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Abstract

We develop a big-data methodology to estimate true stock prices and liquidity, explicitly

considering rounding due to the minimum tick size. We apply our method to evaluate the tick

size pilot (TSP), which increased the tick size for randomly chosen stocks. While the TSP

increases market-maker profits it does not improve liquidity. This is consistent with theoret-

ical models but contrasts with existing empirical studies. Rounding-adjusted true liquidity,

unlike the existing liquidity measures, captures the TSP-induced trading restrictions and the

decreased inventory holdings of market-makers, validating our methodology and the accuracy

of our measures. It is important to account for rounding.
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I. Introduction

Estimating stock liquidity and price efficiency measures, such as bid-ask spreads, adverse

selection costs, effective spreads, realized spreads, and price discovery, is of fundamental importance

to market participants, regulators and researchers. Since stocks trade at prices rounded to the

grid determined by the minimum tick size, transaction prices and quoted bid-ask spreads do not

represent their true fundamental values that would exist in a market with no minimum tick size.

Thus, the traditional liquidity and price efficiency measures that are not adjusted for rounding

and are computed using bid quotes, ask quotes, and transaction prices would be biased.1 A formal

model and methodology for estimating the rounding-adjusted liquidity and price efficiency measures

in the high frequency trading (HFT) regime is conspicuously lacking in the literature.

This paper presents a structural model for true prices and spreads that explicitly accounts

for the rounding specification. Our model adapts the classical Huang and Stoll (1997), Hasbrouck

(1999a,b), and Ball and Chordia (2001) models to suit the current HFT environment and to account

for rounding. We model the observed transaction price as the discretized (i.e., rounded) sum of i)

the unobserved fundamental price that evolves as a random walk, subject to information shocks and

to price discovery through the market and limit orders, and ii) the impact of trading frictions due

to inventory and order processing costs. Thus, over short horizons, the observed price is a discrete

version of the sum of a permanent informational component and the transient component arising

due to the trading mechanism. The true spread, which equals the continuous spread that would

exist in the absence of the tick, is modeled as a transform of a Gaussian autoregressive process

associated with the fundamental price and other structural variables such as the time of day, time

between trades, and the size and depth of the prior trade. Consistent with Hasbrouck (1999a,b),

the quoted ask equals the true ask rounded up to the nearest grid point and the quoted bid equals

the true bid rounded down.

Estimating the unknown true price and spread from this structural model is highly challenging

1Virtually all empirical studies use the mid-point of bid and ask quotes as a proxy for the unknown true price,
and use the quoted bid-ask spread as a proxy for the unknown true spread. Prominent examples include Huang and
Stoll (1997), Korajczyk and Sadka (2008), and Rindi and Werner (2017), among many others.
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for two main reasons. First, although the resultant model takes a bivariate state-space form, the

rounding specification destroys the Gaussian structure, rendering standard methods such as Kalman

Filter inapplicable. To address this concern, Hasbrouck (1999a) and Ball and Chordia (2001) set up

the problem in a Bayesian framework, where they use Gibbs sampling on the 15-minute and second-

level data, respectively, to estimate the posterior densities of the unknown variables. However, their

method is computationally infeasible on the massive millisecond-level trade and quote (TAQ) data,

as it requires repeated sampling of a large number of state variables.2 Although their method could

be employed by aggregating the millisecond data to the second-level, Holden and Jacobsen (2014)

demonstrate that such an aggregation yields distorted liquidity measures.

Using recent advances in machine learning, we develop a big-data methodology that tackles

both, (i) the problem of non-gaussian errors and (ii) the scalability to big data. As in Ball and

Chordia (2001), we set up the problem in a Bayesian state-space framework. However, instead of

drawing a massive number of repeated samples, we directly approximate the posterior densities of

the true prices and spreads using a procedure known as Variational Inference (VI). The main idea

is to find the best density, q∗, that is statistically closest to the true posterior density. VI, thus,

turns the sampling problem into an optimization problem. The optimal density q∗ is obtained by

iteratively solving the first order conditions, which are derived in closed-form expressions, thus,

allowing for quick estimation.

We apply our method to evaluate the tick size pilot (TSP) recently conducted by the Securities

and Exchange Commission (SEC). During the TSP, the SEC increased the tick size from 1 cent to

5 cents for some randomly selected stocks over the period October 2016 through September 2018.

The pilot securities are divided into one control group, C, of nearly 1200 stocks and three test

groups of 400 stocks each − G1, G2 and G3. G1 stocks continue to trade at a one cent tick but

are allowed to quote only in five cent increments; G2 stocks are allowed to both trade and quote

only in five cent increments with a few exceptions;3 G3 stocks are quoted and traded in five cent

increments and are subject to a Trade-at-Prohibition rule, which generally prevents price matching

2Gibbs sampling requires drawing about 1013 simulations of the millisecond-level true prices and spreads.
3Exceptions that permit executions in one cent increments are the (1) midpoint between the national or protected

best bid and the national or best protected offer, (2) retail investor orders with price improvement of at least $0.005
per share, and (3) negotiated trades.
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by a trading center that is not displaying the best price unless an exception applies. The TSP was

primarily designed to test whether an increased tick size i) would enhance market-makers’ profits,

thus encouraging their participation, and thereby ii) improve price discovery and liquidity in the

treated stocks.

The big data methodology for estimating our structural model of true spreads and fundamental

prices as applied to the TSP provides a rich set of inferences that are consistent with theory. We

examine the impact of TSP on market maker profits, liqudity, true spreads, components of the true

spreads, the speed of incorporation of information into prices, and the proportion of price discovery

through market orders, limit orders, and new information. We also demonstrate the importance of

rounding by showing that the existing studies that do not account for rounding may provide biased

results.

The market maker profits are estimated based on (i) the one-minute realized spreads, (ii) the

difference between quoted and true spreads, and (iii) the realized profits. We discuss each of these

estimated profits in turn.

Fundamentally, the 1-minute realized spread at time t equals twice the difference between the

transaction price at time t and the true price one minute later for buyer-initiated trades or twice

the difference between the true price at time t + 1 minute and the transaction price at time t

for seller-initiated trades. The TSP increased the realized spreads across all the treated stocks,

constrained and unconstrained,4 and all the increases (except for those of the G1 unconstrained

stocks) are highly statistically significant.

Conrad and Wahal (2020) show that the 1-minute realized spreads might not precisely capture

market-making profits for the fast traders, as they dissipate rather quickly. Thus, we develop

an instantaneous measure of market-making profits, which is the difference between the quoted

spreads (defined as the difference between the ask and bid quotes) and the true spreads (defined

as the difference between the true ask and bid prices), denoted as mmp. While the quoted spread

represents the potential revenue per (round-trip) trade earned by the market-makers, the true

4Unconstrained (constrained) stocks are those whose average quoted bid-ask spreads were higher (lower) than 5
cents prior to the TSP.
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spread equals the sum of all costs (i.e., inventory holding, order processing and adverse selection

costs) incurred by them (Demsetz (1968), Stoll (1978), and Glosten and Milgrom (1985)). Thus,

mmp captures per trade rounding profits of market-makers. We find that the TSP significantly

increased the mmp across all the treated stocks. In the case of the constrained stocks, mmp

increases because of a large increase in quoted spreads of around 3.4 cents combined with a small

decrease in the true spreads. This increase in quoted spreads occurred in spite of the decline in the

adverse selection and the inventory cost components of the true spread suggesting that the increase

in the quoted spreads is driven entirely by the 5 cent tick size constraint imposed by the TSP. In

the case of the unconstrained stocks, mmp increases mainly due to a large decrease in the true

spreads ranging from 3 to 3.6 cents (along with a small increase in the quoted spreads for the G3

stocks), which is in turn driven by a large decrease in the inventory cost (along with a far smaller

decrease in the adverse selection cost) faced by the liquidity providers.

The decreases in the adverse selection and the inventory cost components of the true spreads are

consistent with the model of Goettler, Parlour, and Rajan (2005, 2009). In the case of constrained

stocks, the true spreads are much lower than the quoted spreads due to the large binding tick size.

The rounding driven artificially large quoted spreads reduce the adverse selection and inventory

risk faced by market makers as the fundamental price is more likely to remain within the quoted

spreads. This lowers the adverse selection and inventory risk components of the true spread. To

extract the large rounding profits, the high frequency traders (HFTs), given their speed advantage,

provide liquidity by submitting fast limit orders to position themselves in the front of the limit

order queues. These fast orders crowd out the relatively slow informed traders, who incorporate

new information into stock prices. Although the informed traders could potentially undercut limit

orders of HFTs, it is expensive due to the large tick size and often not possible as the minimum tick

is binding. Thus, queue competition rather than price competition prevails in the tick-constrained

environment resulting in larger depths at the quotes (O’Hara, Saar, and Zhong (2019)), which is

what we find. This queueing equilibirum is consistent with the model of Li, Wang, and Ye (2020)

as well as the results in Yao and Ye (2018).

In the case of the unconstrained stocks, undercutting of the resting limit orders is possible. As
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a result, due to the increased tick size informed traders strategically cut resting limit orders when it

is profitable for them to do so. Since it is the informed traders, and not the market makers, who are

likely to provide liquidity at the inside quotes, they are less likely to be subject to inventory risk as

they do not carry inventory. The uninformed market makers have a lower incentive to provide the

inside quotes because of the strategic undercutting by the informed traders, which would adversely

select the uninformed market makers. Further, given their information advantage, the informed

traders are also less subject to adverse selection. This is the undercutting equilibrium proposed by

Goettler et al. (2005, 2009) and it predicts lower adverse selection and inventory risk costs for the

informed liquidity providers, which is what we find. We also find lower depths as in O’Hara et al.

(2019).

The mmp captures the rounding profits earned by market makers from a round-trip trade.

However, for a given trade, market makers earn rounding profits from either the ask or the bid

quote depending on whether the trade is a buy or a sell. The realized profit measure is defined as

transaction price minus the true ask if the trade is a customer buy (market-maker sell) and the true

bid minus the transaction price if the trade is a customer sell (market-maker buy). The realized

profits follow the same pattern as that of the mmp. In general, the realized profits are less than half

those of the mmp. This suggests that the rounding driven supply of liquidity is not as profitable

as expected by naively comparing quoted and true spreads because the liquidity demanders are

able to trade at prices where the impact of rounding is the lowest. Thus, some market participants

are able to ascertain the true prices and spreads. Since traders use sophisticated algorithms to

understand true prices and liquidity, we, as econometricians, should also use sophisticated big-data

methods to back out these true measures. This further motivates our use of sophisticated big-data

methods to estimate true prices and spreads.

Next, we turn to liquidity and the transaction costs faced by investors as proxied by the effective

spreads. As we noted above, the TSP increased the quoted spreads, especially for the constrained

stocks. The effective spread, which quantifies the cost of trading the stock, is fundamentally defined

as twice the absolute difference between the transaction price and the true fundamental price of

the stock (Bessembinder (2003)). The TSP mechanically increased the effective spreads across
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all the treated stocks and all the increases (except for those of the G1 unconstrained stocks) are

highly statistically significant. Not surprisingly the increase in the effective spreads is larger for the

constrained stocks due to the binding minimum tick.

The SEC’s goals in implementing the TSP of testing whether it is successful in increasing

market maker profits and liquidity has mixed results. The TSP does increase market maker profits

but it lowers liquidity and increases transactions costs for investors. The speed of incorporation

of information into prices also decreases for the constrained stocks but it increases for the uncon-

strained stocks (albeit insignificantly so) possibly due to the undercutting by the informed traders.

Moreover, the TSP reduces the proportion of price discovery through new information (relative to

price discovery through limit and market orders), pointing to a decline in price efficiency, at least

for the constrained stocks. It is not surprising to find a decline in price efficiency in the constrained

stocks as the informed traders are crowded out in the queueing equilibrium. Due to the under-

cutting equilibrium in the unconstrained stocks, informed traders have more of an incentive to

obtain fundamental information, which they incorporate into prices through limit orders, thereby

decreasing the proportion of price discovery through new information.

Existing empirical studies on the TSP, including Rindi and Werner (2017), Comerton-Forde,

Grégoire, and Zhong (2019), Chung, Lee, and Roesch (2019), and Albuquerque, Song, and Yao

(2020), use various liquidity measures that do not account for rounding. In addition, they make in-

ferences based on mid-quotes and quoted spreads as proxies for true prices and spreads, respectively.

We show that these inferences are biased. For instance, (i) In contrast to our finding that effective

spreads increased significantly for all treated stocks, except for the G1 unconstrained stocks, Rindi

and Werner (2017), Chung et al. (2019), and Albuquerque et al. (2020) find no increase in the

effective spreads for the unconstrained stocks. (ii) In contrast to our finding that realized spreads

increased significantly for all treated stocks, except for the G1 unconstrained stocks, Rindi and

Werner (2017) and Chung et al. (2019) find no increase in the realized spreads for the uncon-

strained stocks. (iii) We find that the adverse selection and the inventory cost components of the

true spreads decrease due to TSP but they increase significantly for the constrained stocks when

rounding is not accounted for as in the model of Huang and Stoll (1997).
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Are this paper’s liquidity measures and inferences more valid than the existing empirical studies

that do not account for rounding? We show that our inferences indeed are more accurate based on

two key empirical observations. First, our liquidity measures capture the differences in the quoting

and trading restrictions imposed by the TSP across groups G1, G2, G3. Recall that stocks of G1

and G2 are allowed to trade in 1 cent increments in all cases and some cases, respectively. Thus,

it is expected that the increases in the market-maker profits and transaction costs per trade will

rank in the order of G1 < G2 < G3. Our liquidity measures do indeed conform to this order,

whereas the measures from the existing studies do not. Second, the SEC made publicly available

the aggregate daily inventory holdings of all the designated market-makers around the TSP period.

This data suggests that the TSP significantly decreased the inventory costs of the market-makers.

Our inventory components of the spreads precisely capture this TSP-driven decreased inventory

costs, whereas the existing inventory component measures (Huang and Stoll (1997)) do not.

Overall, we develop a big-data method to estimate rounding-adjusted true stock prices and

liquidity. We find that the TSP increased market-maker profits but decreased liquidity. This result

contrasts existing empirical studies, but is consistent with the theoretical studies that do account

for rounding. Our liquidity measures, unlike the existing measues, capture key TSP-induced trading

restrictions and increased market-making profits, suggesting that our inferences are more accurate.

Related Literature. Methodologically, our paper relates to Hasbrouck (1999a) and Ball

and Chordia (2001), who provide Bayesian methods to estimate true liquidity after accounting for

rounding. We make two contributions relative to their work. First, their procedures are compu-

tationally infeasible on the millisecond-level data. For example, Hasbrouck (1999a) extracts true

liquidity for only one specific stock at the 15-minute level and Ball and Chordia (2001) extract

true prices and spreads for seven large stocks at the one second frequency. In contrast, we estimate

true prices and spreads for a large cross-section (nearly 2400) of stocks over four months of the

millisecond-level TAQ data. Second, our model allows for price discovery through limit orders,

whereas the other two do not. Our model specification is consistent with the recent empirical

evidence by Brogaard, Hendershott, and Riordan (2019), who attribute a large fraction of price

discovery to limit orders.
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Our paper also relates to Hagstromer (2020), who proposed computing effective spreads with

two different proxies for the true prices. One with the depth-weighted bid-ask quotes and the other

with the micro-price of Stoikov (2018). Our paper differs from Hagstromer (2020) in several dimen-

sions. First, Hagstromer’s method only yields estimates of true prices and effective spreads, whereas

our procedure can estimate a variety of other important liquidity measures, such as true spreads,

spread components, and the proportions of price discovery. Second, the validity of Hagstromer’s

depth-weighted effective spreads relies on the key assumption that informed traders submit market

orders. However, we show in this paper that the majority of price discovery happens through limit

orders. As a result, we find that, unlike this paper’s effective spreads, the depth-weighted effective

spreads do not capture the differences in trading restrictions imposed by the TSP, suggesting that

our effective spread measures are more accurate.

