 κi = 1
x(t) = (xi(t))i=1,...,N Vector of agents’ views about the value v at time t

τ The random time when v is revealed to all agents
π Probability that v is revealed at t given no revelation yet

A = (Ai,j)i,j=1,...,N Adjacency (or weight) matrix (how people update their views)
θi Agent i’s thought leadership
μi Agent i’s influencer value

p(t) Price before revelation
p(t) = pr(t) + pn(t) Price split into its rational and network components

s Supply of shares
di(t) Asset demand of agent i
N Total number of agents

N = Nn + Nf + Nl + Ns Naive, fanatic, long-term rational, and short-term rational
x(t) = (xn(t); xh) Views split into those of naive and hardheaded agents
xh = (xf ; xl; xs) Hardheaded agents split by fanatic, long-term, short-term

xr The rational view, xr = E(v|x1(0), ..., xN (0) = v
x̄(t) Average view of all agents at time t
x̄n(t) Average naive view at time t
x̄f Average fanatic view at any time
wi Wealth of agent i

w = (wn; wh) Wealth vector split into naive and hardheaded agents
w = (wn; wf ; wl; ws) Wealth vector split into naive, fanatic, long-term, short-term

w∙ Total wealth of all agents
w∙ = wn∙ + wf ∙ + wl∙ + ws∙ Total wealth of naive, fanatic, long-term, short-term

b(t) = xr + u(t) − p(t) Valuation metric similar to book-to-price
1N , ei, I Vector of ones, i’th standard unit vector, identity matrix

Δ Change over time, e.g., Δp(t + 1) = p(t + 1) − p(t)

Table 2: Overview of notation.
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A.2 Proofs

Proof of Proposition 1. Beliefs evolve as follows for t > 1

x(t) = At−1x(1) =

(
At−1

nn

∑t−2
k=0 Ak

nnAnh

0 I

)

x(1) →

(
0 (I − Ann)−1Anh

0 I

)

x(1) (A.1)

Here, the second equality can be seen via induction. The convergence result follows from

summing the geometric series in the upper-right block matrix, and the upper-left block

matrix converges to zero, At−1
nn → 0, because all of its eigenvalues are strictly less than one.

To see this property of the eigenvalues, let M = Ann, which is a non-negative matrix with
∑

j Mi,j ≤ 1 for all i, with strict inequality for at least one i since at least one naive agent

listens to a hardheaded one. Suppose first that M is an irreducible matrix. Then the Perron-

Frobenius Theorem shows that M has a strictly positive left eigenvector ξ corresponding to

the largest eigenvalue λ, that is, ξ′M = λξ′ with ξi > 0 for all i. Therefore, λ
∑

i ξi =
∑

i(ξ
′M)i =

∑
i

∑
j ξjMj,i =

∑
j ξj

∑
i Mj,i <

∑
j ξj, implying that λ < 1.

If instead M is reducible, then it can be written on the normal form

KMK−1 =










M1 ∗ . . . ∗

0 M2
. . .

...
...

. . . . . . ∗

0 . . . 0 Mh










(A.2)

where K is a permutation matrix, each Mk is a square matrix that is either irreducible or

zero, and the spectrum of M is the union of the spectra of the Mi. Further, each Mi is a

matrix of non-negative numbers with rows that sum to at most 1, and at least one row that

sums to strictly less than 1 (since otherwise no one in this group of agents is influenced by a

hardheaded agent, in violation of assumption 1). Therefore, the argument above shows that

all eigenvalues are strictly less than 1.

Finally, the naive views are convex combinations of the hardheaded views in the limit

for two reasons. First, the naive views are clearly non-negative linear combinations of hard-

headed views as the weights are limits of non-negative weights. Second, the weights sum to

unity because lim At1N = 1N , implying that (I − Ann)−1Anh1N−Nn = 1Nn using (A.1).

Proof of Proposition 2. A. As t → ∞, the average opinion, x̄(t), converges to

x̄(t) →
1

w∙
w′

n(I − Ann)−1Anhxh +
1

w∙
w′

hxh = (μ′Anh +
1

w∙
w′

h)xh (A.3)
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using (A.1), which shows that θ′h is given by the last parenthesis.

