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Abstract

This paper studies a partially linear seemingly unrelated regressions (SUR) model to
estimate a translog cost system that consists of a partially linear translog cost function
and input share equations. The parametric component is estimated via a simple two-
step feasible SUR estimation procedure. We show that the resulting estimator achieves
root-n convergence and is asymptotically normal. The nonparametric component is
estimated with a nonparametric SUR estimator based on the Cholesky decomposition.
We show that this estimator is consistent, asymptotically normal, and more efficient
relative to the ones that ignore cross-equation correlation. A model specification test
for parametric functional form is proposed. An Italian banking data set is used to
estimate the translog cost system. Results show that marginal effects of risks on cost
of production are heterogeneous, but increase with risk levels.
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1 Introduction

Robinson (1988) proposed a partially linear single-equation model

yi = θ(zi) + x′iβ + ui,

where the subscript i = 1, . . . , n denotes observation, yi is a response, θ(·) is a nonparametric

function of a vector of covariates zi, xi is a vector of regressors with a parameter vector β,

and ui is a scalar error term with E (ui | zi, xi) = 0. This model is more flexible than one

with θ(·) being replaced by a parametric function of zi, and thus has been used to estimate

many economic relationships, such as hedonic price equation (Bontemps et al. 2006), firm

production technology (Bhaumik et al. 2015), environmental Kuznets curve (Millimet et al.

2003), and Engel curve (Blundell et al. 1998).

However, investigating economic relationships often involves estimating multiple equa-

tions. For example, in production theory, a cost function is usually estimated along with

conditional factor demand functions (or factor share equations) derived from Shephard’s

Lemma; a profit function can be estimated along with either unconditional factor demand or

output supply functions derived from Hotelling’s Lemma. The factor demand functions are

correlated because of input substitutability, and the output supply functions are correlated

because a firm must make production decisions based on the production possibilities frontier.

In consumer theory, the expenditure share equations can be estimated in a multiple-equation

system for the analysis of Engle curves for different consumption goods, which might also

be correlated when a consumer makes choice decisions.

Recently, Henderson et al. (2015) proposed a semiparametric smooth coefficient (SPSC)

seemingly unrelated regressions (SUR) model, in which all the regression coefficients in the

system are nonparametric functions of zi. While this specification is more flexible than

the parsimonious specification of our partially linear SUR model, all the smooth-varying

coefficients, including intercept and slopes, of the SPSC SUR model are subject to the

“curse of dimensionality”. If information is given a priori that the coefficients in their

translog system are constants, it would be inefficient to estimate their translog system with

varying coefficients and the coefficient estimator cannot achieve the faster convergence rate of
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n. Subject to similar issues, Xu et al. (2008) and Su et al. (2013) considered the estimation

of fully nonparametric SUR without any parametric component in their regression functions.

In this paper, we propose a straightforward extension of Robinson (1988), such that esti-

mating a system of partially linear equations is allowed—we call it partially linear SUR. The

parametric component is estimated via a simple two-step feasible SUR estimation procedure.

In the first step, cross-equation correlation is ignored and the partially linear models are esti-

mated equation by equation as in Robinson (1988); the second step employs the generalized

least squares (GLS) estimator for the linear part, analogous to Zellner (1962), and uses the

residuals from the first step to capture contemporaneous correlations among the equations.

We show that the resulting SUR estimator for the linear part achieves root-n convergence

and is asymptotically normal. The nonparametric component can be consistently estimated

using either Robinson (1988) single-equation estimator or one that is based on the above

SUR estimator for the linear part. While these two nonparametric estimators are asymp-

totically equivalent, we propose a more efficient nonparametric SUR estimator based on the

Cholesky decomposition. Estimation of both the parametric and nonparametric components

can be easily implemented. To the best of our knowledge, this more efficient nonparametric

SUR estimation has not been implemented in any of the partially linear SUR setting in the

literature.

When a fully parametric SUR is correctly specified, it would yield more efficient estimates

than its partially linear counterpart. For this reason, we propose a model specification test for

the null hypothesis of a parametric functional form, following Cai et al. (2000) goodness-of-

fit test procedure, by comparing the residual sums of squares (RSS) from the restricted (i.e.,

parametric) and unrestricted (i.e., partially linear) fittings. A novel cluster bootstrap pro-

cedure is proposed to obtain the empirical distribution of the test statistic and the p-value

of the test. You & Zhou (2010, 2014) proposed alternative versions of the semiparamet-

ric SUR model, and employed a combination of profile least squares and local polynomial

estimation techniques to estimate the parametric and nonparametric components, respec-

tively. However, they did not recognize the potential advantage of a parametric SUR over

its semiparametric counterpart, and did not provide a test procedure that helps researchers

determine which specification is preferred in practice. Furthermore, no real application was
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given in You & Zhou (2014). By contrast, the estimation procedure in this paper is simpler

and easier to implement in practice.