This paper also relates to the growing literature on the applications of machine learning meth-

ods in finance. Whereas studies, such as Gu, Kelly, and Xiu (2020) and Chinco, Clark-Joseph, and

Ye (2019) apply machine learning to empirically identify the best models or predictors, we use it

to estimate a well-defined structural model. Thus, our inferences are economically interpretable,

which is usually difficult with machine learning. Our VI methodology is general and could be ap-

plied to tackle other questions involving big-data in finance. For example, Allena (2021) exploits

VI to estimate standard errors of expected return predictions from neural networks.

II. Model

Our model is a generalization of the Ball and Chordia (2001) and Huang and Stoll (1997)

models and is designed to accomodate the current high frequency trading (HFT) environment.

The observed transaction price Pt is modeled as

Pt ≡ [pNR
t ]Round = [mt + (1− λ)stQt/2]Round, (1)

where pNR
t is the nonrounded price at time t; mt is the fundamental price of the security at time t,

immediately after a trade; Qt is a trade indicator for buyer/seller classification of trades and is +1 if
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the trade is buyer initiated, -1 if the trade is seller initiated, and 0 if we are unable to sign the trade;

λ is the adverse selection component of the spread; and st is the true spread that would obtain

in a market with continuous prices i.e., a zero tick size. The notation [.]Round indicates rounding

onto the tick grid. Thus, the observed transaction price is a result of rounding or discretization

of the sum of the fundamental price and the inventory and order processing component of the

spread. Note that in the presence of rounding, the disturbances in observed price changes are

not Gaussian. Most market microstructure models ignore rounding, and, thus are unlikely to be

correctly specified, especially if the rounding is severe.

The fundamental price (mt) updates the past price (mt−1) by incorporating any new informa-

tion contained in the market orders, limit orders and other sources of publicly available information.

We assume that mt evolves as follows:

mt = mt−1 +

price discovery through market orders︷ ︸︸ ︷
λ
stQt

2
+

price discovery through public info︷︸︸︷
ϵt +

λ1(∆At)D
A
t + λ2(∆Bt)D

B
t + λ3 (∆DA

t ) I∆A=0 + λ4(∆DB
t ) I∆B=0︸ ︷︷ ︸

price discovery through limit orders

, (2)

where {ϵt, t = 1, 2, . . . , T} are i.i.d N(0, σ2
ϵ ) and represent information shocks. The second

term in equation (2) is the half fraction of spread attributable to adverse selection and represents

price discovery through the market orders. The final term is the contribution of limit orders to the

price discovery, where At (Bt) are the NBBO ask (bid) quotes and DA
t (DB

t ) are the corresponding

depths at time t. ∆(Xt) denotes the first order difference Xt −Xt−1 and I is an indicator variable

for when ∆A = 0 or ∆B = 0.

A key distinction of our model is that we allow for price discovery through limit orders. Ball

and Chordia (2001) and Huang and Stoll (1997) allow for price discovery only through the adverse

selection component of the market orders and through information shocks. Our specification is

consistent with the recent empirical evidence of Brogaard et al. (2019) who, due to the presence

of HFTs, attribute a majority of the price discovery to limit orders. We use publicly available
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information including the best ask and bid quotes, corresponding depths, and their first order

differences to capture price discovery through limit orders.

Given a tick-size regime, we model the dynamics of true spreads as a first order logarithmic

auto-regression with additional structural variables as in Ball and Chordia (2001) :

ln(st) = α+ βln(st−1) + δln
Vt−1

Dt−1
+ τT imet−1 + d1BEGt + d2ENDt + et, (3)

where {et, t = 1, 2, . . . , T} are i.i.d N(0, σ2
e), Vt−1 is the volume of stock transacted at the previous

trade, Dt−1 is the corresponding bid or ask depth, Timet−1 is the time, in seconds between the

last trade and the one before it and BEGt (ENDt) is an indicator variable denoting the first (last)

hour of the trading day.

The regression specification is consistent with the empirical evidence in Chordia, Roll, and

Subrahmanyam (2001) that shows how the relative size of trade to depth on the previous transaction

possibly impacts the ensuing spread at the current transaction. The dummy variables capture

the intraday seasonalities and the use of lagged time between trades is motivated by Easley and

O’Hara (1992), who suggest that absence of trades may provide information about the occurence

of information events. Note that, due to rounding, the quoted spread cannot be modeled as an

auto-regressive process with Gaussian errors. However, the (log) true spread lies on the real line

and is modeled as in equation (3).

We denote xt = mt−λstQt/2 and γt = log(st) for algebraic convenience. Combining the above

equations we have the following econometric model:

Pt ≡ [pNR
t ]Round = [xt + stQt/2]Round, (4)

xt = xt−1 + λ
st−1Qt−1

2
+ +l1L1t + l2L2t + l3L3t + l4L4t + ϵt, (5)
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γt = α+ βγt−1 + d1D1t + d2D2t + d3D3t + d4D4t + et, (6)

where the independent variables are, L1t = (∆At)D
A
t , L2t = (∆Bt)D

B
t , L3t = (∆DA)

I∆At=0Qt, L4t = (∆DB) I∆Bt=0Qt , D1t = ln Vt−1

Dt−1
, D2t = Timet−1, D3t = BEGt and D4t =

ENDt. Denoting zt = {xt, γt}, the system is expressed as the following first order vector autore-

gression (VAR(1)) model:5

zt = µt +Atzt−1 + ϵt. (7)

The true spreads and fundamental prices (zt) are not observable, whereas the transaction

prices and quoted spreads that are discretized to the nearest grid are available. We adhere to the

following discretization process for the observed transaction prices and quoted spreads:

1. If the observed price, Pt, is at the ask (bid) then we assume that the nonrounded price, pNR
t ,

has been rounded up (down) to the nearest tick. Furthermore, the bid (ask) price is assumed

to have been rounded down (up). Thus, for a trade at the ask, xt + st/2 ∈ [Pt − tick, Pt] and

xt − st/2 ∈ [Bt, Bt + tick]. Similarly, for a trade at the bid, xt − st/2 ∈ [Pt, Pt + tick] and

xt + st/2 ∈ [At − tick,At].

2. If the trade is a customer buy, Qt = +1, and the price is not the same as the ask, Pt ̸= At,

then xt + st/2 ∈ [Pt − tick, Pt] and xt − st/2 ∈ [Bt, Bt + tick].

3. If the trade is a customer sell, Qt = −1, and the price is not the same as the bid, Pt ̸= Bt,

then xt − st/2 ∈ [Pt, Pt + tick] and xt + st/2 ∈ [At − tick,At].

Thus, at each time point t, we have the following information

xt + st/2 ∈ I1t,

xt − st/2 ∈ I2t, (8)

where, I1t and I2t indicate the intervals of length equal to the tick size, that each linear

5Note that our VAR model uses only lagged information.
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functional of the state variable must lie within. In other words, the observed information places

the adjusted fundamental price plus the half-spread in one interval of length equal to the tick size

and places the adjusted fundamental price minus the half-spread in another length equal to the

tick size. We use the above specification with a uniform tick of 1 cent across all the treated stocks

in groups G1, G2, G3 and the control group C during the non-pilot regime.

For the periods considered during the TSP, we adapt the following tick rule:

1. Given that the SEC restricts stocks in group G1 to quote only in 5 cents but are allowed to

trade in 1 cent, we use a tick of 5 cents for rounding the quoted bid-ask spreads, and a tick

of 1 cent for the transaction prices. This is also equivalent to rounding all the trades at the

ask or the bid to 5 cents, and rounding the remaining trades with transaction prices between

the bid-ask quotes to 1 cent.

2. We use a tick of 5 cents for stocks in the groups G2, G3 since these are restricted to quote

and trade only in 5 cents. However, for G2 stocks, when we observe transaction prices that

are not on the five cent tick grid, we round to one cent.

3. Lastly, we use a tick of 1 cent for stocks in the control group (C) because they continue to

both trade and quote in 1 cent increments.

Summarizing the set of observed values at time period t as Yt = {Pt, At, Bt, tick}, our interest

lies in estimating the hidden state variables (zt) that includes true spreads and fundamental prices,

and the set of parameters Θ = {λ, β, l1, l2, l3, l4, d1, d2, d3, d4, σ2
ϵ , σ

2
η}. We cast our econometric

model in equations (7) and (8) into the state space framework with equation (7) as the transition

equation and (8) as the measurement equation. The rounding mechanism embedded in the mea-

surement equation destroys the Gaussian structure and the time series independence of the errors,

rendering standard estimation methods (Kalman Filtering, Kalman (1960)) invalid.

Thus, recognizing the challenges posed by the massive millisecond-level TAQ data and the

rounding specification, we develop a computationally scalable VI method to estimate true prices

and spreads in the following section.
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III. Methodology: Variational Inference (VI)

The goal is to estimate the state variables zt = {xt, γt} and the parameters Θ, having observed

{Yt} and other explanatory variables such as {Qt} and {Lit, Dit}4i=1. We set up the estimation

problem in a Bayesian framework due to the discreteness and rounding structure of the observed

variables. The premise of a Bayesian framework is to place priors on the latent variables and

parameters, and estimate the posterior density of latent variables and parameters given the priors

and the observed data,

P (zTt=1,Θ|Y T
t=1) ∝ P (Y T

t=1|zTt=1,Θ)P (zTt=1|Θ)P (Θ), (9)

where P (Θ) is the prior density of the parameters, P (Y T
t=1|zTt=1, θ) is the conditional likelihood of

Y T
t=1 given zTt=1 and Θ, and P (zTt=1|Θ) is the conditional likelihood of zTt=1 given Θ.

The calculation of joint posterior is generally intractable. Considering the Markovian structure

of latent variables and the rounding specification of our model, the conditional posterior densities

of each variable or parameter given the other parameters, variables and the data could be easily

expressed as known density functions. Building on this insight, Ball and Chordia (2001) conduct

Gibbs sampling by drawing a large number of samples from the conditional densities P (Θ|zTt=1, Y
T
t=1)

and P (zt|z∼t,Θ, Y T
t=1), for t = 1, 2, . . . T , where z∼t is the set of all latent variables excluding zt.

However, this procedure is computationally infeasible on the massive millecond-level TAQ data.

For example, Ball and Chordia (2001) extract fundamental prices and true spreads for only seven

large and mid-cap stocks using the second-level transactions data. This data is further restricted

to a maximum of 14,000 stock-level transactions over 1 month sample period. In contrast, an

average stock with four months of millisecond-level TAQ data has over 6× 105 transactions. Thus,

evaluating the TSP across 2400 stocks via Gibbs sampling requires drawing simulations of about

29 × 108 (∼ 2 × 2400 × 6 × 105) latent variables. Furthermore, these simulations would have to

be repeated a large number of times (10,000 times in Ball and Chordia (2001)) until all the latent

variables and parameters converge.

Our VI method directly approximates the posterior density by solving an optimization prob-
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lem and bypasses the challenge of drawing large number of repeated samples. In particular, to

approximate the posterior density P (zTt=1,Θ|Y T
t=1), we consider a family of known densities Q over

the latent variables (zTt=1) and the parameters Θ. Each density q (∈ Q) in the family is a candidate

approximation for the true posterior. The premise of our methodology is to find the best density

in the family, q∗ (∈ Q), that is (statistically) closest to the true posterior density in terms of the

Kullback-Leibler (KL) divergence,

q∗({zt}Tt=1,Θ) = arg min
q({zt}Tt=1,Θ)∈Q

KL
[
q({zt}Tt=1,Θ)||P

(
{zt}Tt=1,Θ|Y T

t=1

)]
= arg min

q({zt}Tt=1,Θ)∈Q
E
[
log
(
q({zt}Tt=1,Θ)

)]
− E

[
log
(
P
(
{zt}Tt=1,Θ|Y T

t=1

))]
, (10)

where Kullback-Leibler (KL) distance between two densities quantifies how much the second density

is different from the first, and all expectations are taken with respect to the considered density

over the latent variables and parameters, q(.). Finally, we approximate the posterior with the

optimized member of the family q∗(.). Variational inference thus turns the sampling problem into

an optimization problem. The key is to consider a generous family of densities Q such that a

member of the family closely approximates the true posterior, but is simple enough for solving the

optimization problem.

Minimizing the KL objective appears to be not possible since the true posterior density,

P ({zTt=1,Θ|Y T
t=1}) is not known. However, a useful decomposition of the second term in equation

(10) shows that this minimization objective is solvable despite the absence of true posterior density.

The decomposition is as below:

log
(
P (zTt=1,Θ|Y T

t=1)
)
= log

(
P (zTt=1,Θ, Y T

t=1)
)
− log

(
P (Y T

t=1)
)
, (11)

where the first term of equation (11) is the joint density of the latent variables, parameters and the

observed data that can be computed using the priors on the parameters and the latent variables;

and the likelihood of the data given the parameters and the latent variables. The second term is

the marginal likelihood of the observed data that involves integrating the likelihood function with
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respect to the priors on parameters and the latent variables. Although not computable, this term

is free of parameters and the latent variables, and thus is a constant with respect to any density

q(.), over the latent variables and parameters. Therefore, the minimization objective involves only

the known priors and likelihood functions, which are solvable. In particular, it is equivalent to

maximizing the popularly known objective, Evidence Lower Bound (ELBO), which is defined

below:

ELBO(q) = E
[
log
(
P
(
{zt}Tt=1,Θ, Y T

t=1

))]
− E

[
log
(
q({zt}Tt=1,Θ)

)]
. (12)

Blei, Kucukelbir, and McAuliffe (2017) outline a procedure that addresses two key questions

for a set of specialized models that belong to the exponential family: i) what family of densities

to consider for the approximation of the latent variables? ii) how to obtain the optimal density

in the family that best approximates the true posterior? We generalize their theory and derive a

procedure for approximating the posterior in the context of discreteness using two main results:

1. The likelihood function of observed prices and spreads given true spreads, prices and param-

eters is a truncated bivariate normal density.

2. Truncated bivariate normal densities belong to exponential set of family.

In what follows, we lay out the procedure for choosing a family of densities, Q to approximate

the joint posterior of the latent variables and parameters, and obtaining the optimal density q∗ ∈ Q

that best approximates the true posterior.

A. Family of Densities for Approximation

Our idea is to approximate the posterior density of latent variables given observed variables by

solving an optimization problem. We use a family of densities over the latent variables, parametrized

by “variational parameters”. The optimization finds the member of this family, that is, the setting

of “variational parameters”, which is closest to the true posterior density of latent variables.

