How do investors learn as data becomes bigger? Evidence from a FinTech platform

Contributions

- Identify the effect of access to additional predictive signals on investors' ability to attain their objectives, disentangling from experience effects
- Experienced investors are able to exploit "wider" data availability
- Surprisingly, less experienced investors do not similarly benefit
- Rationalize these empirical findings by investors fearing model uncertainty when using historical data to predict the future

Institutional setting for identification

- Typically, learning dynamics are difficult to identify:
- Investor information sets are unknown
- 2. Confounding effects: different preferences, horizons, etc
- 3. Must proxy for experience
- Deal with all these issues by using a unique institutional setting as a laboratory: a FinTech platform (Quantiacs) that runs fixed-horizon trading contests for investors to systematically trade futures contracts on a daily basis using real market data on a simulation platform
- Identify learning dynamics by studying investor outcomes:
- 1. Investors can only use a common set of predictive variables that the platform makes available to all; cannot upload their own
- Common objective: investors are incentivized to maximize their out-of-sample Sharpe Ratio over a common, fixed horizon – the out-of-sample "Live period" of each contest
- 3. Panel dataset since investors can (and do) take part in multiple contests
- Data became bigger: Quantiacs suddenly expanded the set of common predictive variables in between the 7th & 8th trading contests

Learning with experience

- Investors better attain their (known) objective of maximizing their Live-period Sharpe Ratios as they gain in experience
- Consistent with prior work using brokerage or exchange data

Dependent variable: Backtest SR^{Best} Live $SR_{i,t}^{Best}$ OLS panel panel linear linear (2) (3) (4) (1) 1.161^{***} 1.338^{***} 0.445** 1.261*** Contests experienced_{*i*,t} (0.055) (0.505) (0.178) (0.456)Intercept Contest FEs Contestant FEs Observations 0.156 0.024 0.035 0.040

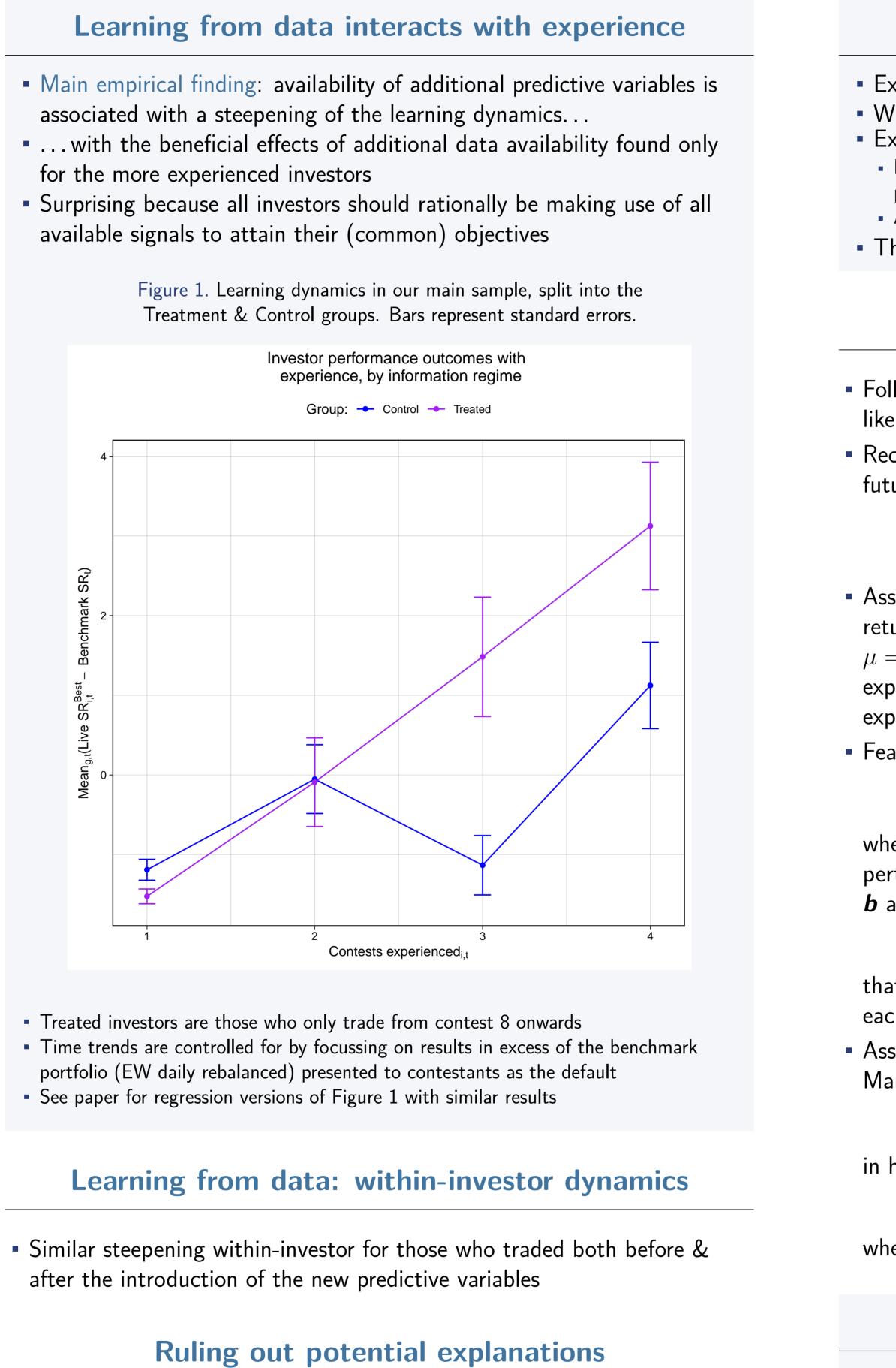
Table 1. OLS & panel regressions of in-sample ("backtest") & out-of-sample ("live") performance outcomes against experience.