The SUR estimator for the linear part and nonparametric SUR estimator are then ap-

plied seamlessly to the estimation of a translog cost system. The cost system consists of a

partially linear translog cost function and a set of share equations. The nonparametric com-

ponent of the cost function is interpreted as a productivity parameter, which is an unknown

nonparametric function of zi—a vector of non-traditional inputs or environmental factors,

e.g., firm age, size, risk exposure, policy variables, that describe the environment in which

production takes place. Recently, attention has been paid to more flexible modeling of these

environmental factors in estimating technology (Bhaumik et al. 2015, Baležentis et al. 2020,

among others). The parametric component of the cost function is translog in input prices,

e.g., labor and capital prices, as well as in outputs—it includes all the higher order and

interaction terms of these variables.1 The share equations are derived from the cost function

itself by Shephard’s Lemma, and therefore share the same parameters as the cost function.

This indicates that estimating the cost system is more efficient than estimating a single cost

function only, because with the help of the share equations, more data are used in the SUR

without an increase in the number of parameters (Kumbhakar 1991, Kumbhakar & Tsionas

2005).

As an empirical example, an Italian banking data set is used to demonstrate the method-

ology. The three banking risks (i.e., credit risk, solvency risk, and liquidity risk), along

with a time trend, are modeled as the environmental variables, which affect total cost in

flexible manners. It is important to include risk-taking behavior of banks when investigating

their performances (Hughes & Mester 1998). On one hand, risks could increase costs for

some banks, because of additional non-interest expenses in administering the loan portfolios

and managing financial capital and liquidity assets, but on the other hand, risks could also

decrease costs for the other banks, if managers of these banks skimp on the resources con-

tributed to risk management (Berger & DeYoung 1997). Therefore, it would be desirable to

1The translog parameters have few economic meanings because they are not elasticities on their own.
Therefore, it would be costly to make these parameters unknown functions of zi as in Henderson et al.
(2015). The input price and output elasticities derived from the translog parameters are more economically
meaningful, and are observation-specific so long as the cost function is translog in input prices and outputs,
even if the slope translog coefficients are constants rather than nonparametric functions.
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examine the marginal impact of risks on bank performance, especially when a cost function is

employed to represent a bank’s technology. Briefly, we find that 1) the partially linear SUR

model produces more accurate parameter estimates than the partially linear single-equation

and linear SUR counterparts, is more successful in predicting the input shares than the

partially linear single-equation model, and yields more reasonable RTS estimates than the

linear SUR model; 2) the marginal effect estimates obtained from the nonparametric SUR

estimation have much smaller variations than those from the single-equation estimation; and

3) the heterogeneous marginal effects of banking risks and time on cost of production ob-

tained from the nonparametric SUR estimator are useful in making regulations aiming to

reduce the probability of bank failure without profoundly harming banks’ profitability.

As a further topic, in light of potential heterogeneity in firm production decisions or

degrees of input substitutability, how to account for the resultant heteroscedasticity in the

context of the partially linear production system is discussed. From the econometric perspec-

tive, between-equation heteroscedasticity exists when the contemporaneous cross-equation

correlation is observation-specific, and within-equation heteroscedasticity exists when the

variance of the error term of each equation of the system is a function of inputs (xi) and en-

vironmental factors (zi). We describe the steps of estimating the cross- and within-equation

scedastic functions nonparametrically, and also of detecting these two types of heteroscedas-

ticity.

The rest of this paper is organized as follows. Section 2 motivates our partially linear

SUR model using a translog cost/profit system that is popular in production theory. Section

3 describes the model and its estimation in detail, establishes consistency and asymptotic

normality of the parametric and nonparametric estimators, suggests a more efficient non-

parametric SUR estimator via the Cholesky decomposition, and provides a testing procedure

for the parametric functional form. Section 4 provides some simulation results that highlight

the relative efficiency gains of both our SUR estimator for the linear part and nonparametric

SUR estimator over their single-equation counterparts. Section 5 illustrates the method-

ology with an Italian banking data set. Section 6 discusses the heteroscedasticity issue in

estimating a production system. Section 7 concludes.