We consider a specific family of densities, where the latent variables and parameters are inde-

pendent. These are popularly known as mean-field densities and each of its candidate density is of
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the form:

q(zTt=1,Θ|Φ) = ΠT
t=1q(zt; Φzt)Π

4
i=1q(li; Φli)q(di; Φdi)q(λ; Φλ)q(β; Φβ)q(α; Φα), (13)

where Φ = {{Φzt , }Tt=1, {Φli ,Φdi}4i=1,Φλ,Φβ,Φα} are the “variational parameters” governing ap-

proximate densities q(.|Φ). Our goal is then to find the optimal density q∗(.|Φ∗), or the variational

parameters Φ∗, such that the density q∗(.|Φ∗) is closest to the true posterior P (zTt=1,Θ|yTt=1). Equiv-

alently, q∗ is the solution to the below optimization problem:

q∗(zTt=1,Θ|Φ∗) = ΠT
t=1q

∗(zt; Φ
∗
zt)Π

4
i=1q

∗(li; Φ
∗
li
)q∗(di; Φ

∗
di
)q∗(λ; Φ∗

λ)q
∗(β; Φ∗

β)q
∗(α; Φ∗

α)

= argminKL(q(zTt=1,Θ)||P (zTt=1,Θ|yTt=1))

Before describing the procedure for obtaining the optimal density q∗, it is worth highlighting

few properties of the mean-field family of densities. Note that the candidate densities q ∈ Q, as-

sumes that all the parameters and hidden-states are time-independent. However, the state variables

and the parameters in the true posterior are not time-independent. Given that we are minimizing

the Kullback-Leibler distance, this simple approximation, however works well in approximating

the true marginal posteriors, and thus means and variances of the individual state variables. For

example, Wang and Blei (2018) prove that, asymptotically, VI with mean-field families is a theo-

retically sound approximate inference procedure for the marginal densities, even though it tends

to underestimate the covariances of different variables’ joint posterir densities. Because we esti-

mate fundamental prices, true spreads and parameters (Θ) using means and standard deviations

of marginal posterior densities (rather than joint densities) of respective variables and parame-

ters, mean-field approximations aptly serves our purpose. We also demonstrate the success of the

mean-field approximations in our context using Monte-Carlo simulations in the next section.
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B. Estimating the Optimal Density Function

Estimating the optimal mean-field density, q∗(.|Φ∗) that is closest to the true posterior is not

straight forward and does not have a closed form solution. However, Blei et al. (2017) derive

a useful result, which shows how the optimal density of an individual latent variable given the

optimal densities of all other latent variables could be easily obtained. Therefore, q∗(.|Φ∗) can be

estimated by starting with some initial guesses on the optimal densities and recursively updating

the optimal density of each variable given the optimal densities of other variables. We first state

the fundamental result on mean-field approximations due to Blei et al. (2017):

Proposition 1. Given observations {Y T
t=1}, the optimal mean-field density of a hidden variable

zt, q
∗ (zt|Φ∗

zt

)
given the optimal densities of other hidden variables z∼t, q

∗ (z∼t|Φ∗
z∼t

)
and the pa-

rameters Θ, q∗ (Θ|Φ∗) is proportional to

q∗
(
zt|Φ∗

zt

)
∝ exp

(
Eq∗(z∼t|Φ∗

z∼t)q
∗(Θ|Φ∗) log

[
f
(
Y T
t=1|zTt=1,Θ

)
f(zTt=1|Θ)f(Θ)

])
, (14)

where f
(
Y T
t=1|zTt=1,Θ

)
is the conditional density of the observed variables Y T

t=1 given the hidden

state variables zTt=1 and the parameters Θ; f(zTt=1|Θ) is the conditional density of hidden state-

variables given the parameters Θ; and f(Θ) is the prior density of the parameters. Note that the

expectation in the above equation is taken with respect to the optimal densities of excluded hidden

variables q∗(z∼t|Φ∗
z∼t

) and the parameters q∗(Θ|Φ∗). Similarly, the optimal density of parameters

Θ, q∗(Θ|Φ∗) is given by

q∗ (Θ|Φ∗) ∝ exp

E
q∗

(
zTt=1;Φ

∗
zTt=1

) log
[
f
(
Y T
t=1|zTt=1,Θ

)
f(zTt=1|Θ)f(Θ)

] . (15)

Here, the expectation is taken with respect to the optimal densities of state variables, q∗
(
zTt=1; Φ

∗
zTt=1

)
.

Starting with some initial values for the “variational parameters” {{Φ∗
zt}

T
t=1,Φ

∗}, we can re-

cursively update the “variational parameters” or the optimal densities given the other variational

parameters using (14) and (15) until convergence. Before deriving the update equations, it is worth
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pointing out the similarities of this methodology with the Gibbs Sampling approach of Ball and

Chordia (2001). While a large number of samples are recursively drawn in Gibbs Sampling from

the conditional posteriors of a variable given other variables and parameters, Variational Inference

directly updates the moments of marginal posteriors, and thus bypasses the challenge of drawing a

large number of samples.

C. Derivations of Updates

We derive the equations for updating the optimal density of a parameter or a hidden variable

given other variables and parameters in propositions 2-6 in the appendix. Then we estimate the

posteriors of the true prices, spreads and other parameters, including the adverse selection compo-

nent (λ), by recursively updating the variational densities given in these propositions (equations

(27), (29), (31), (32), (33)) until all the densities converge. Overall, the algorithm for approximating

the true posterior is given below :

1. Set initial values of variational parameters Φ, Φzt for approximating densities of parameters,

Θ and state-variables, zTt=1 respectively.

2. Update variational density of parameters (q∗(Θ)) using equations (27), (29), (31), (32).

3. Update variational density of state variables (q∗(zt)) using equation (33).

4. Compute Evidence Lower Bound (ELBO) using equation (12), and steps 2 and 3.

5. Repeat steps 2 to 4 until ELBO convergence.

6. Approximate the true posterior with q∗(zTt=1,Θ).

IV. Performance of Our Methodology: Simulation Evidence

Using Monte-Carlo simulations, we show that our methodology outperforms existing methods

in estimating true prices and liquidity in terms of both precision and latency. For example, simu-
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lations suugest that our method reduces the mean squared errors of true prices by 1.7 times and

true spreads by 11 times, relative to the existing proxies.

A. Accuracy of the methodology

We first evaluate the accuracy of our methodology by examining whether the estimated pa-

rameters and variables that include true spreads, effective spreads and market-makers profits are

close to the respective true simulated values. We then compare our methodology with the existing

procedures that naively estimate these variables with the observed transaction prices and quoted

spreads, without adjusting for rounding.

Given a set of regression coefficients {λ, α, β, l1, l2, l3, l4, d1, d2, d3, d4} and other explanatory

variables {Qt, L1t, L2t, L3t, L4t, D1t, D2t, D3t, D4t}, we simulate fundamental prices (xt) and true

spreads (st) using the VAR(1) specification in equations (5) and (6). The regression coefficients

{λ, α, β, . . . , d4}, and the explanatory variables {Qt, L1t, . . . , D4t} are calibrated to match their

empirical counterparts for a given stock. For example, to simulate fundamental prices and true

spreads for the stock of Florida Community Bank (FCB), we sign the trades during the sample

period as buys and sells to obtain Qt; we use the product of change in its best ask quote and

its depth at the ask (∆At ×DA
t ) as L1t, and similarly for other variables {L2t, L3t, . . . , D4t}. For

the parameters {λ, α, β, . . . , d4}, we use respective sample estimates (OLS) of coefficients in the

VAR(1) specification of (5) and (6), with mid-quotes as xt, and half spreads ((Askt −Bidt)/2) as

st.

After simulating the fundamental prices and true spreads, we use the rounding rule (8) to obtain

the observed ask quotes of At = [xt+st/2]
up, and the bid quotes of Bt = [xt−st/2]

down. Without loss

of generality, for a grid size of 5 cents, we specify that the rounded prices and quotes are exact mul-

tiples of 5 cents. For example, if the true simulated ask quote of a stock (xt+st/2) is $32.3245 cents,

the observed ask quote (At) is rounded up to 32.35. Similarly, if the true bid quote (xt − st/2) is

$31.3212, then Bt is rounded down to $31.30. Using these simulated rounded values of {At, Bt, Pt},

and the explanatory variables {qt, L1t, L2t, L3t, L4t, D1t, D2t, D3t, D4t}, we implement our method-

ology to estimate the latent variables {xt, γt} and the parameters {λ, α, β, l1, l2, l3, l4, d1, d2, d3, d4},
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and check whether the methodology recovers the true simulated variables and parameters.

Table 1 showcases the performance of our methodology, where we conduct independent Monte-

Carlo simulations calibrated to three randomly selected stocks, Florida Community Bank (FCB),

Boston Beer Company (SAM) and AMC Entertainment Holdings (AMC). The first column rep-

resents the true simulated values, while the second and third are the estimated values using our

methodology and existing procedures, respectively. We find that our methodology performs well by

noting that the difference between average simulated fundamental prices and estimated fundamen-

tal prices is 0.07, 0.11 and 0.12 cents and the difference between the average simulated true effective

spreads and estimated true effective spreads is 0.02, 0.05, and 0.01 cents for FCB, SAM, and AMC,

respectively. We further establish the success of our methodology by showing that other variables

such as price impact (λ), market maker profits (mmp) and the posterior variance estimates also

closely match the corresponding true simulated values.

Simulations also show that the existing liquidity measures without the rounding adjustment

are highly biased. For example, when the fundamental prices and true spreads are simulated under

parameters calibrated to match those of SAM, the effective spread is biased by 20%. Similarly,

when the parameters are calibrated to match FCB (AMC), the squared sum of error of naively

estimating the true spreads with the quoted spreads is 11-times (16-times) more than the squared

sum of error of our estimated true spreads. Thus, the simulation evidence not only validates

our methodology but also underlines the biases in existing procedures in estimating fundamental

microstructure variables.

B. Scalability of the methodology: ELBO Convergence

We also assess the scalability of our methodology by examining the number of iterations re-

quired for the algorithm to converge. Figure 1 shows that for AMC, with nearly 4×105 transactions,

the algorithm requires only 6 iterations (epochs - in machine learning parlance) and less than 2

minutes to converge on a person computer with an I7 - (790 CPU, 3.6GHz) processor and 16 GB

RAM.
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V. Empirical Results

The Securities and Exchange Commission (SEC) conducted the TSP over the period October

2016 through September 2018, increasing the tick size from 1 cent to 5 cents for a randomly

selected sample of stocks.6 The TSP was primarily designed to test whether an increased tick size

i) would enhance market-makers’ profits (mmp), thus encouraging their participation, and thereby

ii) improve price discovery and liquidity in the treated stocks. In this section, we use our true

liquidity and price measures to provide empirical evidence about the two SEC goals, of increasing

market maker profits and improving price discovery and liquidity. We also discuss how and why

the existing liquidity measures that do not account for rounding deliver contrasting inferences.

In addition, this section validates that our rounding-adjusted inferences are more accurate

than the existing studies by showing that our true liquidity estimates, unlike the existing measures,

capture the TSP-driven trading restrictions and the decreased market-makers’ inventory costs. We

also document several patterns in market-maker profits and depths that indicate how sophisticated

traders, such as HFTs, are able to trace out these true stock prices and spreads, further validating

our rounding-adjusted liquidity measures.

A. Data

Our sample consists of daily millisecond-level TAQ across all stocks included in the TSP. The

data spans over two different time periods: one month before and after the TSP conclusion date

(October 1, 2018), and another month before and after the beginning date of TSP (October 1,

2016). Thus, our non-pilot sample contains TAQ from September 1, 2016 to September 30, 2016

and from November 1, 2018 to November 30, 2018. The pilot sample includes TAQ from November

1 2016 to November 30 2016 and from September 1, 2018 to September 30, 2018. We follow Holden

6Congress passed the Jumpstart Our Business Startups Act (“Jobs Act”) in 2012 with the goal of increasing the
number of initial public offerings (IPOs) in the US markets with the idea that increased access to capital would lead
to job creation by the smaller companies. The Jobs Act directed the SEC to conduct a study on how decimalization
impacted the number of IPOs as well as the liquidity and trading of small-capitalization company stocks. The SEC
decided to conduct a randomized trial to assess the impact of higher tick sizes on small firm stock liquidity, which can
be particularly important for small firms as a number of papers including Amihud and Mendelson (1986), Brennan,
Chordia, and Subrahmanyam (1998), and Brennan, Chordia, Subrahmanyam, and Tong (2012) have shown that
higher liquidity leads to a lower cost of capital.
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and Jacobsen (2014) in cleaning and matching the TAQ data. We drop all stocks without daily

TAQ data, and transactions with negative or zero quoted spreads from the sample. We also filter

out the stocks that are removed by the SEC from the test or control groups due to various reasons

such as a price decline below $1. Our final sample has 1007 (899), 391 (331), 383 (311) and 388

(317) stocks in the control, G1, G2, and G3 groups, respectively over the time period September

1-30 and November 1-30, 2016 (2018) .

B. Regression Specification

To assess how the TSP impacted various liquidity measures, we implement the following

difference-in-differences regression specification, consistent with the existing studies on the TSP

(e.g., Rindi and Werner (2017) and Albuquerque et al. (2020)).

MQit =β0 + βy.Y ear + β1.G1 + β2.G2 + β3.G3 + β4.Event+

β5.G1 × Event+ β6.G2 × Event+ β7.G3 × Event+ βT
8 .Xit + ϵit, (16)

where MQit is a market quality or liquidity measure (e.g., quoted spreads, true spreads, effective

spreads, etc.) for stock i at time t (millisecond-level); Y ear is a time fixed-effect dummy that equals

one for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging

to the respective test groups; Event is a dummy that equals one for all values during the pilot

period; Xit is the set of exogenous variables containing the VIX index, stock turnover, stock price,

and firm size that are available at beginning of trade t’s transaction day. We cluster standard

errors by firm and day. The coefficients β5, β6, and β7 quantify the impact of the TSP on the

liquidity of the treated groups G1, G2, and G3, respectively. To conserve space, we only report

the difference-in-differences coefficients β5, β6, and β7 in the empirical section. We present tables

containing all the regression coefficients in the Internet Appendix.
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C. Testing the first hypothesis: Whether the TSP increased marking-making profits

1. Realized Spreads

To test whether the TSP improved market-making profits, we first assess two estimates of

realized spreads: i) realized spreads that are computed using mid-quotes as proxies for the unknown

true prices, and ii) realized spreads with this paper’s rounding-adjusted prices as proxies for true

prices.

Table 2 presents the difference-in-differences coefficients for the two realized spread measures.

We find that the TSP significantly increased the rounding-adjusted realized spreads across all

the treated stocks except for the G1 unconstrained stocks. This result contrasts with the existing

empirical studies (Rindi and Werner (2017) and Chung et al. (2019)) that use the mid-quote realized

spreads to infer that the TSP did not increase market-making profits for providing liquidity to any

of the unconstrained stocks. The first column in Table 2 shows that the increments using the mid-

quote realized spreads across all the unconstrained treated stocks are economically and statistically

insignificant.

