Safe Asset Demand

Andreas Brogger (anbr.fi@cbs.dk)
 Copenhagen Business School

Motivation

- Convenience yields are high despite

1. High Treasury Supply (Krishnamurthy Vissing-Jorgensen 2012)
2. Low Real Rates (Nagel 2016)

- Corporates ownership share of treasuries have been increasing over the last two decades
- Corporate managers are exposed to idiosyncratic risk through performance based pay, increasing safe asset demand

Abstract

I show the new fact that Idiosyncratic volatility significantly predicts the convenience yield. This fact is poses a puzzle with current safe asset theories. I develop a new theory that reconciles this puzzle - a theory I label Safe Asset Demand. Safe Asset Demand explains 29\% of future convenience yield variation and is verified in the cross-section of firm treasury holdings. I show that when managers are exposed to moral hazard, corporate demand will be determined by their idiosyncratic risk. I isolate my demand-based effect from confounders by using exogenous cross-sectional variation from corporate size and industry exposures. The results provide support for the importance of corporates as an investor class.

Theoretical Framework

The manager maximises:

$$
\begin{equation*}
U(w, a)=\mathrm{E}\left[1-e^{-A w+a^{2}}\right] \tag{1}
\end{equation*}
$$

where A describes the agents degree of risk aversion, and a his effort level. Secondly, let the investment technology available be equal to \sqrt{k}.

In equilibrium

$$
\begin{equation*}
R^{c} \propto \frac{1}{2} A \sigma_{i}^{2} \tag{2}
\end{equation*}
$$

where σ_{i} is idiosyncratic risk.

Results

- Corporates idiosyncratic risk predicts convenience yields

- Follows well in the time-series

- And cross-section, also using exogenous variation from Industry Exposures of Alfaro (2021)

	Saving, $\mathrm{S}(\mathrm{t} / \mathrm{A}(\mathrm{t}-1)$			Investment, $\mathrm{K}(\mathrm{t}) / \mathrm{A}(\mathrm{t}-1)$		
	$\frac{\mathrm{OLS}}{(1)}$	IV		$\frac{\mathrm{OLS}}{(4)}$	IV	
		(2)	(3)		(5)	(6)
IVol(t-1)			${ }^{1.188^{* *}}$	${ }^{-0.01 *}$	$-1.33^{3 * *}$	${ }^{-1.21 * * * *}$
	[4.08]	[2.56]	[1.97]	[-1.76]	[-5.65]	[-3.93]
N	19448	19448	19448	19552	19552	19550
1st Moment 10IV(t-1)			\checkmark			\checkmark
Firm Fe	\checkmark	\checkmark	,	\checkmark	\checkmark	\checkmark
Year FE	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
F 1ststage	18.3	18.3	18.3	18.3	18.3	18.3

Effect is Long Lasting

- VAR setup shows long-lasting effects.

References

Krishnamurthy, A., Vissing-Jorgensen, A. (2012). The Aggregate Demand for Treasury Debt. Journal of Political Economy, 120(2), 233-267.

Nagel, S. (2016). The Liquidity Premium of Near-Money Assets. The Quarterly Journal of Economics, 131(4), 1927-1971.

Alfaro, I., Bloom, N., Lin, X. (2021). The Finance Uncertainty Multiplier. Journal of Political Economy, Revise and Resubmit.

Conclusion

1. I have shown importance of corporates driving safe asset demand
2. Understanding who is marginal investor in which asset classes is promising avenue to pursue
3. I provide highly tractable framework that can be easily extended to other asset classes.