Note that the sum of the thought leaderships is 1 (as stated in Definition 1) since each

row in At sums to 1, a property that is preserved in the limit as t goes to infinity, and so

θ′1 = 1
w∙

w′ limt→∞ At1 = 1
w∙

w′1 = w∙
w∙

= 1.

B. If a naive agent i increases his following of j at the expense of other hardheaded agents,

then Ann remains unchanged and, therefore, influencers values μ remain unchanged. Hence,

the result follows from differentiating (23) using ∂Aij/∂ε = 1 and ∂Akj/∂ε = 0 for k 6= i.

Proof of Propositions 3 and 4. The equilibrium price is determined by equalized the

supply s and the total demand:

s =
∑

i naive

di(t) +
∑

i fanatic

di(t) +
∑

i long-term rational

di(t) +
∑

i short-term rational

di(t) (A.4)

To derive a convenient expression for this equilibrium condition, recall the notation that

wn = (wi)i=1,...,Nn
is the column vector of wealth of the naive agents, and, similarly, wf , wl,

ws, and w are the vectors of wealth of, respectively, fanatic, long-term, short-term, and all

agents. Further, wn∙ = 1′wn is the total wealth of all naive agents, and similarly for the other

groups. With this notation, the equilibrium condition can be written as

sσ2
u/π =(w′

nxn(t) + wn∙u(t) − wn∙p(t)) + (w′
fxf + wf ∙u(t) − wf ∙p(t)) (A.5)

+ wl∙(xr + u(t) − p(t)) + ws∙

[
(1 − π)

π
Et(p(t + 1) − p(t)) + (xr + u(t) − p(t))

]

Isolating p(t) on the left-hand side gives

p(t) =
wn∙

w∙ + 1−π
π

ws∙
x̄n(t) +

wf ∙

w∙ + 1−π
π

ws∙
x̄f +

wl∙ + ws∙

w∙ + 1−π
π

ws∙
xr (A.6)

+
1−π

π
ws∙

w∙ + 1−π
π

ws∙
Et(p(t + 1)) +

w∙
w∙ + 1−π

π
ws∙

u(t) −
w∙

w∙ + 1−π
π

ws∙

sσ2
u

πw∙

=(1 − c)

[
wn∙

w∙
x̄n(t) +

wf ∙

w∙
x̄f +

wl∙ + ws∙

w∙
xr + u(t) −

sσ2
u

πw∙

]

+ cEt(p(t + 1))

=(1 − c)

[

x̄(t) + u(t) −
sσ2

u

πw∙

]

+ cEt(p(t + 1))

where the constant c is defined as c =
1−π

π
ws∙

w∙ + 1−π
π

ws∙
, thus proving (25).

Iterating this equation forward yields the equilibrium price using standard difference

equation methods and the sum of a geometric series. In particular, one can eliminate the

future price by discounting the future versions of the rest of the right-hand side by c. Note
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the discounted future price converges to zero because of the premise that (the network part

of) the expected price is bounded and because this bounded value is discounted by c ∈ (0, 1),

thus yielding a unique solution (i.e., using the standard transversality condition). To see this,

note that (25) has the following structure, where I collect several terms under the umbrella

called bt = (1 − c)[x̄(t) + u(t) − sσ2
u/(πw∙)]:

pt = bt + cEt(pt+1) = bt + cEt(bt+1 + cpt+2) = bt + Et(cbt+1 + c2[bt+2 + pt+3])

= bt + Et(cbt+1 + c2bt+2 + c3bt+3 + ...)

Using that 1 + c2 + ... = 1/(1 − c), the equilibrium price is calculated as:

p(t) =
wn∙(1 − c)

w∙

∞∑

k=0

ckx̄n(t + k) +
wf ∙

w∙
x̄f +

wl∙ + ws∙

w∙
xr + u(t) −

sσ2
u

πw∙
(A.7)

When wn∙ = wf ∙ = 0, the above expression yields the equation for the rational price (since,

in this case, w∙ = wl∙+ ws∙). To get the network part of the price, one subtracts the rational

price from (A.7), using that wn∙(1−c)
w∙

∑∞
k=0 ck +

wf∙

w∙
+ wl∙+ws∙

w∙
= 1.