5



2 Motivational examples

The proposed SUR estimator for the linear part and nonparametric SUR estimator can be

used to estimate many economic models. This section provides two motivational examples in

production theory. If a firm’s objective is to minimize cost, a partially linear cost function can

be estimated, where the total cost is a nonparametric function of the z variables. The cost

function can be a translog function of input prices and outputs. Applying Shephard’s Lemma

would give us the cost share equations that are naturally linked to the cost function itself and

share the same translog parameters as the cost function. Similarly, for a profit-maximizing

firm, a partially linear profit function can be estimated, where profit is a nonparametric

function of the z variables, and the profit function can be a translog function of input and

output prices. Applying Hotelling’s Lemma would give us the cost share equations in profit.

These share equations are, again, linked to the profit function itself and share the same

translog parameters as the profit function. It would be desirable to estimate the cost or

profit function with its share equations as a cost or profit system, respectively. In what

follows we describe a translog cost and profit system as examples of our partially linear SUR

model.

2.1 A translog cost system

Consider a cost function

C = Θ(z) · c(W,O), (2.1)

where C denotes total cost and Θ(·) is a productivity parameter that depends on z—a set

of environmental factors that affect the total cost in fully flexible manners. W is a J-vector

of input prices and O is a P -vector of outputs. Imposing the restriction of homogeneous of

degree one in input prices on the cost function in (2.1) and using the first input price, W1,

as the numeraire, we would get

C̃ = Θ(z) · c(W̃ ,O), (2.2)
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where C̃ = C/W1 and W̃ is a (J − 1)-vector of input price ratios with W̃j = Wj/W1 for

j = 2, . . . , J . Shephard’s Lemma implies that

Xj = ∂C/∂Wj = ∂C̃/∂W̃j, (2.3)

where Xj is the jth conditional input demand. Multiplying both sides of (2.3) by Wj/C, or

equivalently, by W̃j/C̃, gives

Sj = ∂ ln C/∂ lnWj = ∂ ln C̃/∂ ln W̃j, for j = 2, · · · , J, (2.4)

where Sj = WjXj/C is the cost share of the jth input, and
∑J

j=1 Sj = 1, i.e., the sum

of the cost shares equals unity. The cost system consists of the J equations in (2.2) and

(2.4). In fact, the share equations are derived from the cost function and provide additional

information in estimating the cost function parameters. To facilitate the estimation of the

system, we take the natural log of both sides of (2.2),

ln C̃ = ln Θ(z) + ln c(W̃ ,O). (2.5)

Following Kumbhakar (1991) and Kumbhakar & Tsionas (2005), ln c(W̃ ,O) can be specified

by a translog function, and thus with subscript i, (2.5) is rewritten as

ln C̃i = θ(zi) +
J∑
j=2

βj ln W̃ji +
P∑
p=1

αp lnOpi +
1

2

J∑
j=2

J∑
k=2

βjk ln W̃ji ln W̃ki

+
J∑
j=2

P∑
p=1

ρjp ln W̃ji lnOpi +
1

2

P∑
p=1

P∑
q=1

αpq lnOpi lnOqi + u1i,

(2.6)

where θ(z) ≡ ln Θ(z) is a nonparametric function of z, u1 is a noise term, and symmetry

restrictions are imposed such that βjk = βkj for any j, k = 2, · · · , J , and αpq = αqp for any

p, q = 1, · · · , P . Rewriting (2.4) for the remaining J − 1 equations in a similar manner, we

have

Sji = βj +
J∑
k=2

βjk ln W̃ki +
P∑
p=1

ρjp lnOpi + uji, for j = 2, · · · , J, (2.7)
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where uj are the noise terms of the share equations. We call the J equations in (2.6) and

(2.7) a translog cost system.2 This system can be estimated using the estimation procedure

described in Section 3. It is worth noting that the translog cost function (2.6) and its J − 1

share equations (2.7) have the same slope parameters—βj, βjk, and ρjp for j, k = 2, . . . , J

and p = 1, . . . , P . This indicates that cross-equation restrictions must be imposed on the

translog cost system. The parameter estimates based on this system of equations should be

more accurate than those from a single partially linear translog cost function such as (2.6)

because more information (i.e., cost share data) is used while no additional parameters are

estimated. The cross-equation restrictions can be easily imposed by adding variables taking

zero values into (2.7) such that each equation in (2.7) has the same number and the same

order of right-hand-side terms as (2.6).3

2.2 A translog profit system

Consider a profit function

Π = Θπ(z) · π(P ,W ), (2.8)

where Π denotes profit and Θπ(·) is the profit productivity parameter that depends on the

z variables in fully flexible manners. W is again a J-vector of input prices, and P is a scalar

of output price (Kumbhakar 2001). Imposing the restriction of homogeneous of degree one

in (P ,W ) on the profit function in (2.8) and using the output price as the numeraire would

give us

Π̃ = Θπ(z) · π(W̃), (2.9)

2The first share equation, S1, is dropped because the sum of the cost shares equals unity. If the zi in (2.6)
is viewed as fixed, then the partially linear SUR is equivalent to a parametric SUR model. The equation-
by-equation OLS estimator that we use in the first step is invariant to the choice of the numeraire, and also
to the equation dropped (Chavas & Segerson 1987). Therefore, the residuals from the first-step estimation,
and also the estimated variance-covariance matrix, would be invariant to the choice of the numeraire. The
case of zi being viewed as stochastic and its impact on the choice of numeraire is saved for future research.