Importantly, the increments to the rounding-adjusted realized spreads are consistent with the

trading restrictions imposed by the TSP. Because investors can trade G1 stocks (G2 stocks) in 1

cent increments in all cases (some cases), the TSP is expected to increase market-making profits

for providing liquidity to stocks in G1, G2, and G3 in the order of G1 < G2 < G3. Table 2

affirms that our realized spread increments align with this order across all samples, including the

constrained and unconstrained. For example, the TSP increases the rounding-adjusted realized

spreads of G1 (G1-constrained, G1-unconstrained) by 0.8 (1, 0.2) cents, G2 (G2-constrained, G2-

unconstrained) by 1 (1.1, 0.9) cent, and G3 (G3-constrained, G3-unconstrained) by 1.1 (1.2, 1.0)

cents, with 0.8 < 1 < 1.1 (1 < 1.1 < 1.2, 0.2 < 0.9 < 1). Using bootstrap tests, we also find

that this ordering pattern is statistically significant. In contrast, the mid-quote realized spreads

do not satisfy the G1 < G2 < G3 pattern. Thus, by capturing the key trading restriction imposed

by the TSP, we validate that our rounding-adjusted inferences are more accurate than the existing

mid-quote realized spreads.
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2. Alternative Measures of Market-maker Profits: mmp and Realized Profits

Since the 1-minute realized spreads may not precisely capture true market-making profits given

the surge in HFT (Conrad and Wahal (2020)), we also assess two other profit measures: mmp and

realized profits; mmp equals the quoted spreads minus the true spreads and it captures hypothetical

rounding profits earned by market-makers from a round-trip trade. However, for a given trade,

market-makers earn rounding profits either from the ask or the bid quote, depending on whether

the trade is a buy or a sell, but not both. Thus, we construct another measure, “realized profit”,

that equals transaction price minus the true ask if the trade is a customer buy (market-maker sell)

and the true bid minus the transaction price if the trade is a customer sell (market-maker buy).

Table 3 presents the difference-in-differences coefficients of mmp, and realized profits. We

find that the TSP signficantly increases the mmp and realized profits across all the treated stocks.

The TSP significantly increased the mmp of G1 (G1-constrained, G1-unconstrained) stocks by 3.5

(3.7, 3.1) cents, G2 (G2-constrained, G2-unconstrained) stocks by 3.7 (3.9, 3.5) cents, and G3

(G3-constrained, G3-unconstrained) stocks by 4.1 (4.1, 4.1) cents. Similarly, the TSP increased

the realized profits of G1 (G1-constrained, G1-unconstrained) stocks by 1.4 (1.4, 1.4) cents, G2

(G2-constrained, G2-unconstrained) stocks by 1.6 (1.6, 1.8) cents, and G3 (G3-constrained, G3-

unconstrained) stocks by 1.9 (1.8, 2.2) cents. In the constrained stocks, the mmp and the realized

profits increase mainly due to an increase in the quoted spreads, while in the unconstrained stocks

the increase is mainly due to a decrease in the true spreads. In either case, the profits to market

making due to rounding are economically and statistically significant.

Note that, the increments of both mmp and realized profits are ordered G1 < G2 < G3,

consistent with the trading restrictions imposed by the SEC. Also, the increments to the realized

profits are significantly higher than those of the 1-minute realized spreads. This result, consistent

with Conrad and Wahal (2020), who emphasize why and by how much the 1-minute realized spreads

could underestimate true HFT market-making profits, as they quickly dissipate in a few seconds in

the presence of HFTs.

Although the TSP increased the market-maker profits per trade, it could potentially decrease
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the aggregate market-maker profits, which equals per trade profits times the number of trades, if the

number of trades are comparatively low during the pilot period. Thus, to address this question, we

also assess the difference-in-differences of the share-weighted mmp and the share-weighted realized

profits (rather than averagemmp and average realized profits).7 Table 4 presents the share-weighted

difference-in-differences coefficients of mmp and realized profits. Note that the estimates of of the

average mmp and the share weighted mmp are quite similar. The TSP significantly increases the

market-maker profits across all the treated stocks, including the unconstrained stocks.

Interestingly, the magnitudes of realized profits suggest that sophisticated traders are able

trace out true stock prices and liquidity. Tables 3 and 4 show that realized profits are generally less

than half the mmp. This result suggests that, on average, liquidity demanders trade more at the

quoted ask when the difference between the quoted and the true ask is lower than the difference

between the true and the quoted bid. Similarly, liquidity demanders trade more at the quoted

bid when the difference between the quoted and the true ask is higher than the difference between

the true and the quoted bid. Thus, supplying liquidity is not as profitable as expected by naively

comparing quoted and true spreads because the liquidity demanders are able to trade at prices

where the impact of rounding is the lowest. Our results are consistent with Hagstromer (2020)

and Muravyev and Pearson (2020), who argue that sophisticated traders use algorithms that allow

them to ascertain the true cost of trading. This also motivates our use of sophisticated big-data

methods to estimate true spreads and fundamental prices.

Overall, based on the rounding-adjusted measures, the TSP increased the market-maker profits

across all the treated stocks, consistent with the SEC’s first hypothesis.

3. Quoted Spreads and True Spreads

We now examine why our rounding-adjusted inferences differ from the existing inferences by

examining the quoted spreads, the true spreads, and the components of the true spreads. Table 3

(4) presents the average (share-weighted) difference-in-differences coefficients of the quoted spreads

7Allena, Chen, and Chordia (2021) show that the share-weighted difference-in-differences could be estimated by
minimizing the share-weighted least squares (rather than ordinary least squares) of the same regression as in (16).
They also discuss how to obtain the standard errors of these share-weighted coefficients.
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and true spreads. The TSP increased the quoted spreads (which measures market-makers’ revenue

per round-trip trade) across all the treated stocks except for the G1 and G2 unconstrained stocks

in Table 3 and all the unconstrained stocks in Table 4. This result is not surprising, as the tick

size does not bind for the unconstrained stocks. However, the TSP significantly decreased the true

spreads (which measures the per round-trip trade costs incurred by the market-makers) across all

the treated stocks, more so for the unconstrained stocks. As a result, market makers earn profits

due to rounding for providing liquidity in the unconstrained stocks despite little or no change in

their quoted spreads. The existing market-making profit measures, such as mid-quote realized

spreads, ignore these TSP-driven decreases in true spreads, leading to biased conclusions that the

TSP did not increase the market-maker profits for the unconstrained stocks.

Why did the TSP cause a decrease in the true spreads? To understand this, we examine the

components of the spreads, viz., inventory and adverse selection costs.

D. Components of True Spreads

Our framework allows us to separately identify adverse selection costs, and the sum of order

processing and inventory costs. Since order-processing costs such as computer costs, labor costs

and informational service costs are largely fixed, we assume that the TSP does not impact these

costs. As a result, we attribute the impact of the TSP on the true spreads to changes in the adverse

selection and inventory components of the spread. The adverse selection and inventory component

given the true spread st, are λst and (1− λ)st, respectively. Table 5 shows that the TSP reduced

both the adverse selection costs and the inventory costs across all treated stocks, and the declines

are larger for the unconstrained stocks.

The decreases in the adverse selection and the inventory cost components of the true spreads are

consistent with Goettler et al. (2005, 2009), who model dynamic limit order markets and explicitly

account for rounding. In the case of constrained stocks, the true spreads are much lower than the

quoted spreads due to the large binding tick size. The rounding driven artificially large quoted

spreads reduce the adverse selection and inventory risk faced by market makers as the fundamental

price is more likely to remain within the quoted spreads. This lowers the adverse selection and
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inventory risk components of the true spread. To extract the large rounding profits, the HFTs,

given their speed advantage, provide liquidity by submitting fast limit orders to position themselves

in the front of the limit order queues. These fast orders crowd out the relatively slow informed

traders, who incorporate new information into stock prices. Although the informed traders could

potentially undercut limit orders of HFTs, it is expensive due to the large tick size and often not

possible as the minimum tick is binding. Thus, queue competition rather than price competition

prevails in the tick-constrained environment resulting in larger depths at the quotes (O’Hara et al.

(2019)), which we will document later. This queueing equilibirum is consistent with the model of

Li et al. (2020)8 as well as the results in Yao and Ye (2018). The queueing equilibrium leads to one

more reason for why the adverse selection and liquidity risk are lower for the HFT market makers.

As long as a particular HFT is not the first in the limit order queue, the other limit orders provide

some buffer against the risk of being picked off.

In the case of the unconstrained stocks, undercutting of the resting limit orders is possible. As

a result, due to the increased tick size informed traders strategically cut resting limit orders when it

is profitable for them to do so. Since it is the informed traders, and not the market makers, who are

likely to provide liquidity at the inside quotes, they are less likely to be subject to inventory risk as

they do not carry inventory. The uninformed market makers have a lower incentive to provide the

inside quotes because of the strategic undercutting by the informed traders, which would adversely

select the uninformed market makers. Further, given their information advantage, the informed

traders are also less subject to adverse selection. This is the undercutting equilibrium proposed

by Goettler et al. (2005, 2009) in a limit order market with informed traders and it predicts lower

adverse selection and inventory risk costs for the informed liquidity providers, which is what we

find.9

8It is important to emphasize that Li et al. (2020) do not explicitly model informed traders, whereas our structural
model does. However, our empirical results align with their theoretical predictions. The reason is that HFTs, because
of their speed advantage, act on new information much faster than other traders, and thus they could be interpreted
as informed traders (Biais, Foucault, and Moinas (2015)).

9Support for the undercutting equilibrium is provided by O’Hara et al. (2019), who use a unique NYSE data
containing the order flows of institutional investors, quantitative traders, individual traders, and HFT market-makers,
to document that a large tick size encourages informed HFTs to strategically undercut in the tick-unconstrained
environment.
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E. Validating our True Spread Components

We now validate our spread components using the aggregate market-maker participation data

made publicly available by the SEC. We will show that the inventory component of our true

spreads capture the TSP-driven decreased market-makers’ inventory holdings, whereas the existing

inventory cost measures of Huang and Stoll (1997) do not.

In particular, Appendix B (ii) of the SEC data contains the daily cumulative number of share

buys and sells by all registered market-makers. Based on this daily trading activity of market-

makers, we compute two measures that reflect the daily inventory costs/risks borne by them. The

first measure is the absolute order imbalance, given by

Inv1it = |Number of Shares Boughtit - Number of Shares Soldit|, for stock i, on day t. (17)

Higher value of Inv1it implies higher trade imbalance, and thus higher inventory costs/risk borne

by the market-makers for stock i at the end of day t (Comerton-Forde, Hendershott, Jones, Moul-

ton, and Seasholes (2010)). Further, Chordia and Subrahmanyam (2004) argue that higher order

imbalance may also reflect higher adverse selection risk when informed traders optimally choose to

split their orders. However, they also assert that the order imbalances are significantly predicted

by the lagged order imbalances, and this predictable component captures only the inventory risk

but not the adverse selection risk. The intuition is that if today’s high order imbalance predicts

high order imbalance even for the next day, then it indicates high inventory holidng costs or risks

borne by the market-makers. Recognizing this insight, Muravyev (2016) uses the order imbalance

component that is predicted by the lagged order imbalance as measure of inventory holding risk.

We use the same metric as another measure of inventory holding costs, given by

Inv2it = |α̂i + β̂1iOIBi,t−1 + β̂2iOIBi,t−2, | where,

OIBit = αi + β1iOIBi,t−1 + β2iOIBi,t−2 + ϵit, and (18)

OIBit = Number of Shares Boughtit - Number of Shares Soldit.
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Table 6 shows that the difference-in-differences estimator of the two inventory risk measures

are significantly negative across all but the G1-constrained stocks, thus indicating that the TSP

decreased the inventory costs borne by the market-makers. This result aligns with the TSP-driven

decrease in the inventory component of our true spreads, as documented in Table 5.

Table 5 also shows the estimated adverse selection and the inventory cost components based

on Huang and Stoll (1997) that do not account for rounding. Both of these components increase

for the constrained stocks and remain unchanged for the unconstrained stocks. This result does

not align with the market-maker participation data, which strongly indicates a significant decrease

in the inventory costs across all the treated stocks. Thus, we validate that our rounding-adjusted

spread components are more accurate than the existing spread measures that do not account for

rounding.

F. Impact on Effective Spreads and Price Discovery

In the previous subsections, we showed that the TSP significantly increased the market-maker

profits, consistent with the SEC’s first hypothesis. This subsection shows that the TSP leads to a

decline in liquidity as proxied by the effective spread, which is inconsistent with the SEC’s second

hypothesis.

1. Effective Spreads

We study the impact of the TSP on investor transaction costs by examining effective spreads,

which are defined as twice the absolute value of the transaction price less a reference price,

Effective Spreadt = 2|Pt − PR
t |, (19)

where Pt is the transaction price at time t and PR
t is the reference price. We use three

different reference prices: (i) the mid-point of the bid-ask quote, PR
t = (At +Bt)/2, (ii) the depth-

weighted mid-point, PR
t = (BtD

A
t +AtD

B
t )/(D

A
t +DB

t ), and (iii) our rounding-adjusted true price,

PR
t = mt. The depth-weighted reference price was proposed by Hagstromer (2020) who argues
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that the effective spreads that are computed using the depth-weighted reference prices adjust for

the rounding biases, assuming all informed traders submit market orders.

Table 7 presents the difference-in-differences coefficients of the three effective spread proxies.

Across all the treated stocks, but for the G1 unconstrained stocks, the TSP significantly increased

the effective spreads and thus the transaction costs for investors. Since the effective spread is

twice the absolute difference between the transaction price and true price, it is not surprising

that the increase in the tick size increased the effective spread. For the constrained stocks with

a spread before the TSP of two cents it is clear that an increase in the tick size will increase the

transaction price due to rounding and hence will also increase the effective spread. In the case of

the unconstrained stocks, consider a tick grid of five cents starting at $20. So if the inside bid (ask)

prices are $20.02 ($20.12), then the requirement to quote on the grid will make the inside quoted

bid (ask) equal $20.00 ($20.15). If the transaction were to take place at the quoted prices, then

this would increase the effective spread.

In contrast, the mid-quote effective spreads, computed as in Rindi and Werner (2017), Albu-

querque et al. (2020), and Chung et al. (2019), suggest that the TSP did not increase the transaction

costs across all the unconstrained stocks. Thus, not accounting for rounding would lead to different

inferences. In addition, we find that the depth-weighted effective spreads proposed by Hagstromer

(2020) also indicate that the TSP did not impact the transaction costs of the unconstrained stocks,

in contrast to this paper’s results.

We validate that our effective spreads are more accurate measures of transaction costs than the

mid-quote effective spreads and the depth-weighted effective spreads. During the TSP, investors

can trade G1 stocks in one cent increments in all cases and G2 stocks in one cent increments in

certain cases. Thus, the impact of TSP on per trade trading costs of investors must be in the order

of G1 < G2 < G3. Table 7 shows that our rounding-adjusted effective spreads precisely capture

this pattern, whereas the mid-quote and Hagstromer’s depth-weighted effective spreads do not.