The convergence result as t → ∞ now follows from (19) using the notation x̄∞ for the

limit of this variable:

p(t) −

(

u(t) −
sσ2

u

πw∙

)

→
wn∙

w∙
x̄∞

n +
wf ∙

w∙
x̄f +

wl∙ + ws∙

w∙
xr = x̄∞ =

N∑

j=Nn+1

θjxj (A.8)

Proof of Proposition 5. The price sensitivity to each fanatic value is seen by differenti-

ating (30).

Proof of Proposition 6. If naive agent i with influencer value μi increases his following

Aij of fanatic agent j by ε at the expense of a lower following of a rational agent, then the

effect on price is:

∂p∞n
∂ε

=
∂

∂ε




Nn+Nf∑

j=Nn+1

θj(xj − xr)



 = μi (xj − xr)

where the last equality uses that the fanatic agent’s thought leadership increases as follows:

∂θj

∂ε
=

∂

∂ε
μi(Aij + ε) = μi

based on (21), the thought leadership of other fanatics is unchanged, and the thought lead-
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ership of rational agents is decreased accordingly.

Solving the symmetric naive case (used in Propositions 7–8). In this case, it holds

that 1′
Nn

Ann = 1′Nn
(a01Nn1′Nn

+ a1I) = λ1′Nn
, where λ = a0Nn + a1. Further, λ ∈ (0, 1) since

symmetry implies that Ann1Nn = λ1Nn and the row sums of Ann must be less than one since

agents are hardheaded connected. Hence, the average view of naive investors is:

x̄n(t) =
1

Nn

1′Nn
xn(t) =

1

Nn

1′Nn
At−1

nn xn(1) +
1

Nn

1′Nn

t−2∑

k=0

Ak
nnAnhxh (A.9)

= λt−1x̄n(1) +
1

Nn

t−2∑

k=0

λk1′Nn
Anhxh = λt−1x̄n(1) + (1 − λt−1)x̄∞

n

where x̄∞
n = 1

Nn
1′Nn

Anhxh/(1 − λ). Therefore, the first term in the price equation (A.7) can

be rewritten as follows, leaving out the constant term wn∙(1−c)
w∙

,

∞∑

k=0

ckx̄n(t + k) =
∞∑

k=0

ck
(
λt+k−1x̄n(1) + (1 − λt+k−1)x̄∞

n

)
=

λt−1

1 − cλ
(x̄n(1) − x̄∞

n ) +
x̄∞

n

1 − c

so the price is

p(t) =
λt−1(1 − c)

1 − cλ

wn∙

w∙
(x̄n(1) − x̄∞

n ) +
wn∙

w∙
x̄∞

n +
wf ∙

w∙
x̄f +

wl∙ + ws∙

w∙
xr + u(t) −

sσ2
u

πw∙
(A.10)

Therefore, the network component of the price is

pn(t) =
λt−1(1 − c)

1 − cλ

wn∙

w∙
(x̄n(1) − x̄∞

n ) +
wn∙

w∙
(x̄∞

n − xr) +
wf ∙

w∙
(x̄f − xr) (A.11)

Proof of Proposition 7. The momentum in the current and future network price are

linked as, Δpn(t + 1) = λΔpn(t), as seen from (A.11). Hence, expected returns (33) can be

written as follows in the symmetric case

Et(rt+1) = 1(t<τ) [(1 − π)λΔpn(t) + πb(t)] (A.12)

Further, note that the past return, r(t) = Δp(t) = Δpn(t) + u(t) is a noisy, but unbiased,

proxy for Δpn(t), and that the noise u(t) is independent of the future shock to returns,

rt+1 − Et(rt+1), and of the current valuation ratio, b(t) = xr + u(t) − p(t) = sσ2
u

πw∙
− pn(t). So
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this is a standard errors-in-variables problem, where a noisy regressor will bias downward its

regression coefficient (and also affect the other regression coefficient, potentially increasing

it). However, here the variables are not stationary in time so, to rely on standard statistics,

we either need to repeat the model many times or consider a cross-section of many stocks.