Note: std. errs. (in parentheses) are double-clustered by contest & contestant. *p<0.1; **p<0.05; ***p<0.01

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3708476

Ahmed Guecioueur

INSEAD



- Selection effects: using "Heckit" regressions with exogenous first-stage covariates to correct for selection effects implies an *increased* magnitude of the learning effect, in agreement with the intuition of Linnainmaa (2011)
- Competition effects interacting with data abundance, as in Dugast and Foucault (2021): no significant interaction detected in this setting

Model uncertainty as explanation for results

• Experienced investors appear to benefit from wider data

- Why don't inexperienced investors also take advantage?
- Explanation rooted in model uncertainty:
- Inexperienced investors fear model uncertainty more, leading them to discard some predictive signals that are available to them
- As they gain in experience, investors shed some model uncertainty
- This mechanism is captured by the following model of investor learning

Investor learning under model uncertainty

 Follow Martin and Nagel (2021) in modeling each investor as behaving like an econometrician when using historical data

• Recall Quantiacs investors are incentivized to maximize out-of-sample (i.e. future) Sharpe Ratios over a fixed horizon,

$$\max_{\boldsymbol{w}} \frac{\boldsymbol{\mu}^T \boldsymbol{w}}{\sqrt{\boldsymbol{w}^T \boldsymbol{\Sigma} \boldsymbol{w}}},\tag{1}$$

• Assume the variance is known (Merton 1980) and that the expected return is a linear combination of the given predictive signal values, $\mu = \sum_{i=1}^{m} b_i s_i = s b$. Then the investor must learn b based on historical expected returns from (similar but not identical) futures contracts that expired in the past \boldsymbol{v} and corresponding historical signals \boldsymbol{S} . • Fearing worst-case model uncertainty, her learning problem is thus to

$$\min_{\boldsymbol{b}\in\mathbb{R}^m}\max_{\boldsymbol{U}\in\mathcal{U}}||\boldsymbol{v}-(\boldsymbol{S}+\boldsymbol{U})\boldsymbol{b}||_2, \qquad (2)$$

where the model uncertainty can be represented as a matrix of signal-wise perturbations $oldsymbol{U}$ that maximizes the ℓ_2 norm-based error for any choice of **b** and is constrained by an uncertainty set

$$\mathcal{U} := \left\{ \begin{bmatrix} \boldsymbol{u}_1 \ \boldsymbol{u}_2 \ \dots \ \boldsymbol{u}_m \end{bmatrix} : ||\boldsymbol{u}_i||_2 \le \delta_i \ \forall \ i = 1, \dots, m \right\}$$
(3)

that is characterized by a set of upper bounds $\delta_i \geq 0$ on the ℓ_2 norm of each possible signal-wise disturbance \boldsymbol{u}_i .

• Assuming orthonormal **S**, it follows from results by Xu, Caramanis, and Mannor (2010) and Tibshirani (1996) that the investor should use