3For example, if we have three inputs and three outputs, we can write the parameter vec-
tor of the translog cost function, (2.6), as (β2, β3, α1, α2, α3, β22, β23, ρ21, ρ22, ρ23, β33, ρ31, ρ32, ρ33,
α11, α12, α13, α22, α23, α33)′, then the right-hand-side variable vector of the share equations, (2.7), can

be written as: (1, 0, 0, 0, 0, ln W̃2i, ln W̃3i, lnO1i, lnO2i, lnO3i, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)′ for j = 2, and

(0, 1, 0, 0, 0, 0, ln W̃2i, 0, 0, 0, ln W̃3i, lnO1i, lnO2i, lnO3i, 0, 0, 0, 0, 0, 0)′ for j = 3. The R codes of estimating
the partially linear SUR model are available from the authors upon request.

8



where Π̃ = Π/P and W̃ is a J-vector of price ratios with W̃j = Wj/P for j = 1, . . . , J .

Hotelling’s Lemma implies that

Xj = −∂Π/∂Wj = −∂Π̃/∂W̃j, (2.10)

where Xj is the jth unconditional input demand. Multiplying both sides of (2.10) by Wj/Π,

or equivalently, by W̃j/Π̃, gives

Sπj = −∂ ln Π/∂ lnWj = −∂ ln Π̃/∂ ln W̃j, for j = 1, · · · , J, (2.11)

where Sπj = WjXj/Π is the cost share of the jth input in profit, and
∑J

j=1 S
π
j = C/Π—the

sum of the cost shares in profit equals total cost per unit of profit. The profit system consists

of the J + 1 equations in (2.9) and (2.11). Taking the natural log of both sides of (2.9) gives

ln Π̃ = ln Θπ(z) + ln π(W̃). (2.12)

Using the translog specification for ln π(W̃) and adding the subscript i, we rewrite (2.12) as

ln Π̃i = θπ(zi) +
J∑
j=1

βπj ln W̃ji +
1

2

J∑
j=1

J∑
k=1

βπjk ln W̃ji ln W̃ki + uπ0i, (2.13)

where θπ(z) ≡ ln Θπ(z) is a nonparametric function of z, uπ0 is a noise term, and symmetry

restrictions are imposed such that βπjk = βπkj for any j, k = 1, · · · , J . Rewriting (2.11) for all

the J equations, we have

− Sπji = βπj +
J∑
k=1

βπjk ln W̃ki + uπji, for j = 1, · · · , J, (2.14)

where uπj are the noise terms of the share equations. Unlike the case of the translog cost

system described in the previous section where the sum of the cost shares equals unity—

therefore one of the share equations is dropped, the sum of the cost shares in profit does not

equal unity in the profit system, and therefore there would be no need to drop any of the

share equations of the profit system (Kumbhakar 2001). Finally, we call the J + 1 equations
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in (2.13) and (2.14) a translog profit system, which can again be estimated using the same

procedure detailed in the following section. The translog profit function (2.13) and its J

share equations (2.14) have the same slope parameters of βπj and βπjk, for j, k = 1, . . . , J .

These cross-equation restrictions can be imposed in a manner that is similar to the case of

the translog cost system.4

3 A partially linear SUR model

Motivated by the estimation of the translog cost/profit system, we consider in this section

estimation of the following system of equations

ysi = θs(zsi) + x′siβs + usi, (3.1)

where the subscript i = 1, . . . , n denotes observation and s = 1, . . . ,m indexes equation.

ysi is a scalar response, θs(·) is an unknown function of a ps-vector of covariates zsi, xsi is

a qs-vector of regressors in the linear parametric part with a parameter vector βs. usi is a

scalar error with E (usi | zsi) = 0, and with contemporaneous correlation, i.e., E (usiuli) = σsl

and E (usiult) = 0 for any s, l, and i 6= t. The goal is to obtain consistent and more efficient

estimates of the parameters, βs, and the coefficient function, θs(·) at an arbitrary point

z ∈ Rps .