Rather than considering such extensions, we simply compute the expected profit of the

value-momentum strategy, d(t) = aΔp(t) + b(t), with a weight on momentum given by

a = λ(1 − π)/π ∈ (0, 1) using (A.12):

E [d(t)rt+1] =E [(aΔp(t) + b(t))Et(rt+1)] (A.13)

=E
[
(a(Δpn(t) + u(t)) + b(t))1(t<τ) [(1 − π)λΔpn(t) + πb(t)]

]

=πE
[
1(t<τ)(aΔpn(t) + b(t))2

]
+ πE

[
u(t)1(t<τ)(aΔpn(t) + b(t))

]

=πE
[
1(t<τ)(aΔpn(t) + b(t))2

]
> 0

using that u(t) is independent of τ , pn(t), and b(t).

Proof of Proposition 8. The general statement before the proposition that short-

term investors always end up being value investors follows from the fact that the price

absent revelation converges to a limit as seen in Proposition 4. This convergence means

that momentum profits, captured in the first part of equation (34), converge to zero over

time while profits from trading on reversal, captured in the second part of equation (34), are

bounded away from zero.

In the naive symmetric case, the price and its network component are given by (A.10)–

(A.11) as shown above. Hence, if (x̄n(1)− x̄∞
n ) < 0, then, before revelation, the network price

is rising monotonically in time t and network price changes pn(t+1)−pn(t) are monotonically

falling over time, and vice versa if (x̄n(1) − x̄∞
n ) > 0. Therefore, equation (34) shows that

the position of short-term investors is falling in the first case and rising in the latter case.

Proof of Proposition 9. Regarding trading volume, when all agents are rational, then all

agents establish their positions at time 1 and keep these positions throughout, so volume is

minimal. With naive and fanatic agents, trading volume is generally positive as naive agents

continue to update their views, but, as t → ∞, their views converge so that view changes

approach zero, leading to a diminishing volume, except at the revelation time.

Regarding price variability, with only rational agents, the price is p(t) = xr + u(t)− sγσ2
u

Nπ

so the valuation metric b(t) is constant over time until the revelation. With naive and fanatic

agents, the valuation metric varies over time due to changes in the network part of the price.

This network effect creates another source of price variation in addition to the price variation
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arising from changes in u and the realization of τ .

A.3 Alternative information structure

Suppose that the signals are written as a sum of a common random variable y and indepen-

dent noise terms εi:

xi(0) = y + εi (A.14)

This specification is consistent with my model if we let the true value be

v = y +
N∑

i=1

κiεi. (A.15)

since, in this case, we have

N∑

i=1

κixi(0) = y +
N∑

i=1

κiεi = v. (A.16)

If instead signals continue to be given by (A.14), but the common component is the true

value, v = y, then we have the standard information-theoretic framework (e.g., Hellwig

(1980)). So we see that the difference is that, the average “noise” coming from the εi’s is

part of the true value in my model, but not in the standard framework.

However, we can reinterpret my model as being consistent with the standard information

framework simply by changing the definition of two parameters (xr and σ2
u) while leaving

everything else in the paper the same!

To analyze the standard framework, let the true value be v and the signals be given by

(A.14) with v = y such that v ∼ N(v̄, σ2
v) and εi ∼ N(0, σ2

εi
) are independent. Then the

rational view xr is:

xr = E(v|x1(0), . . . , xN(0)) = v̄ + ΣvxΣ
−1
xx (x(0) − v̄1N) = κ0v̄ + κ′x(0) (A.17)

where κ0 = 1−ΣvxΣ
−1
xx 1N and κ′ = (κ1, . . . , κN) = ΣvxΣ

−1
xx , and I use the standard notation

that Σvx = (Cov(v, x1(0)), . . . , Cov(v, xN (0))) and Σxx is the variance-covariance matrix of

x(0). We see that the rational view is an average of the prior v̄ and the signals, where more

precise signals (with less noise) receive more weight. When all signals are equally precise,
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σ2
εi