The reason why Hagstromer’s assertion that the depth-weighted effective spreads would effec-

tively adjust the rounding biases need not hold, is the following. First, Hagstromer argued that

the mid-quote effective spreads would always overstate the true effective spreads. On the contrary,
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we find that, during the non-pilot and the pilot periods, our rounding-adjusted effective spreads

are generally higher than the mid-quote effective spreads across all stocks. In fact, even the depth-

weighted effective spreads, on average, are higher than the mid-quote effective spreads. Both of

these results do not align with Hagstromer (2020). We argue that this difference in results is likely

driven by Hagstromer’s assumption that informed liquidity demanders submit market orders or

marketable limit orders. However, if the informed traders submit limit orders that are successfully

executed, it is not necessarily the case that the mid-quote effective spreads would overstate the true

effective spreads. Tables 5 and 9 provide evidence in support of this result, as informed traders

switch from market orders to limit orders during the TSP.

Although the TSP increased the effective spreads per trade, it could potentially decrease the

aggregate transaction costs of investors, proxied by effective spreads times the number of trades, if

the number of trades are comparatively low during the pilot period. Thus, to examine the impact

of the TSP on investors’ aggregate transaction costs, table 8 presents the share-weighted difference-

in-differences coefficients of the three effective spread measures. The conclusions are the same. Our

rounding-adjusted effective spreads suggest that the TSP increased the transactions costs across

all the treated stocks, including the unconstrained stocks. However, the other two effective spreads

measures indicate that the TSP did not increase trasaction costs for the unconstrained stocks.

In sum, the increased market-maker profits due to the TSP have not led to a decrease in

transaction costs as envisioned by the SEC.

2. Price Discovery

Our framework allows us to estimate the contribution of market, limit orders and new informa-

tion to the price discovery. From equation (2), for each stock, we estimate the proportion of price

discovery through market orders (R2
M ) as the R2 in the regression of fundamental price changes on

the signed half spread,

mt −mt−1 = λ(qtst)/2 + ut. (20)
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Similarly, we estimate the proportion of price discovery through limit orders (R2
L) as the R2 in the

regression of fundamental price changes on the changes in limit order book,

mt −mt−1 = λ1(∆At)D
A
t + λ2(∆Bt)D

B
t

+λ3 (∆DA
t ) I∆A=0 + λ4(∆DB

t ) I∆B=0 + vt. (21)

Lastly, we estimate the proportion of price discovery through new information (R2
I) as one minus

the R2 in the regression of fundamental price changes on the signed half spread and changes in the

limit order book,

mt −mt−1 = λ(qtst)/2 + λ1(∆At)D
A
t + λ2(∆Bt)D

B
t

+λ3 (∆DA
t ) I∆A=0 + λ4(∆DB

t ) I∆B=0 + ϵt. (22)

The components of price discovery from market and limit orders could be correlated and thus

it could be the case that R2
M + R2

L + R2
I ̸= 100%. To interpret the relative importance of the

contributions price discovery through each channel and make uniform comparisons across various

stocks and over different periods, we normalize the obtained R2s so that R2
M +R2

L +R2
I = 100%.

Table 9 presents the difference-in-differences coefficients of the proportions of price discovery

through market orders, limit orders and new information. We find that the proportion of price dis-

covery through limit orders increases and the proportions of price discovery through market orders

and through new information decrease. This does not mean that the amount of new information

in the economy had declined during the pilot period. What it means is that, relative to the control

stocks, the TSP has led to a decrease in the proportion of price discovery through new information

for the treated stocks. Given that a lower proportion of price discovery is through new informa-

tion, prices are more responsive to previous trades and quotes rather than to new information, and

thus are less efficient at least for the constrained stocks, as suggested by Hendershott, Jones, and

Menkveld (2011) and Chordia, Green, and Kottimukkalur (2018).

It is not surprising to find a decline in price efficiency in the constrained stocks as the informed
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traders are crowded out in the queueing equilibrium. Due to the undercutting equilibrium in the

unconstrained stocks, informed traders have more of an incentive to obtain fundamental informa-

tion, which they incorporate into prices through limit orders, thereby decreasing the proportion of

price discovery through new information.

3. Speed of Price Discovery

To evaluate whether the TSP increased the speed of price of discovery, we construct price delay

measures of Chordia and Swaminathan (2000) and Hou and Moskowitz (2005) (that are also used

in Chung et al. (2019) and Albuquerque et al. (2020)), but estimated using our rounding-adjusted

true prices rather than the traditional mid-quote prices. We construct three delay measures D1,

D2 and D3 using the following regression specifications:

rit = αic + βicrmkt,t + ηcit, (23)

rit = αi +
5∑

k=0

βikrmkt,t−k + ηit, (24)

where rit denotes returns of stock i at time t computed with fundamental prices and rmkt,t is

the return of the SPY index at time t. Consistent with earlier work, we aggregate returns over

one minute time intervals. Equation (23) is the constrained regression of stock returns on the

contemporaneous market returns, whereas equation (24) represents the unconstrained regression

of stock returns on the contemporaneous and several lagged market returns. By construction, R2

in the constrained regression, (R2
c), is always less than or equal to the R2 in the unconstrained

regression, (R2
u). If the stock i responds immediately to market returns, then βic significantly

differs from zero but none of βik, k > 0 significantly differ from zero, and additionally R2
c = R2

u.

If, however, stock i responds with a lag then βik differ from zero and R2
c < R2

u. Using the above
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insight, we have the following three metrics that quantify delays in price discovery:

D1 = 1− R2
c

R2
u

D2 =

∑5
k=1 k|βik|

βic +
∑5

k=1 k|βik|
,

D3 =

∑5
k=1 k|zik|

zic +
∑5

k=1 k|zik|
, (25)

where zik is the standard z-statistic for the coefficient estimate βik. A larger Di implies that a

stock’s return responds with a delay to market returns. For each stock on a given day, we conduct

independent regressions of equations (23) and (24) and obtain a panel data of all the above delay

measures that span across all stocks and days in the sample.

Table 10 presents the difference-in-differences coefficients of the three delay measures. We find

that the TSP did not improve the speed of price discovery across all the treated stocks. In fact, the

TSP significantly delayed the price discovery across all the treated groups but the unconstrained.

This result is consistent with Albuquerque et al. (2020), who also document that the TSP causes

delays in price discovery, albeit using the mid-quotes as proxies for the unknown true prices.

Overall, the TSP significantly deteriorates liquidity in terms of increasing the transaction

costs as proxied by the effective spreads. The TSP also reduces price efficiency by decreasing price

discovery through new information, and by delaying price discovery (for the constrained stocks).

G. Support for Theory

We now examine market depths to provide support for the queue competition in constrained

stocks and the undercutting equilibrium in the unconstrained stocks. Depth is the sum of the total

bid and ask number of shares offered for trade at the inside bid and ask quotes. Table 11 presents

the average depths conditional either on the quoted spreads or mmp.

It is clear that the average depths are far higher in the constrained stocks than in the uncon-

strained stocks as suggested by O’Hara et al. (2019). This is driven by queue competition where the

HFTs compete to post quotes when the tick size is binding. Moreover, market-makers provide more
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depth during the periods of high profitability as proxied by mmp.10 This suggests that market-

makers (who are mainly the sophisticated HFTs) understand the true price and spread process,

allowing them to provide more depth when it is profitable to do so. The sophisticated algorithms

used by market makers, once again, motivates our use of the big data methodology in this paper.

We also provide evidence consistent with the TSP promoting strategic undercutting of informed

traders in the unconstrained stocks. Table 11 shows that the average depth decreases with mmp,

consistent with informed traders undercutting the resting limit orders during these periods.

VI. Conclusions

Observed prices and quoted spreads do not correspond to fundamental prices and true spreads

when stocks are traded at prices rounded to the grid determined by the minimum tick size. Thus,

the traditional liquidity and price efficiency measures that are not adjusted for rounding would be

biased. This paper presents a structural model for true prices and spreads, explicitly accounting

for rounding in the current HFT environment.

Estimating true liquidity and price measures from our structural model poses two main chal-

lenges. First, the rounding specification destroys the Gaussian error specification, rendering exist-

ing methods inapplicable. Second, the exisiting estimation techniques do not scale to the massive

millisecond-level TAQ data. Thus, we develop a novel big-data methodology, Variational Inference,

that scales to the TAQ data and estimates rounding-adjusted true prices and liquidity.

We apply our method to evaluate the recently conducted tick-size pilot program (TSP) and find

that the TSP increased market-maker profits but decreased liquidity across all the treated stocks.

This result contrasts existing empirical studies but are consistent with recent theoretical studies.

Using the market-maker participation data made publicly available by the SEC, we validate that

our rounding-adjusted liquidity measures are more accurate than the existing measures. We also

find that some market participants, such as HFTs that use sophisticated algorithms, are able to

trace out true price and quote process. This further validates our use of sophisticated big-data

10Note that the pattern of depth does not hold when conditioning on quoted spreads because, as we argued earlier,
quoted spreads are not a good proxy for market maker profitability.
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methods to estimate true prices and fundamental prices.
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A. Appendix

This section derives the equations for updating the optimal density of a parameter or a hidden

variable given other variables and parameters. First, the joint likelihood of the observed data

{Y1, Y2, . . . YT } and the hidden variables {z1, z2, . . . , zT }, given the parameters Θ is :

f
(
Y T
t=1, z

T
t=1|Θ

)
= f

(
Y T
t=1|zTt=1,Θ

)
f(zTt=1|Θ)

∝ ΠT
t=1 exp

(
−1

2
(zt+1 − µt+1 −At+1zt)

T Σ−1 (zt+1 − µt+1 −At+1zt)

)
I (I1t ≤ Bzt ≤ I2t) , (26)

where zt =

xt
γt

, µt =

 ∑4
i=1 liLit

α+
∑4

i=1 diDit

, At =

1 λqt/2

0 β

, B =

1 1/2

1 −1/2

, Σ =

σ2
ϵ 0

0 σ2
η

,
and I(.) is the indicator function that takes the value 1 if the condition in (.)holds, takes zero

otherwise, I1t, I2t are the bounds described in equation (8).

Under the diffuse prior specification for the parameters with P (Θ) = P
(
Σ, λ, α, β, {li, di}4i=1

)
∝

Σ− 2+1
2 , update equations for each parameter and hidden state variable are derived as below:

Proposition 2. The optimal density of λ, q∗(λ) given the optimal densities of all other parameters

and hidden variables is given by:

q∗(λ) ∼ N

(
E(
∑

tA
λ
t B

λ
t )

E(
∑

Aλ2

t )
,

E(σ2
ϵ )

E(
∑

tA
λ2

t )

)
, (27)

where At = γt−1, Bt = xt − xt−1 −
∑4

i=1 liLit, and the expectations are taken with respect to the

optimal variational densities of parameters and state variables other than λ.
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Proof.

q∗(λ) ∝ exp

− T∑
t=1

E
(
xt − xt−1 − λγt−1 −

∑4
i=1 liLit

)2
2E(σ2

ϵ )



∝ exp

[
−

T∑
t=1

(
Bλ

t − λAλ
t

)2
2E(σ2

ϵ )

]
= exp

−
(
λ− E(

∑
t A

λ
t B

λ
t )∑

t A
λ2
t

)2

2E(σ2
ϵ )/E(

∑
tA

λ2

t )


=⇒ q∗(λ) ∼ N

(
E(
∑

tA
λ
t B

λ
t )

E(
∑

Aλ2

t )
,

E(σ2
ϵ )

E(
∑

tA
λ2

t )

)
(28)

Proposition 3. The optimal density of li, q
∗(li) given the optimal densities of all other parameters

and hidden variables is given by:

q∗(li) ∼ N

E
(∑T

t=1A
li
t Lit

)
∑T

t=1 L
2
it

,
E(σ2

ϵ )∑T
t=1 L

2
it

 , (29)

where Ali
t = xt − xt−1 −

∑
j ̸=i ljLjt, and the expectation is taken with respect to optimal

variational densities of parameters and state variables other than li.

Proof.

q∗(li) ∝ exp

[
−

T∑
t=1

E
(
liLit −Ali

t

)2
/2E(σ2

ϵ )

]
∝ exp

−
(
li −

E(
∑T

t=1 A
li
t Lit)∑T

t=1 Lit

)2

2E(σ2
ϵ )/(

∑T
t=1 Lit)2


=⇒ q∗(β) ∼ N

E(
∑T

t=1 γt−1A
γ
t )

E
(∑T

t=1 γ
2
t−1

) ,
E(σ2

η)

E(
∑T

t=1 γ
2
t−1)

 (30)
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Proposition 4. The optimal density of β, q∗(β) given the optimal densities of all other parameters

and hidden variables is given by:

q∗(β) ∼ N

E(
∑T

t=1 γt−1A
γ
t )

E
(∑T

t=1 γ
2
t−1

) ,
E(σ2

η)

E(
∑T

t=1 γ
2
t−1)

 , (31)

where Aγ
t = γt − α − (

∑4
i=1 diDit), and the expectations are taken with respect to the variational

densities of all the parameters and variables, but β.

Proposition 5. The optimal density of each di, q∗(di) given the optimal densities of all other

parameters and hidden variables is given by:

q∗(di) ∼ N

(∑
E(DitA

Di
t )∑T

t=1D
2
it

,
E(σ2

ϵ )∑T
t=1D

2
it

)
, (32)

where ADi
t = γt −

(
α+ βγt−1 +

∑
k ̸=iDktdk

)
Proposition 6. The optimal density of each state variable zt, q

∗(zt) given the optimal densities of

all other parameters and hidden variables is given by:

zt ∼ N
(
Σ∗−1 (

Σ−1µ1t +AT
t+1Σ

−1µ2t

)
,Σ∗−1

)
, I1t ≤ Bzt ≤ I2t, (33)

where µ1t = AtE(Zt−1)+E(µt) and µ2t = E(zt+1); Σ
∗ = Σ−1+AT

t+1Σ
−1At+1; B, I1t, I2t are given

in equation (26).

Proof.

q∗(zt) ∝ exp

(
−1

2
E
[
(zt+1 − µt+1 −At+1zt)

T Σ−1 (zt+1 − µt+1 −At+1zt)
])

×

exp

(
−1

2
E
[
(zt − µt −Atzt−1)

T Σ−1 (zt − µt −Atzt−1)
])

× I(I1t ≤ Bzt ≤ I2t)
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Letting µ1t = AtE(Zt−1) + E(µt) and µ2t = E(zt+1), and Σ∗ = Σ−1 +AT
t+1Σ

−1At+1, we have

q∗(zt) ∝ I(I1t ≤ Azt ≤ I2t)×

exp

(
−1

2

(
zt − Σ∗−1 (

Σ−1µ1t +AT
t+1Σ

−1µt

))T
Σ∗
(
zt − Σ∗−1 (

Σ−1µ1t +AT
t+1Σ

−1µt

)))

Therefore,

zt ∼ N
(
Σ∗−1 (

Σ−1µ1t +AT
t+1Σ

−1µt

)
,Σ∗−1

)
, I1t ≤ Bzt ≤ I2t (34)

Thus, the optimal density of zt follows a linearly constrained (truncated) version of a normally

distributed random variable, given the moments of all other parameters and the hidden variables,

zt−1 and zt+1. The first two moments of a linearly constrained normal random variable can be

computed using the procedure outlined by Kan and Robotti (2017).
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Figure 1. ELBO (y-axis) vs Number of Epochs (x-axis)
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Table 1. Performance of the Methodology: Monte Carlo Evidence
This table reports the performance of our methodology in estimating the true simulated parameters. We conduct

Monte Carlo simulations, where the moments of the simulated true prices and spreads are calibrated to match

the moments of the mid-quotes and half times the bid-ask spreads, respectively, of three randomly selected stocks,

FCB, SAM and AMC. The “True Sim Val” column represents the true simulated means and standard deviations of

various liquidity measures, such as true spreads (tspr), true prices, true effective spreads (espr), market-maker profits

per share traded (mmp), and the price impact. The “Estimated Val” column presents the estimated means and

standard deviations of various liquidity measures using this paper’s methodology. The “Naive Val” column depicts

the naively estimated liquidity measurements using the observed transaction prices and quotes without adjusting

for rounding. All of the above values are reported in dollars. The table also shows the squared sum of errors in

estimating fundamental prices and true spreads using this paper’s method (i.e., with the rounding adjustment) and

the naive method (i.e., without the rounding adjustment).