3.1 Estimation

Following Robinson (1988) and taking conditional expectation of Eq. (3.1) given zsi, we have

E (ysi | zsi) = θs(zsi) + E (xsi | zsi)′ βs. (3.2)

4For example, if we have three inputs and one output, we can write the parameter vector of the
translog profit function, (2.13), as (βπ1 , β

π
2 , β

π
3 , β

π
11, β

π
12, β

π
13, β

π
22, β

π
23, β

π
33)′, then the right-hand-side variable

vector of the share equations, (2.14), can be written as: (1, 0, 0, ln W̃1i, ln W̃2i, ln W̃3i, 0, 0, 0)′ for j = 1,

(0, 1, 0, 0, ln W̃1i, 0, ln W̃2i, ln W̃3i, 0)′ for j = 2, and (0, 0, 1, 0, 0, ln W̃1i, 0, ln W̃2i, ln W̃3i)
′ for j = 3.
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Eq. (3.2) provides a moment condition for estimating θs(·), i.e., θs(zsi) = E (ysi | zsi) −

E (xsi | zsi)′ βs. Subtracting (3.2) from (3.1) gives

y∗si = x∗
′

siβs + usi, (3.3)

where y∗si ≡ ysi − E (ysi | zsi) and x∗si ≡ xsi − E (xsi | zsi). This system of equations

can be viewed as Zellner (1962) SUR model. Let gsy(z) ≡ E (ysi | zsi = z) and gsx(z) ≡

E (xsi | zsi = z). Note that y∗si and x∗si are not observable due to unknown conditional means

gsy(zsi) and gsx(zsi), respectively. To estimate them, we hereby use the simple Nadaraya-

Watson estimators

ĝsy(z) =

∑n
i=1Ks

(
zsi−z
hs

)
ysi∑n

i=1Ks

(
zsi−z
hs

) and ĝsx(z) =

∑n
i=1Ks

(
zsi−z
hs

)
xsi∑n

i=1Ks

(
zsi−z
hs

) , (3.4)

where Ks(·) is a product kernel function and hs is the associated bandwidth. Estimates of

y∗si and x∗si follow naturally as ŷ∗si = ysi − ĝsy(zsi) and x̂∗si = xsi − ĝsx(zsi), respectively.

We first ignore cross-equation correlation and estimate βs equation by equation using

the ordinary least squares (OLS). The zero conditional mean, E (usi | zsi, xsi) = 0, leads to

Robinson’s single-equation estimator for βs using the estimated ŷ∗si and x̂∗si, i.e.,

β̂s =

(
n∑
i=1

x̂∗six̂
∗′
si

)−1 n∑
i=1

x̂∗siŷ
∗
si.

With β̂s, we have a pilot estimator for θs(z) as θ̂s(z) = ĝsy(z)− ĝsx(z)′β̂s. That is, no addi-

tional regression is required to recover the nonparametric component. We call θ̂s(z) Robinson

single-equation nonparametric estimator. Let ûsi = ŷ∗si − x̂∗
′
siβ̂s, and the contemporaneous

cross-equation correlation σsl is then estimated by σ̂sl = 1
n

∑n
i=1 ûsiûli for any s, l = 1, . . . ,m.

To estimate βs using the SUR system, we stack Eq. (3.3) by observation for all the m

equations such that

y∗i = x∗′i β + ui,
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where y∗i ≡ (y∗1i, y
∗
2i, . . . , y

∗
mi)
′, ui ≡ (u1i, u2i, . . . , umi)

′, x∗i =


x∗1i 0 · · · 0

0 x∗2i · · · 0
...

...
. . .

...

0 0 · · · x∗mi

 is a block

diagonal matrix of dimension q×m with q ≡
∑m

s=1 qs, and β = (β′1, · · · , β′m)′ is a q-vector of

coefficients. Under a stricter zero conditional mean assumption, i.e., E (ui | zi, xi) = 0, and

by a spherical transformation, a moment condition for β is

β =
(
E
(
x∗iΣ

−1
m x∗′i

))−1 E (x∗iΣ−1m y∗i
)
,

where Σm ≡ Var (ui) = {σsl}m,ms=1,l=1 is the m×m variance-covariance matrix with a typical

element σsl.