$$\widehat{\mu} = \boldsymbol{s}\widehat{\boldsymbol{b}},$$
 (4

in her portfolio choice problem, with elements of **b** being

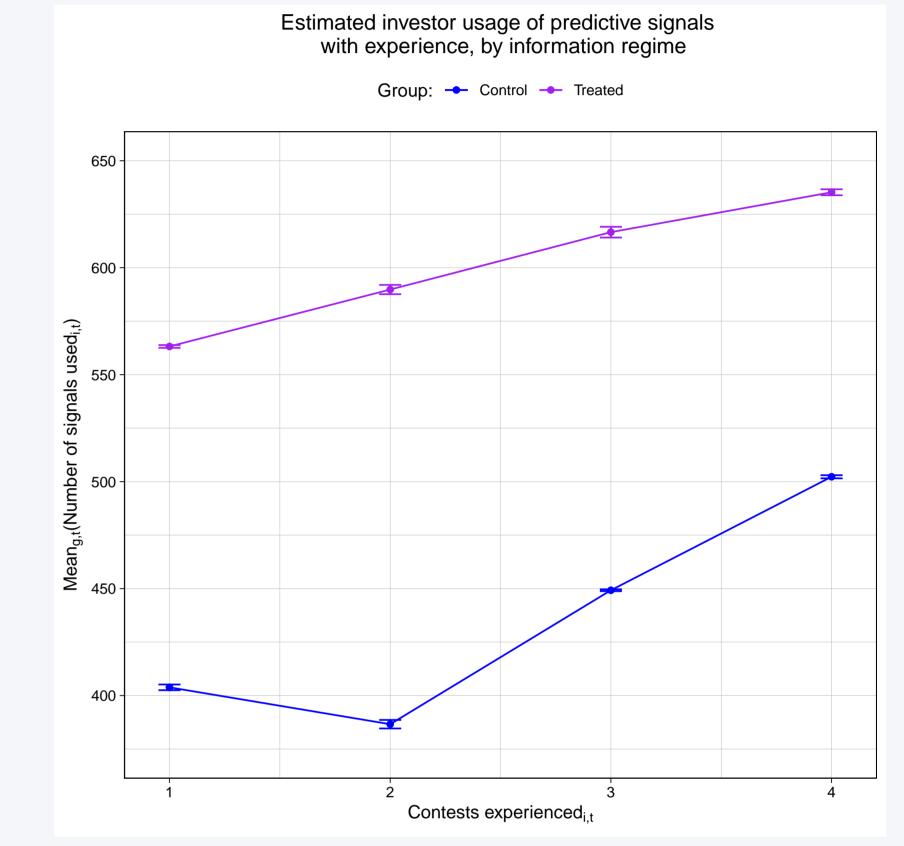
$$\hat{b}_{k} = \operatorname{sign}(\boldsymbol{s}_{k}^{T}\boldsymbol{v}) \max\{|\boldsymbol{s}_{k}^{T}\boldsymbol{v}| - \lambda, 0\},$$
(5)

where $\lambda \geq 0$ is a scaling of $\delta := \max_i \delta_i$ in (3).

Implications of Eqn. (5)

 The investor should ignore signals whose historical predictive contribution is less than her subjective model uncertainty threshold λ • The higher her fear of model uncertainty λ , the fewer predictive signals she should use (informal statement)

• Conjecture: investor's fear of model uncertainty λ falls with experience • Therefore, the number of predictive variables she uses should increase with her experience



Economics 8 (4): 323–361.

Theory 56 (7): 3561-3574.

Estimating investors' usage of predictive variables

 Investors use more predictive variables as they gain in experience • Once again, highlights the interaction between the complementary channels of learning with experience & learning from data

Figure 2. The dynamics of the estimated number of predictive variables used by investors to solve their portfolio choice problem. Bars represent standard errors.

• Set of hundreds of lagged predictive variables based on daily market data and (for contest 8 onwards) the values of the additional predictive variables • For realism, the orthonormality assumption is dropped, so investor-portfolio-level estimates of **b** are performed using Friedman et al. (2007)'s lasso estimation procedure

More results in the paper

 Identification by exploiting the fact that all the new predictive variables happen to be lower-frequency macroeconomic variables Secondary results on: realized ex-post moments of returns, dispersions (within-investor & across-investor), overconfidence

References

Dugast, Jérôme, and Thierry Foucault. 2021. "Equilibrium data mining and data abundance." HEC Paris Research Paper No. FIN-2020-1393, Université Paris-Dauphine Research Paper 3710495.

Friedman, Jerome, Trevor Hastie, Holger Höfling, and Robert Tibshirani. 2007. "Pathwise coordinate optimization." Annals of Applied Statistics 1 (2): 302–332.

Linnainmaa, Juhani T. 2011. "Why do (some) households trade so much?" *Review of Financial Studies* 24 (5): 1630–1666.

[,] and Stefan Nagel. 2021. "Market efficiency in the age of big data." *Journal of Financial Economics* (in print). Merton, Robert C. 1980. "On estimating the expected return on the market: An exploratory investigation." Journal of Financial

Tibshirani, Robert. 1996. "Regression shrinkage and selection via the lasso." Journal of the Royal Statistical Society: Series B (Methodological) 58 (1): 267–288.

Xu, Huan, Constantine Caramanis, and Shie Mannor. 2010. "Robust regression and Lasso." IEEE Transactions on Information