Stock Variable True Sim Val Est Val Näıve Val

FCB mean tspr 0.0441 0.0445 0.0941

std tspr 0.0275 0.0215 0.0338

mean price 58.3545 58.3538 58.3489

std price 14.3335 14.3349 14.3326

mean espr 0.0861 0.0859 0.0941

std espr 0.0367 0.0365 0.0340

mean mmp 0.0501 0.0497 0.0941

std mmp 0.0199 0.0221 0.0338

Price Impact (λ) 0.1923 0.1927 0.0917

Estimation Error - tspr 15.8693 170.6501

Estimation Error - price 9.3137 45.9682

SAM mean tspr 0.1817 0.1821 0.2318

std tspr 0.1221 0.1146 0.1237

mean price 222.2710 222.2699 222.2585

std price 38.1229 38.1425 38.1226

mean espr 0.1931 0.1936 0.2318

std espr 0.1006 0.1021 0.1237

mean mmp 0.0501 0.0497 0.2318

std mmp 0.0197 0.0269 0.1237

Price Impact (λ) 0.1858 0.1888 0.1530

Estimation Error - tspr 27.5806 126.3707

Estimation Error - price 11.6936 536.0978

AMC mean tspr 0.0459 0.0460 0.0960

std tspr 0.0247 0.0278 0.0318

mean price 37.1058 37.1046 37.1022

std price 2.5691 2.5748 2.5687

mean espr 0.0925 0.0926 0.0960

std espr 0.0368 0.0368 0.0318

mean mmp 0.0501 0.0500 0.0960

std mmp 0.0201 0.0188 0.0318

Price Impact (λ) 0.0709 0.0695 0.0353

Estimation Error - tspr 9.6458 157.3844

Estimation Error - price 8.1756 42.2229
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Table 2. Rounding-adjusted Realized spreads and Mid-quote Realized Spreads
This table presents the difference-in-differences coefficient that quantify the average changes in liquidity measures due
to the TSP program. The liquidity measures include two different estimates of realized spreads: 1) realized spreads
computing using this paper’s estimated true prices; and 2) realized spreads computed using mid-quotes as proxies for
true prices. The difference-in-differences coefficients are based on the following panel regression specification at the
millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure (e.g., realized spread) for stock i at time t (millisecond-level); Y ear is a
dummy that equals one for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to
the respective test groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of
exogenous variables containing the VIX index, stock turnover, stock price, and size that are available at beginning of
trade t’s transaction day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain
only a subset of stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP
regime. Our TSP regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018
to September 30, 2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from
November 1, 2018 to November 30, 2018.

All Stocks

Mid-quote realized spreads True price realized spreads

Coefficient Estimate t-stat Estimate t-stat

G1 × Event 0.007 5.236 0.008 5.025

G2× Event 0.008 8.885 0.010 6.765

G3 × Event 0.005 8.193 0.011 42.925

Constrained Stocks

Mid-quote realized spreads True price realized spreads

Coefficient Estimate t-stat Estimate t-stat

G1 × Event 0.010 7.560 0.010 5.590

G2× Event 0.011 56.598 0.011 5.589

G3 × Event 0.009 5.717 0.012 6.226

Unconstrained Stocks

Mid-quote realized spreads True price realized spreads

Coefficient Estimate t-stat Estimate t-stat

G1 × Event 0.000 -0.050 0.002 0.446

G2× Event 0.005 1.030 0.009 3.420

G3 × Event 0.001 0.807 0.010 2.279
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Table 3. Quoted Spreads, True Spreads and Market-Maker Profits
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures
due to the TSP program. The liquidity measures include quoted spreads, true spreads, market-maker profits per
share traded, and realized market-maker profits per-share traded. The difference-in-differences coefficients are based
on the following panel regression specification at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure (e.g., quoted spread) for stock i at time t (millisecond-level); Y ear is a
dummy that equals one for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to
the respective test groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of
exogenous variables containing the VIX index, stock turnover, stock price, and size that are available at beginning of
trade t’s transaction day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain
only a subset of stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP
regime. Our TSP regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018
to September 30, 2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from
November 1, 2018 to November 30, 2018.

All Stocks

Quoted spread True spread Market-maker profits Realized Profits

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event 0.025 17.716 -0.012 -7.456 0.036 120.890 0.014 72.503

G2× Event 0.021 9.212 -0.017 -9.522 0.038 155.858 0.016 89.870

G3 × Event 0.026 13.311 -0.016 -8.267 0.042 110.453 0.019 77.874

Constrained Stocks

Quoted spread True spread Market-maker profits Realized Profits

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event 0.034 27.040 -0.004 -2.064 0.038 190.935 0.014 78.052

G2× Event 0.034 36.980 -0.005 -4.199 0.039 147.316 0.016 77.018

G3 × Event 0.035 37.513 -0.007 -4.937 0.042 155.173 0.018 86.848

Unconstrained Stocks

Quoted spread True spread Market-maker profits Realized Profits

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event 0.003 0.877 -0.030 -10.715 0.033 71.751 0.014 44.063

G2× Event 0.003 0.635 -0.034 -8.305 0.037 65.062 0.018 80.997

G3 × Event 0.007 2.052 -0.036 -7.817 0.043 53.080 0.022 50.739
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Table 4. Quoted Spreads, True Spreads and Market-Maker Profits: Share-weighted
This table presents the share-weighted difference-in-differences coefficients (i.e., β5, β6, β7) that quantify the aver-
age changes in liquidity measures due to the TSP program. The liquidity measure include quoted spreads, true
spreads, market-maker profits per share traded, and realized market-maker profits per-share traded. The difference-
in-differences coefficients minimize the share-weighted least squares (rather than ordinary least squares (OLS)) in the
following panel regression specification at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure (e.g., quoted spread) for stock i at time t (millisecond-level); Y ear is a
dummy that equals one for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to
the respective test groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of
exogenous variables containing the VIX index, stock turnover, stock price, and size that are available at beginning of
trade t’s transaction day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain
only a subset of stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP
regime. Our TSP regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018
to September 30, 2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from
November 1, 2018 to November 30, 2018.

All Stocks

Quoted spread True spread Market-maker profits Realized Profits

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event 0.026 20.426 -0.010 -3.845 0.035 80.009 0.012 85.647

G2× Event 0.023 13.396 -0.014 -7.087 0.037 112.763 0.015 85.292

G3 × Event 0.026 20.090 -0.015 -7.807 0.041 114.152 0.018 69.721

Constrained Stocks

Quoted spread True spread Market-maker profits Realized Profits

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event 0.034 28.725 -0.003 -2.674 0.037 108.943 0.013 56.076

G2× Event 0.034 27.260 -0.004 -3.023 0.039 63.154 0.015 71.467

G3 × Event 0.034 31.143 -0.007 -4.820 0.041 119.132 0.017 95.645

Unconstrained Stocks

Quoted spread True spread Market-maker profits Realized Profits

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event -0.001 -0.265 -0.032 -7.346 0.031 50.076 0.012 45.825

G2× Event 0.000 -0.056 -0.035 -8.519 0.035 59.001 0.016 62.856

G3 × Event 0.004 0.908 -0.037 -7.383 0.041 39.125 0.021 22.269
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Table 5. Components of Bid-Ask Spread
This table presents the difference-in-differences coefficients (i.e., β5, β6, β7) that quantify the average changes in liq-
uidity measures due to the TSP program. The liquidity measures include adverse selection and inventory components
of spreads per share traded. These components are computed using two approaches: 1) using this paper’s method,
explicitly accounting for the rounding specification; 2) using Huang and Stoll (1997) method, without accounting for
rounding. The difference-in-differences coefficients are based on the following panel regression specification at the
millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure (e.g., adverse selection) for stock i at time t (millisecond-level); Y ear is a
dummy that equals one for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to
the respective test groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of
exogenous variables containing the VIX index, stock turnover, stock price, and size that are available at beginning of
trade t’s transaction day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain
only a subset of stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP
regime. Our TSP regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018
to September 30, 2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from
November 1, 2018 to November 30, 2018.

Components with the rounding adjustment: All Stocks Components without the rounding adjustment: All Stocks

Adverse selection Inventory costs Adverse selection Inventory costs

Coefficient Estimate t-stat Estimate t-stat Coefficient Estimate t-stat Estimate t-stat

G1 × Event -0.002 -12.572 -0.009 -13.047 G1 × Event 0.005 6.094 0.019 16.246

G2× Event -0.002 -5.609 -0.014 -7.635 G2× Event 0.005 8.352 0.016 11.643

G3 × Event -0.002 -5.606 -0.014 -11.843 G3 × Event 0.004 5.975 0.021 19.474

Components with the rounding adjustment: Tick-constrained stocks Components without the rounding adjustment: Tick-constrained stocks

Adverse selection Inventory costs Adverse selection Inventory costs

Coefficient Estimate t-stat Estimate t-stat Coefficient Estimate t-stat Estimate t-stat

G1 × Event -0.001 -2.901 -0.003 -2.054 G1 × Event 0.008 11.993 0.026 16.936

G2× Event -0.001 -2.005 -0.005 -4.462 G2× Event 0.008 44.559 0.026 39.349

G3 × Event -0.001 -3.782 -0.006 -5.985 G3 × Event 0.007 31.473 0.028 76.495

Components with the rounding adjustment: Tick-unconstrained stocks Components without the rounding adjustment: Tick-unconstrained stocks

Adverse selection Inventory costs Adverse selection Inventory costs

Coefficient Estimate t-stat Estimate t-stat Coefficient Estimate t-stat Estimate t-stat

G1 × Event -0.006 -9.720 -0.024 -10.182 G1 × Event 0.000 -0.410 0.003 1.287

G2× Event -0.005 -5.141 -0.028 -9.152 G2× Event 0.001 1.027 0.001 0.543

G3 × Event -0.004 -6.184 -0.032 -10.021 G3 × Event -0.001 -0.863 0.008 2.032
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Table 6. Inventory Risks of Aggregate Market-Makers
This table reports the averages of two measures of inventory costs estimated directly from the SEC market-makers’
participation data, across all the treated groups G1, G2, G3, and the Control group. The inventory costs are estimated
using order imbalances, measured as the difference in the number of shares bought less the number of shares sold.
Constrained (unconstrained) stocks are those whose quoted bid-ask spreads were lower (higher) than 5 cents prior
to the TSP. The column “Non-Pilot” (“Pilot”) presents the estimated mean values of variables of each group during
the non-pilot (pilot) regime. The column “Diff” is the difference estimate of variables of each group, prior and post
the pilot program. “DD” is the difference-in-differences estimate of variables in treated groups with respect to the
variables in control group. Standard errors are in parenthesis and ** denotes significance at the 5% level.

Inventory Costs of Aggregate Market-Makers

Non-Pilot = Sep 1-30, 2016 & Nov 1-30, 2018 ; Pilot = Nov 1-30, 2016 & Sep 1-30, 2018

Order Imbalance (Inv1it) Expected Order Imbalance (Inv2it)

Group Non-Pilot Pilot Diff DD Non-Pilot Pilot Diff DD

G1 Constrained 13375 17597 4221∗∗
(493)

1897∗∗
(378)

6587 8402 1815∗∗
(200)

713∗∗
(148)

G1 Unconstrained 2595 2732 137
(89)

−2187∗∗
(391)

1614 1337 −278∗∗
(98)

−1380∗∗
(156)

G1 7321 9333 2012∗∗
(203)

−312
(234)

3765 4536 772∗∗
(84)

−1180∗∗
(82)

G2 Constrained 11711 13796 2085∗∗
(322)

−239
(382)

6266 6683 417∗∗
(155)

−685∗∗
(151)

G2 Unconstrained 2362 2149 −212∗∗
(54)

−2536∗∗
(389)

1202 1054 −149∗∗
(29)

−1251∗∗
(153)

G2 6640 8109 1468∗∗
(146)

−855∗∗
(224)

3501 3971 471∗∗
(62)

−631∗∗
(88)

G3 Constrained 11847 11257 −590∗∗
(290)

−2914∗∗
(359)

5806 5656 −150
(119)

−1252∗∗
(140)

G3 Unconstrained 2615 2503 −112
(120)

−2436∗∗
(401)

1503 1832 329
(329)

−773∗∗
(184)

G3 6701 6432 −269∗∗
(132)

−2593∗∗
(222)

3417 3597 180
(126)

−923∗∗
(108)

Control 7179 9502 2324∗∗
(118)

3653 4755 1102∗∗
(46)
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Table 7. Effective Spreads with Fundamental Prices, Mid-quotes, and Weighted Mid-quotes
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures
due to the TSP program. The liquidity measures include effective spreads computed using three different approaches:
1) using this paper’s method; 2) using mid quotes as proxies for true prices; 3) using Hagstromer (2020) method.
The difference-in-differences coefficients minimize the share-weighted least squares (rather than ordinary least squares
(OLS)) in the following panel regression specification at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure (e.g., effective spread) for stock i at time t (millisecond-level); Y ear is a
dummy that equals one for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to
the respective test groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of
exogenous variables containing the VIX index, stock turnover, stock price, and size that are available at beginning of
trade t’s transaction day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain
only a subset of stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP
regime. Our TSP regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018
to September 30, 2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from
November 1, 2018 to November 30, 2018.

All Stocks

Mid-quote effective spreads Hagstormer effective spreads True price effective spreads

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event 0.017 25.788 0.015 9.616 0.018 17.831
G2× Event 0.015 10.562 0.013 11.628 0.019 11.193
G3 × Event 0.015 11.401 0.013 8.983 0.024 14.923

Constrained Stocks

Mid-quote effective spreads Hagstormer effective spreads True price effective spreads

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event 0.025 22.199 0.021 16.907 0.025 12.993
G2× Event 0.025 76.437 0.021 38.504 0.027 15.938
G3 × Event 0.023 117.106 0.020 92.987 0.030 31.777

Unconstrained Stocks

Mid-quote effective spreads Hagstormer effective spreads True price effective spreads

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event 0.000 0.049 0.001 0.362 0.004 1.257
G2× Event 0.001 0.204 0.001 0.237 0.006 1.997
G3 × Event -0.002 -0.650 -0.001 -0.391 0.013 4.308
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Table 8. Effective Spreads: Share-Weighted
This table presents the difference-in-difference coefficients that quantify the average changes in liquidity measures
due to the TSP program. The liquidity measures include effective spreads computed using three different approaches:
1) using this paper’s method; 2) using mid quotes as proxies for true prices; 3) using Hagstromer (2020) method.
The difference-in-difference coefficients minimize the share-weighted least squares (rather than ordinary least squares
(OLS)) in the following panel regression specification at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure (e.g., effective spread) for stock i at time t (millisecond-level); Y ear is a
dummy that equals one for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to
the respective test groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of
exogenous variables containing the VIX index, stock turnover, stock price, and size that are available at beginning of
trade t’s transaction day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain
only a subset of stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP
regime. Our TSP regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018
to September 30, 2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from
November 1, 2018 to November 30, 2018.