If {x∗i , y∗i }ni=1 were observed, the well-known GLS and Zellner (1962) SUR estimators can

be constructed by

βgls =

(
n∑
i=1

x∗iΣ
−1
m x∗′i

)−1( n∑
i=1

x∗iΣ
−1
m y∗i

)
, (3.5)

and

βsur =

(
n∑
i=1

x∗i Σ̂
−1
m x∗′i

)−1( n∑
i=1

x∗i Σ̂
−1
m y∗i

)
,

respectively, where Σ̂m is an estimate for Σm constructed using σ̂sl in the first step. Replacing

x∗i and y∗i with their corresponding nonparametric estimates x̂∗i and ŷ∗i , we have a feasible

SUR estimator for β as

β̂sur =

(
n∑
i=1

x̂∗i Σ̂
−1
m x̂∗′i

)−1( n∑
i=1

x̂∗i Σ̂
−1
m ŷ∗i

)
=
(
x̂∗′
(
In ⊗ Σ̂−1m

)
x̂∗
)−1 (

x̂∗′
(
In ⊗ Σ̂−1m

)
ŷ∗
)
,

where x̂∗ = (x̂∗1, x̂
∗
2, · · · , x̂∗n)′ is an mn× q stacked data matrix and ŷ∗ = (ŷ∗′1 , ŷ

∗′
2 , · · · , ŷ∗′n )′ is

an mn-vector. To follow the conventional method of stacking data by equation, rather than
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by observation, β̂sur can be equivalently written as

β̂sur =
(
X̂∗′

(
Σ̂−1m ⊗ In

)
X̂∗
)−1 (

X̂∗′
(

Σ̂−1m ⊗ In
)
Ŷ ∗
)
, (3.6)

where X̂∗ =


X̂∗1 0 · · · 0

0 X̂∗2 · · · 0
...

...
. . .

...

0 0 · · · X̂∗m

 is an mn × q stacked block diagonal matrix with a

typical n × qs element X̂∗s = (x̂∗s1, · · · , x̂∗sn)′ and Ŷ ∗ = (Ŷ ∗′1 , Ŷ
∗′
2 , · · · , Ŷ ∗′m )′ is an mn-vector

with a typical n × 1 element Ŷ ∗s = (ŷ∗s1, · · · , ŷ∗sn)′. With β̂sur, a natural estimator for the

nonparametric component, θs(z), can be obtained as θ̃s(z) = ĝsy(z) − ĝsx(z)′β̂s,sur, where

β̂s,sur is the corresponding qs× 1 vector component in β̂sur for the sth equation. We call θ̃s(z)

two-step nonparametric estimator.

3.2 Asymptotic properties of β̂sur and θ̃s(·)

Let βs,sur and βs,gls be defined in a similar manner as β̂s,sur. From Zellner (1962), we know that

as long as (Σ̂−1m −Σ−1m ) has a parametric
√
n convergence rate, βs,sur is more efficient than the

OLS estimator which only uses information based on the sth equation, and βsur has an asymp-

totic normal distribution as
√
n (βsur − β)

d−→ N (0,Vβ), where Vβ ≡ (E (x∗iΣ
−1
m x∗′i ))

−1
.5 We

find that using estimated x∗i and y∗i in βsur does not affect its asymptotic property as long

as we choose suitable bandwidths.6 We establish the asymptotic equivalence between β̂sur

and βsur by showing that
√
n
(
β̂sur − βsur

)
= op(1) in Appendix A. To do that, we first lay

out a set of assumptions. In what follows, C > 0 denotes a generic constant and Cr de-

notes the class of functions such that i) each of its elements is r-times partially continuously

differentiable, and ii) all their partial derivatives up to order r are uniformly bounded.

Assumption A1. a) The random sequence {(x′i, z′i, u′i)′}ni=1 is an independent and identi-

cally distributed (IID) process and their relationship can be described by (3.1). b) The m-

5The asymptotic distribution of βs,sur can be obtained easily from the joint one of βsur. It is normal with
asymptotic covariance being the corresponding sth qs × qs diagonal block of Vβ .

6We need to undersmooth in the first step so that the nonparametric bias term becomes negligible when
it comes to estimating the parametric coefficients β.
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vector ui has zero conditional mean and constant conditional covariance, i.e., E (ui | zi, xi) =

0 and E (u2i | zi, xi) = Σm = {σsl}m,ms,l=1; Σm is positive definite. c) σ2
sx,k ≡ E

(
x∗2si,k | zi

)
≤ C

for any k = 1, · · · , qs and σ2
sy ≡ E (y∗2si | zi) ≤ C.

Assumption A2. The kernel Ks satisfies Ks(z) =
∏ps

i=1 ks(zi) where z = (z1, · · · , zps). ks
is symmetric about zero and satisfies: a)

∫
ks(z) dz = 1; b) ks is a kernel of order rs, i.e.,∫

ks(z)zi dz = 0 for i = 1, · · · , rs − 1, and
∫
|ks(z)zrs| dz ≤ C.

Assumption A3. a) The density function of zsi, fsz(·), is uniformly bounded away from

zero and infinity. b) The functions fsz(·), gsx(·), and gsy(·) all belong to Crs+1.