= σ2
ε for all i, the rational view has weights

κ0 =
σ2

ε

σ2
ε + Nσ2

v

and κi =
σ2

v

σ2
ε + Nσ2

v

for i = 1, . . . , N (A.18)

This rational update is very similar to my model, except for two properties, both of which

are easy to handle: (i) First, κ0 +
∑N

i=1 κi = 1 so the rational weights do not add up to one

when summed across the agents,
∑N

i=1 κi < 1; (ii) Second, agents cannot fully learn the true

value, xr 6= v.

Regarding (i), note that, after time 1, rational agents again use weights that add to

one since any rational agent puts 100% weight on her own previous opinion. Hence, the

weighting matrix continues to have the standard form in all time periods t > 1, which is all

that matters for the solution of the belief dynamics in my model. The rational update at

time 1 can be anything, including of the form (A.17), without affecting anything in the model

except the definition of xr. While in the model considered in the body of the paper, it holds

that xr = v, I use the notation xr rather than v to ensure the generality of the framework.

Hence, we can instead define xr by (A.17) or whatever comes out of your favorite information

framework.

Regarding (ii) that agents cannot learn the true value, xr 6= v, this property increases

the variance when solving each agent’s portfolio problem. For example, the risk penalty in

(5) becomes

1

2wi

Vart [di(v + u(τ) − p(t))] =
d2

i

2wi

[Var(v|x(0)) + Vart(uτ )]

=
d2

i

2wi

[

σ2
v − ΣvxΣ

−1
xx Σxv +

σ2
u

π

]

(A.19)

=:
d2

i σ̃
2
u

2wiπ

where σ̃2
u is defined by the last equation. So we get back to the same solution by simply

replacing σ2
u by σ̃2

u to reflect to additional risk coming from the unpredictable part of v. (Or,

alternatively, one can change the definition of the wealth, wi.) For example, when signals

are equally precise (σ2
εi

= σ2
ε), then Var(v|x(0)) = κ0σ

2
v such that

σ̃2
u = σ2

u + κ0σ
2
vπ (A.20)

In summary, the model can be solved in exactly the same way using the standard

information-theoretic framework — the only change is the definitions of xr and σ2
u.
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I end this section by noting that one might in fact prefer that the rational agents use

weights that add to one even in the first time period, as in my model, for economic rather than

mathematical reasons. Indeed, this is a property that underlies all updating in the literature

that follows DeGroot (1974). More importantly, it might be slightly more compelling that

the boundedly rational agents behave “almost” like the rational ones. In other words, when

the rational agents in my model use weights that sum to one, then it might seem more

plausible that the boundedly rational agents do the same. Said differently, if a rational

agent puts weight on the prior, then shouldn’t the boundedly rational agents be allowed to

put weight on the prior too (along with putting weight on the subset of other agents that

they listen to)? My model avoids this issue, but it can be addressed here too.

Of course, the simplest solution is to say that the boundedly rational agents just ignore

the prior. This behavior is, in fact, almost like the rational behavior when the number of

agents, N , is large. Indeed, as N → ∞, the optimal weight on the prior vanishes, κ0 → 0,

and the total weight across agents adds to one,
∑N

i=1 κi → 1, as seen in (A.18). Further,

the residual risk also vanishes such that σ̃2
u → σ2

u as seen in (A.20). Intuitively, with many

agents, then agents actually almost do learn the true v. So, when N is large (the realistic

case), there is essentially no difference between my framework and the standard information

framework.

A more sophisticated answer is that we can have a uninformative prior about v such

that v̄ disappears and we get closer to my model again. Alternatively, one can have an

(additional) agent who always has a belief equal to the prior, v̄. This agent can have a

wealth of zero so that this agent is just a device used in belief formation, but not relevant for

trading. Hence, when we add up the weights including this agent, then the rational weights

again add up to 1, and naive agents are allowed to put some weight on the prior as well.

Again, this is a special case of the model considered in the body of the paper.
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