All Stocks

Mid-quote effective spreads Hagstormer effective spreads True price effective spreads

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event 0.019 14.109 0.016 14.237 0.019 18.820

G2× Event 0.017 10.687 0.015 12.127 0.020 14.400

G3 × Event 0.017 12.914 0.014 14.230 0.025 20.443

Constrained Stocks

Mid-quote effective spreads Hagstormer effective spreads True price effective spreads

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event 0.024 29.638 0.020 13.762 0.024 18.716

G2× Event 0.025 31.139 0.021 20.032 0.027 29.617

G3 × Event 0.023 59.785 0.020 21.111 0.030 34.493

Unconstrained Stocks

Mid-quote effective spreads Hagstormer effective spreads True price effective spreads

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event 0.000 -0.101 0.001 0.179 0.003 0.835

G2× Event 0.001 0.288 0.001 0.340 0.006 2.359

G3 × Event -0.003 -0.560 -0.002 -0.332 0.012 2.410
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Table 9. Proportions of Price Discovery
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures
due to the TSP program. The liquidity measures include proportions of price discovery through market orders, limit
orders, and new information. The difference-in-differences coefficients are based on the following panel regression
specification at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure (e.g., market order price discovery) for stock i at time t (millisecond-level);
Y ear is a dummy that equals one for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks
belonging to the respective test groups; Event is a dummy that equals one for all trades during the TSP regime; Xit

is the set of exogenous variables containing the VIX index, stock turnover, stock price, and size that are available at
beginning of trade t’s transaction day. Standard errors are clustered by firm and day. Constrained (unconstrained)
stocks contain only a subset of stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during
the non-TSP regime. Our TSP regime data spans from November 1, 2016 to November 30, 2016 and from September
1, 2018 to September 30, 2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and
from November 1, 2018 to November 30, 2018.

All Stocks

Market Order Price Discovery Limit Order Price Discovery New Info Price Discovery

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event -0.043 -8.399 0.033 6.112 -0.010 -16.292

G2× Event -0.047 -14.586 0.038 16.095 -0.008 -12.975

G3 × Event -0.040 -14.868 0.032 9.695 -0.008 -14.860

Constrained Stocks

Market Order Price Discovery Limit Order Price Discovery New Info Price Discovery

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event -0.043 -5.998 0.032 5.293 -0.011 -17.047

G2× Event -0.051 -16.103 0.041 20.097 -0.010 -10.664

G3 × Event -0.046 -9.499 0.037 9.846 -0.010 -15.409

Unconstrained Stocks

Market Order Price Discovery Limit Order Price Discovery New Info Price Discovery

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event -0.044 -16.124 0.036 16.940 -0.008 -10.842

G2× Event -0.041 -8.459 0.034 8.987 -0.006 -9.707

G3 × Event -0.027 -6.149 0.022 5.177 -0.005 -4.646
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Table 10. Speed of Price Discovery
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures
due to the TSP program. The liquidity measures include delay measures D1, D2, D3 of Chordia and Swaminathan
(2000) and Hou and Moskowitz (2005) that signify the speeds of price discovery. The higher the delay measure is, the
slower the price discovery will be. The difference-in-differences coefficients are based on the following panel regression
specification at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure (e.g., delay measure D1) for stock i at time t (millisecond-level); Y ear is a
dummy that equals one for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to
the respective test groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of
exogenous variables containing the VIX index, stock turnover, stock price, and size that are available at beginning of
trade t’s transaction day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain
only a subset of stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP
regime. Our TSP regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018
to September 30, 2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from
November 1, 2018 to November 30, 2018.

All Stocks

Delay Measure D1 Delay Measure D2 Delay Measure D3

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event 0.087 8.294 0.037 4.272 0.037 4.185

G2× Event 0.071 5.740 0.029 4.455 0.029 3.571

G3 × Event 0.092 7.524 0.037 8.380 0.037 5.981

Constrained Stocks

Delay Measure D1 Delay Measure D2 Delay Measure D3

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event 0.129 5.913 0.058 5.545 0.058 5.698

G2× Event 0.122 7.139 0.049 7.648 0.050 8.088

G3 × Event 0.133 8.783 0.057 7.997 0.057 8.822

Unconstrained Stocks

Delay Measure D1 Delay Measure D2 Delay Measure D3

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

G1 × Event -0.019 -1.220 -0.014 -1.892 -0.015 -1.726

G2× Event -0.019 -1.577 -0.007 -1.013 -0.008 -1.249

G3 × Event -0.001 -0.075 -0.009 -1.258 -0.009 -1.040
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Table 11. Market-maker Profits and Depths
This table reports the average estimated total bid-ask depth at the best bid and best ask quotes conditional on
market maker profits. For every stock on each day, we split the transactions into two depending on their profitability.
“Highmmp” (“Lowmmp”) represents the subsample of transactions that have above (below) the median-market maker
profits. “Average depth” column in Panel A represents the average of the total depth (sum of the best bid and best
ask depths) on the “Highmmp” and “Lowmmp” subsamples across all stocks in various groups, such as G1, G2, and
G3. “Highqspr” (“Lowqspr”) represents the subsample of transactions that have above (below) the quoted spreads for
each stock, each trading day. “Average depth” column in Panel B is the average of the total depth on the “Highqspr”
and “Lowqspr” subsamples. Constrained (unconstrained) stocks are those whose quoted bid-ask spreads were lower
(higher) than 5 cents prior to the TSP. The sample period is from September 1, 2018 to September 30, 2018.

Panel A Panel B

Group High/Low mmp Average Depth High/Low Quoted Spread Average Depth

G1 Constrained
Highmmp 7638.53 Highqspr 6580.05

Lowmmp 6232.22 Lowqspr 7100.35

G1 Unconstrained
Highmmp 815.40 Highqspr 736.97

Lowmmp 837.44 Lowqspr 875.59

G1
Highmmp 3287.70 Highqspr 2860.56

Lowmmp 2876.58 Lowqspr 3199.60

G2 Constrained
Highmmp 5697.19 Highqspr 5344.65

Lowmmp 5401.25 Lowqspr 5659.71

G2 Unconstrained
Highmmp 799.08 Highqspr 740.87

Lowmmp 915.07 Lowqspr 912.98

G2
Highmmp 3153.31 Highqspr 3026.46

Lowmmp 4035.52 Lowqspr 4113.92

G3 Constrained
Highmmp 8819.17 Highqspr 8755.27

Lowmmp 7653.87 Lowqspr 7656.41

G3 Unconstrained
Highmmp 1205.78 Highqspr 1226.55

Lowmmp 1253.87 Lowqspr 1214.73

G3
Highmmp 3736.35 Highqspr 3724.87

Lowmmp 3426.48 Lowqspr 3417.88
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B. Internet Appendix

Table IA.1. Quoted Spreads, True Spreads and Market-Maker Profits
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

All Stocks

Quoted spread True spread Market-maker profits Realized Profits

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

Intercept 0.360 12.748 0.308 8.698 0.052 15.712 0.004 8.506

Year 0.013 7.880 0.011 6.540 0.002 6.220 0.000 -1.945

Event 0.003 1.718 0.002 2.182 0.001 1.645 0.000 -0.529

G1 -0.001 -0.229 -0.001 -0.221 -0.001 -1.959 0.000 1.169

G2 0.000 -0.136 0.000 -0.099 0.000 -0.040 0.000 0.741

G3 -0.001 -0.521 -0.001 -0.292 -0.001 -1.927 0.000 -0.120

G1 × Event 0.025 17.716 -0.012 -7.456 0.036 120.890 0.014 72.503

G2× Event 0.021 9.212 -0.017 -9.522 0.038 155.858 0.016 89.870

G3 × Event 0.026 13.311 -0.016 -8.267 0.042 110.453 0.019 77.874

VIX 0.001 5.745 0.001 6.661 0.000 6.151 0.000 -5.749

Turnover 0.000 -1.181 0.000 -1.287 0.000 -1.457 0.000 -0.010

Price 0.068 27.873 0.058 13.471 0.010 29.789 0.000 6.617

Size -0.039 -15.808 -0.034 -9.855 -0.005 -17.583 0.000 0.585
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Table IA.2. Quoted Spreads, True Spreads and Market-Maker Profits
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

Constrained Stocks Stocks

Quoted spread True spread Market-maker profits Realized Profits

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

Intercept 0.296 6.388 0.251 11.329 0.045 21.746 0.004 6.093

Year 0.012 5.812 0.010 4.433 0.002 4.141 0.000 -6.417

Event 0.005 3.609 0.004 2.289 0.001 3.484 0.000 -1.763

G1 -0.013 -6.700 -0.011 -4.936 -0.002 -4.720 0.000 2.249

G2 -0.016 -5.859 -0.014 -6.649 -0.003 -7.256 0.000 3.118

G3 -0.015 -10.936 -0.013 -6.770 -0.002 -11.924 0.000 4.682

G1 × Event 0.034 27.040 -0.004 -2.064 0.038 190.935 0.014 78.052

G2× Event 0.034 36.980 -0.005 -4.199 0.039 147.316 0.016 77.018

G3 × Event 0.035 37.513 -0.007 -4.937 0.042 155.173 0.018 86.848

VIX 0.001 4.207 0.000 1.273 0.000 2.650 0.000 -0.598

Turnover 0.000 -0.285 0.000 -0.358 0.000 -3.294 0.000 -0.005

Price 0.055 9.680 0.047 18.487 0.009 26.437 0.000 4.792

Size -0.03 -6.82 -0.027 -12.807 -0.004 -22.208 2.5E-05 4E-01
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Table IA.3. Quoted Spreads, True Spreads and Market-Maker Profits
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

Unconstrained Stocks Stocks

Quoted spread True spread Market-maker profits Realized Profits

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat

Intercept 0.479 15.232 0.420 13.553 0.059 35.624 0.002 2.696

Year 0.015 6.443 0.013 4.552 0.002 7.587 0.000 -2.717

Event 0.008 2.709 0.006 3.115 0.001 3.896 0.000 -1.727

G1 0.012 2.230 0.010 2.358 0.002 4.602 0.000 -0.838

G2 0.013 1.524 0.010 2.262 0.003 6.977 0.000 -0.309

G3 0.013 1.840 0.012 1.584 0.002 2.197 0.000 -4.529

G1 × Event 0.003 0.877 -0.030 -10.715 0.033 71.751 0.014 44.063

G2× Event 0.003 0.635 -0.034 -8.305 0.037 65.062 0.018 80.997

G3 × Event 0.007 2.052 -0.036 -7.817 0.043 53.080 0.022 50.739

VIX 0.001 2.768 0.001 2.273 0.000 4.908 0.000 -4.094

Turnover 0.000 -1.929 0.000 -0.673 0.000 -2.602 0.000 0.081

Price 0.083 13.791 0.072 14.531 0.011 27.460 0.000 1.750

Size -0.051 -14.798 -0.045 -13.391 -0.006 -27.641 0.000 3.367
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Table IA.4. Components of Bid-Ask Spread
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

Components with the rounding adjustment: All Stocks Components without the rounding adjustment: All Stocks

Adverse selection Inventory costs Adverse selection Inventory costs

Coefficient Estimate t-stat Estimate t-stat Coefficient Estimate t-stat Estimate t-stat

Intercept 0.051 5.812 0.257 10.473 Intercept 0.128 10.328 0.232 10.916

Year 0.002 6.819 0.009 6.703 Year 0.005 6.855 0.008 4.714

Event 0.000 -0.491 0.003 2.697 Event 0.000 -0.225 0.003 2.107

G1 0.000 -0.725 0.000 -0.024 G1 0.000 0.170 -0.001 -0.485

G2 0.000 -1.354 0.000 0.192 G2 0.000 0.084 0.000 -0.110

G3 0.000 -0.287 -0.001 -0.255 G3 0.000 0.076 -0.001 -0.527

G1 × Event -0.002 -12.572 -0.009 -13.047 G1 × Event 0.005 6.094 0.019 16.246

G2× Event -0.002 -5.609 -0.014 -7.635 G2× Event 0.005 8.352 0.016 11.643

G3 × Event -0.002 -5.606 -0.014 -11.843 G3 × Event 0.004 5.975 0.021 19.474

VIX 0.000 5.204 0.001 5.649 VIX 0.000 5.512 0.001 4.522

Turnover 0.000 -0.754 0.000 -0.872 Turnover 0.000 -2.539 0.000 -0.591

Price 0.010 9.200 0.047 18.992 Price 0.023 21.984 0.045 17.418

Size -0.006 -6.552 -0.028 -12.424 Size -0.014 -12.503 -0.026 -12.450
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Table IA.5. Components of Bid-Ask Spread
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

Components with the rounding adjustment: Constrained Stocks Components without the rounding adjustment: Constrained stocks

Adverse selection Inventory costs Adverse selection Inventory costs

Coefficient Estimate t-stat Estimate t-stat Coefficient Estimate t-stat Estimate t-stat

Intercept 0.042 5.992 0.209 8.078 Intercept 0.107 8.692 0.189 9.523

Year 0.002 4.255 0.008 4.815 Year 0.004 6.850 0.008 5.850

Event 0.000 0.769 0.004 3.394 Event 0.001 1.688 0.005 3.225

G1 -0.002 -3.089 -0.009 -3.704 G1 -0.004 -3.449 -0.010 -4.373

G2 -0.003 -14.095 -0.011 -6.378 G2 -0.005 -8.655 -0.012 -7.578

G3 -0.002 -5.943 -0.010 -5.421 G3 -0.005 -8.501 -0.011 -7.322

G1 × Event -0.001 -2.901 -0.003 -2.054 G1 × Event 0.008 11.993 0.026 16.936

G2× Event -0.001 -2.005 -0.005 -4.462 G2× Event 0.008 44.559 0.026 39.349

G3 × Event -0.001 -3.782 -0.006 -5.985 G3 × Event 0.007 31.473 0.028 76.495

VIX 0.000 2.240 0.000 1.894 VIX 0.000 1.568 0.000 2.766

Turnover 0.000 -0.609 0.000 -0.453 Turnover 0.000 -0.615 0.000 -0.512

Price 0.008 10.305 0.038 12.591 Price 0.018 9.837 0.037 12.223

Size 0.00 -6.74 -0.022 -9.043 Size -0.01 -8.24 -0.020 -9.529
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Table IA.6. Components of Bid-Ask Spread
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

Components with the rounding adjustment: Unconstrained stocks Components without the rounding adjustment: Unconstrained stocks

Adverse selection Inventory costs Adverse selection Inventory costs

Coefficient Estimate t-stat Estimate t-stat Coefficient Estimate t-stat Estimate t-stat