Assumption A4. Denote Lsn ≡
(

logn
nhpss

)1/2
+ hrss where hs = n−

1
2rs+ps → 0 as n→∞ with

rs > ps/2.

In Assumption A2, we use a high-order kernel, and together with appropriate smoothness

of the nonparametric functions in A3 b), we achieve bias reduction for the nonparametric

estimators. With a suitable bandwidth choice, those biases become negligible when the

asymptotic normality of β̂sur is obtained.7 For practical uses, such high-order kernels can be

easily constructed using methods, for example, in Geng et al. (2020, Eq. 10). Theorem 1

below establishes the square-root n asymptotic normality of β̂sur with proof in Appendix A.

Theorem 1. Under Assumptions A1–A4, we have

√
n
(
β̂sur − β

)
d−→ N (0,Vβ),

where Vβ = (E (x∗iΣ
−1
m x∗′i ))

−1
.

Remark 1. The efficiency gain of β̂sur that takes advantage of cross-equation correlation

relative to one that does not, for example, the Robinson (1988) estimator, is easy to establish.

Given that β̂s is the single-equation linear estimator, by Robinson (1988) its asymptotic

covariance matrix is Vβ,R ≡ (E (x∗ix
∗′
i ))−1 E (x∗iΣmx

∗′
i ) (E (x∗ix

∗′
i ))−1. By the matrix form of

Cauchy-Schwarz inequality, it is straightforward that E (x∗ix
∗′
i ) (E (x∗iΣ

−1
m x∗′i ))

−1 E (x∗ix
∗′
i ) ≤

E (x∗iΣmx
∗′
i ) which leads to the desired result Vβ ≤ Vβ,R.

7It can be shown that if the dimension of zsi is smaller than four, an ordinary kernel of order two would
suffice.
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Remark 2. Estimator for the covariance matrix Vβ is critical for statistical inference and hy-

pothesis testing. A consistent estimator can be easily constructed by V̂β ≡
(∑n

i=1 x̂
∗
i Σ̂
−1
m x̂∗′i

)−1
where the square root of the diagonal elements give the corresponding standard errors of each

element in β̂sur.

The next theorem establishes the asymptotic normality of the nonparametric estimator

θ̃s(·) with proof in Appendix A.

Theorem 2. Let µks,rs ≡
∫
ks(z)zrs dz, Dk

jf(z) ≡ ∂k

∂kj
f(z), and D0

jf(z) ≡ f(z) for any k ≥ 1

and 1 ≤ j ≤ k. Under Assumption A1–A4 and assuming that E
(
|usi|2+δ | zsi, xsi

)
≤ C for

some δ > 0, we have

√
nhpss

(
θ̃s(z)− θs(z)− bs,1(z)

)
d−→ N (0,Vs,1(z)) ,

where bs,1(z) ≡ hpss f
−1
sz (z)µks,rs

∑rs
k=1

1
k!(rs−k)

∑ps
j=1 Dk

j θs(z)Drs−k
j fsz(z)+op(h

ps
s ) and Vs,1(z) ≡

f−1sz (z)σss
∫
K2
s (γ) dγ.

Remark 3. Given the order of the bias, it follows immediately from Theorem 2 that θ̃s(z)

is consistent for θs(z).

Remark 4. It is clear from the proof of Theorem 2 that θ̃s(z) is asymptotically equivalent to

Robinson’s nonparametric estimator θ̂s(z), and they have the same asymptotic distribution.

Let θ̈s(z, β̈s) ≡ ĝsy(z) − ĝsx(z)′β̈s denote a general nonparametric estimator for θs(z) which

is constructed using a linear estimator β̈s. As long as β̈s has a convergence rate faster than

the nonparametric rate, i.e.,
√
nhpss (β̈s − βs) = op(1), θ̈s(z, β̈s) would have the asymptotic

normality given in Theorem 2. This indicates that cross-equation correlation might not be

effectively used in our current setup for improving estimation efficiency of the nonparametric

component. From the simulations given in Section 4, we show that it is indeed the case in

terms of finite sample performance.