Intercept 0.068 8.697 0.352 11.663 Intercept 0.169 15.148 0.311 16.327

Year 0.002 4.052 0.011 4.897 Year 0.006 4.101 0.009 3.305

Event 0.001 1.431 0.006 3.200 Event 0.002 2.462 0.006 4.175

G1 0.001 1.075 0.008 1.905 G1 0.004 2.256 0.008 2.050

G2 0.001 1.345 0.009 1.844 G2 0.003 2.191 0.010 2.576

G3 0.002 1.733 0.009 1.905 G3 0.005 1.667 0.009 1.763

G1 × Event -0.006 -9.720 -0.024 -10.182 G1 × Event 0.000 -0.410 0.003 1.287

G2× Event -0.005 -5.141 -0.028 -9.152 G2× Event 0.001 1.027 0.001 0.543

G3 × Event -0.004 -6.184 -0.032 -10.021 G3 × Event -0.001 -0.863 0.008 2.032

VIX 0.000 2.247 0.001 3.509 VIX 0.000 1.624 0.001 2.771

Turnover 0.000 -1.462 0.000 -1.283 Turnover 0.000 -0.729 0.000 -1.210

Price 0.013 11.447 0.059 15.478 Price 0.028 14.148 0.055 18.733

Size -0.008 -9.050 -0.038 -12.714 Size -0.018 -14.271 -0.033 -16.781
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Table IA.7. Effective Spreads with Fundamental Prices, mid-Quotes, and Weighted Mid-quotes
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

All Stocks

Mid-quote effective spreads Hagstormer effective spreads True price effective spreads

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

Intercept 0.279 13.164 0.292 8.072 0.264 16.033

Year 0.008 7.780 0.008 5.544 0.008 5.180

Event 0.002 1.924 0.002 1.647 0.003 2.575

G1 0.000 0.038 0.000 -0.044 0.000 0.009

G2 0.000 -0.090 0.000 -0.162 0.000 0.078

G3 0.000 0.084 0.000 -0.024 -0.001 -0.225

G1 × Event 0.017 25.788 0.015 9.616 0.018 17.831

G2× Event 0.015 10.562 0.013 11.628 0.019 11.193

G3 × Event 0.015 11.401 0.013 8.983 0.024 14.923

VIX 0.001 5.561 0.001 4.959 0.001 4.696

Turnover 0.000 -0.869 0.000 -1.765 0.000 -0.428

Price 0.049 22.700 0.050 11.885 0.048 22.678

Size -0.030 -15.206 -0.031 -8.763 -0.028 -18.358
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Table IA.8. Effective Spreads with Fundamental Prices, mid-Quotes, and Weighted Mid-quotes
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

Constrained Stocks

Mid-quote effective spreads Hagstormer effective spreads True price effective spreads

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

Intercept 0.228 13.243 0.239 11.230 0.216 8.728

Year 0.007 5.608 0.007 4.029 0.007 4.972

Event 0.003 4.030 0.003 3.510 0.004 2.420

G1 -0.008 -2.413 -0.009 -3.619 -0.008 -2.883

G2 -0.011 -9.266 -0.011 -4.742 -0.011 -8.945

G3 -0.010 -6.942 -0.010 -7.881 -0.010 -14.706

G1 × Event 0.025 22.199 0.021 16.907 0.025 12.993

G2× Event 0.025 76.437 0.021 38.504 0.027 15.938

G3 × Event 0.023 117.106 0.020 92.987 0.030 31.777

VIX 0.000 2.061 0.000 1.831 0.000 1.557

Turnover 0.000 -0.527 0.000 -0.622 0.000 -0.561

Price 0.04 15.07 0.040 15.633 0.039 11.435

Size -0.02 -13.29 -0.024 -11.891 -0.022 -8.914
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Table IA.9. Effective Spreads with Fundamental Prices, mid-Quotes, and Weighted Mid-quotes
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

Unconstrained Stocks

Mid-quote effective spreads Hagstormer effective spreads True price effective spreads

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

Intercept 0.382 13.830 0.388 14.474 0.355 14.209

Year 0.010 3.849 0.010 3.855 0.010 4.529

Event 0.005 2.930 0.005 3.185 0.006 3.416

G1 0.007 1.323 0.008 2.623 0.008 2.486

G2 0.007 1.886 0.008 1.076 0.009 1.568

G3 0.010 1.811 0.010 1.418 0.009 2.055

G1 × Event 0.000 0.049 0.001 0.362 0.004 1.257

G2× Event 0.001 0.204 0.001 0.237 0.006 1.997

G3 × Event -0.002 -0.650 -0.001 -0.391 0.013 4.308

VIX 0.001 2.544 0.001 2.062 0.001 2.056

Turnover 0.000 -0.683 0.000 -1.017 0.000 -1.242

Price 0.062 13.496 0.062 15.741 0.059 13.477

Size -0.040 -13.514 -0.040 -15.020 -0.037 -13.363

65



Table IA.10. Realized spreads
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

All Stocks

Mid-quote realized spreads True price realized spreads

Coefficient Estimate t-stat Estimate t-stat

Intercept 0.101 7.324 0.098 8.286

Year 0.000 0.259 0.000 0.581

Event 0.000 -0.062 0.000 -0.085

G1 0.001 0.561 0.001 0.925

G2 0.001 0.468 0.001 0.741

G3 -0.001 -2.570 -0.001 -2.877

G1 × Event 0.007 5.236 0.008 5.025

G2× Event 0.008 8.885 0.010 6.765

G3 × Event 0.005 8.193 0.011 42.925

VIX 0.000 -1.262 0.000 -2.059

Turnover 0.000 -0.403 0.000 -1.160

Price 0.010 6.916 0.010 8.127

Size -0.009 -6.220 -0.008 -6.998
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Table IA.11. Realized spreads
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

Constrained Stocks

Mid-quote realized spreads True price realized spreads

Coefficient Estimate t-stat Estimate t-stat

Intercept 0.072 4.189 0.069 4.740

Year 0.000 0.344 0.000 -0.339

Event 0.000 -0.168 0.000 -0.190

G1 -0.004 -2.662 -0.003 -2.720

G2 -0.005 -6.498 -0.004 -4.146

G3 -0.005 -7.710 -0.005 -3.687

G1 × Event 0.010 7.560 0.010 5.590

G2× Event 0.011 56.598 0.011 5.589

G3 × Event 0.009 5.717 0.012 6.226

VIX 0.000 -1.257 0.000 -2.714

Turnover 0.000 -1.026 0.000 -1.669

Price 0.007 3.550 0.006 4.198

Size -0.01 -3.26 -0.005 -3.790
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Table IA.12. Realized spreads
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

Unconstrained Stocks

Mid-quote realized spreads True price realized spreads

Coefficient Estimate t-stat Estimate t-stat

Intercept 0.133 11.145 0.122 6.204

Year 0.000 0.023 0.000 -0.216

Event -0.001 -0.383 -0.001 -0.396

G1 0.013 3.555 0.013 2.583

G2 0.012 1.637 0.011 1.703

G3 0.009 6.399 0.007 2.513

G1 × Event 0.000 -0.050 0.002 0.446

G2× Event 0.005 1.030 0.009 3.420

G3 × Event 0.001 0.807 0.010 2.279

VIX 0.000 -1.442 0.000 -2.355

Turnover 0.000 -0.595 0.000 -0.389

Price 0.013 7.720 0.012 5.597

Size -0.011 -8.241 -0.010 -5.607
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Table IA.13. Proportions of Price Discovery
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

All Stocks

Discovery through market orders Discovery through limit orders Discovery through new info

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

Intercept 0.204 10.840 0.342 16.241 0.546 215.660

Year 0.009 4.529 -0.008 -5.047 0.001 2.321

Event 0.003 1.531 -0.003 -1.313 0.000 -1.016

G1 -0.007 -1.631 0.006 2.295 -0.001 -2.409

G2 -0.002 -0.507 0.001 0.418 0.000 -0.884

G3 -0.003 -1.364 0.002 0.715 0.000 -0.306

G1 × Event -0.043 -8.399 0.033 6.112 -0.010 -16.292

G2× Event -0.047 -14.586 0.038 16.095 -0.008 -12.975

G3 × Event -0.040 -14.868 0.032 9.695 -0.008 -14.860

VIX -0.001 -2.360 0.001 3.177 0.000 0.524

Turnover 0.000 0.360 0.000 -0.303 0.000 -0.344

Price 0.026 23.388 -0.016 -15.525 0.009 42.194

Size -0.014 -8.930 0.010 6.258 -0.004 -21.456
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Table IA.14. Proportions of Price Discovery
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

Constrained Stocks

Discovery through market orders Discovery through limit orders Discovery through new info

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

Intercept 0.212 7.820 0.335 22.054 0.548 140.716

Year 0.011 4.626 -0.010 -4.663 0.002 2.489

Event 0.006 2.125 -0.006 -2.896 0.000 0.055

G1 -0.007 -1.546 0.006 1.771 -0.001 -2.693

G2 -0.004 -2.402 0.004 1.003 -0.001 -0.780

G3 -0.001 -0.341 0.001 0.416 0.000 0.062

G1 × Event -0.043 -5.998 0.032 5.293 -0.011 -17.047

G2× Event -0.051 -16.103 0.041 20.097 -0.010 -10.664

G3 × Event -0.046 -9.499 0.037 9.846 -0.010 -15.409

VIX -0.001 -3.178 0.001 2.970 0.000 -0.206

Turnover 0.000 0.361 0.000 -0.183 0.000 -0.305

Price 0.026 11.382 -0.017 -13.162 0.009 22.736

Size -0.015 -6.453 0.010 8.132 -0.004 -13.843
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Table IA.15. Proportions of Price Discovery
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

Unconstrained Stocks

Discovery through market orders Discovery through limit orders Discovery through new info

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

Intercept 0.176 6.874 0.364 13.626 0.540 115.918

Year 0.009 3.658 -0.008 -2.913 0.001 2.783

Event 0.004 1.481 -0.004 -1.484 0.000 -0.155

G1 -0.004 -1.289 0.004 1.190 0.000 -0.481

G2 0.003 0.840 -0.003 -0.821 0.000 0.522

G3 -0.004 -0.731 0.004 0.907 0.000 -0.294

G1 × Event -0.044 -16.124 0.036 16.940 -0.008 -10.842

G2× Event -0.041 -8.459 0.034 8.987 -0.006 -9.707

G3 × Event -0.027 -6.149 0.022 5.177 -0.005 -4.646

VIX -0.001 -3.117 0.001 3.140 0.000 -0.556

Turnover 0.000 0.238 0.000 -0.363 0.000 -0.315

Price 0.023 11.957 -0.015 -5.636 0.008 27.772

Size -0.011 -5.020 0.007 3.404 -0.003 -9.933

71



Table IA.16. Speed of Price Discovery
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

All Stocks

Delay Measure D1 Delay Measure D2 Delay Measure D3

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

Intercept 2.523 27.042 1.688 27.301 1.677 33.192

Year 0.029 1.363 0.010 1.130 0.010 1.093

Event 0.079 3.416 0.036 3.213 0.039 3.333

G1 -0.011 -0.705 -0.006 -0.847 -0.006 -0.748

G2 0.007 0.444 0.003 0.568 0.003 0.351

G3 0.010 0.656 0.003 1.002 0.003 0.444

G1 × Event 0.087 8.294 0.037 4.272 0.037 4.185

G2× Event 0.071 5.740 0.029 4.455 0.029 3.571

G3 × Event 0.092 7.524 0.037 8.380 0.037 5.981

VIX -0.014 -3.351 -0.007 -5.925 -0.007 -4.093

Turnover 0.000 -0.615 0.000 -0.462 0.000 -0.612

Price 0.027 2.469 0.015 3.173 0.014 4.087

Size -0.143 -17.529 -0.062 -11.549 -0.061 -15.100
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Table IA.17. Speed of Price Discovery
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

Constrained Stocks

Delay Measure D1 Delay Measure D2 Delay Measure D3

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

Intercept 2.418 19.534 1.652 26.264 1.641 41.306

Year 0.017 0.756 0.006 0.609 0.006 0.720

Event 0.080 4.823 0.036 3.989 0.039 4.776

G1 -0.052 -2.806 -0.026 -3.032 -0.026 -3.468

G2 -0.038 -1.927 -0.016 -2.432 -0.016 -2.292

G3 -0.030 -2.277 -0.015 -1.990 -0.015 -2.127

G1 × Event 0.129 5.913 0.058 5.545 0.058 5.698

G2× Event 0.122 7.139 0.049 7.648 0.050 8.088

G3 × Event 0.133 8.783 0.057 7.997 0.057 8.822

VIX -0.015 -3.538 -0.007 -4.926 -0.007 -6.774

Turnover 0.000 -0.817 0.000 -0.971 0.000 -0.849

Price 0.008 0.870 0.007 1.425 0.006 1.480

Size -0.129 -13.239 -0.057 -11.340 -0.056 -18.586
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Table IA.18. Speed of Price Discovery
This table presents the difference-in-differences coefficients that quantify the average changes in liquidity measures due
to the TSP program. The difference-in-differences coefficients are based on the following panel regression specification
at the millisecond TAQ-level for each stock:
MQit = β0+βy.Y ear+β1.G1+β2.G2+β3.G3+β4.Event+β5.G1×Event+β6.G2×Event+β7.G3×Event+βT

8 .Xit+ϵit,
where MQit is a market quality measure for stock i at time t (millisecond-level); Y ear is a dummy that equals one
for all trades in the year 2018; G1, G2, G3 are dummies that equal one for stocks belonging to the respective test
groups; Event is a dummy that equals one for all trades during the TSP regime; Xit is the set of exogenous variables
containing the VIX index, stock turnover, stock price, and size that are available at beginning of trade t’s transaction
day. Standard errors are clustered by firm and day. Constrained (unconstrained) stocks contain only a subset of
stocks whose average quoted bid-ask spreads are lower (higher) than 5 cents during the non-TSP regime. Our TSP
regime data spans from November 1, 2016 to November 30, 2016 and from September 1, 2018 to September 30,
2018. The non-TSP regime data spans from September 1 2016 to September 30 2016 and from November 1, 2018 to
November 30, 2018.

Unconstrained Stocks

Delay Measure D1 Delay Measure D2 Delay Measure D3

Coefficient Estimate t-stat Estimate t-stat Estimate t-stat

Intercept 2.672 34.417 1.752 29.277 1.741 44.851

Year 0.003 0.151 0.002 0.250 0.002 0.186

Event 0.072 3.372 0.035 4.197 0.037 3.661

G1 0.075 5.917 0.036 4.970 0.036 5.031

G2 0.062 4.099 0.026 2.665 0.026 2.966

G3 0.077 5.812 0.037 4.219 0.037 3.985

G1 × Event -0.019 -1.220 -0.014 -1.892 -0.015 -1.726

G2× Event -0.019 -1.577 -0.007 -1.013 -0.008 -1.249

G3 × Event -0.001 -0.075 -0.009 -1.258 -0.009 -1.040

VIX -0.014 -4.649 -0.007 -4.428 -0.007 -5.667

Turnover 0.000 -0.467 0.000 -0.559 0.000 -0.712

Price 0.047 5.114 0.022 4.749 0.021 5.129

Size -0.158 -23.442 -0.068 -14.881 -0.067 -20.994
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