3.3 More efficient nonparametric estimation

In this section, we propose a potentially more efficient nonparametric estimator by taking

cross-equation correlation into account. The idea is basically in the same vein as in Su et al.
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(2013) who extended Martins-Filho & Yao (2009) and improved efficiency in estimating

a nonparametric model with a general parametric error covariance. In our case, after a

spherical transformation of the error vector for the whole system of equations, we construct

a new regressand for the nonparametric regression taking the linear part as given. We show

that an estimator that accounts for cross-equation correlation is efficient relative to those

estimators that do not, e.g., θ̂s(z) or θ̃s(z).8

We first stack Eq. (3.3) for all the n observations and rearrange, giving

Ys −Xsβs = Θs(Zs) + Us,

where Ys = (ys1, · · · , ysn)′, Xs = (xs1, · · · , xsn)′, Zs and Us are defined analogously as Ys,

and Θs(Zs) = (θs(zs1), · · · , θs(zsn))′. Then stacking all the m equations, we have

Y −Xβ = Θ(Z) + U, (3.7)

where Y and X are defined analogously as Ŷ ∗ and X̂∗ in Eq. (3.6), respectively, Z =

(Z1, · · · , Zm), U = (U ′1, · · · , U ′m)′, and Θ(Z) = (Θ1(Z1)
′, · · · ,Θm(Zm))′. It is easy to see

that Σ ≡ E (UU ′) = Σm⊗ In. Given that Σm is positive definite, there exists a unique lower

triangular matrix Pm such that Σm = PmP
′
m, the Cholesky decomposition of Σm. Then we

have Σ = PP ′ where P = Pm⊗ In. Denote V = P−1 and Vm = P−1m , then V = Vm⊗ In. Let

E = (E ′1, · · · , E ′m)′ ≡ V U such that
E1
E2
...

Em

 =


v11In 0n · · · 0n

v21In v22In · · · 0n
...

...
. . .

...

vm1In vm2In · · · vmmIn




U1

U2

...

Um

 ,

where Es =
∑s

l=1 vslUl with a typical element εsi =
∑s

l=1 vsluli. E is spherical as E (EE ′) =

8It is well known that the efficiency of the GLS estimator for fully linear models is invariant to the
covariance decomposition method since the estimator only depends on the inverse of the covariance matrix
rather than on its square root; see, e.g., Eq. (3.5). More interestingly, we find that how to decompose the
error covariance matrix might play a role in the extent to which efficiency of the nonparametric estimation
improves; see Remark 6.
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E (V UU ′V ) = V PP ′V ′ = Imn, and E (EsE ′s) = In follows immediately. Denote Y =

(Y1, · · · ,Ym)′ ≡ Y − Xβ = Θ(Z) + U where Ys = Ys − Xsβs with a typical element

ysi = ysi − x′siβs. Now taking β as given and following Su et al. (2013), we define a new

regressand vector for the sth equation, i.e., Y∗s ≡ vssΘs(Zs) + Es,9 and conduct a local-

linear nonparametric regression of a feasible regressand ŷ∗si/v̂ss on zsi
10 which leads to our

nonparametric SUR estimator

θ̃s,sur(z) = es(0ps)
′ [M ′

s,zKs,zMs,z

]−1
M ′

s,zKs,z
1

v̂ss
Ŷ∗s , (3.8)

where Ŷ∗s = (ŷ∗s1, · · · , ŷ∗sn)′ ≡ v̂ssΘ̂s(Zs) + Ês, Ês ≡
∑s

l=1 v̂slÛl with Ûs = (ûs1, · · · , ûsn)′

for s = 1, · · · ,m, Θ̂s(Zs) =
(
θ̂s(zs1), · · · , θ̂s(zsn)

)′
, v̂sl is a typical (s, l)th element of V̂m =

P̂−1m with P̂m being the Cholesky factor of Σ̂m for any s, l = 1, · · · ,m, es(x) ≡ (1, x′)′ :

Rps → Rps+1, 0ps is a ps × 1 vector of zeros, Ms,z ≡ (Ms1(z), · · · ,Msn(z))′ with Msi(z) ≡(
1, 1

h2s
(zsi − z)

)′
and h2s the associated bandwidth, andKs,z ≡ diag{Ksi(z)}ni=1 withKsi(z) ≡

1
hps2s
Ks

(
1
h2s

(zsi − z)
)

. Denote the bandwidth in the pilot estimator θ̂s(z) by h1s. The asymp-

totic normality of θ̃s,sur(z) is given in the following theorem. It can be established in a similar

manner as in Su et al. (2013), and therefore is omitted to save space.

Theorem 3. Under Assumptions A1–A3, and if for any s, l = 1, · · · ,m, h1s/h2l → 0,

nhps1s →∞ and nhps+2rs
2s → C ∈ [0,∞] as n→∞, we have

√
nhps2s

(
θ̃s,sur(z)− θs(z)− bs,2(z)

)
d−→ N (0,Vs,2(z)) , (3.9)

where bs,2(z) ≡ 1
rs
hrs2sµks,rs

∑ps
ι=1 Drs

ιι θs(z) + op(h
rs
2s) and Vs,2(z) ≡ f−1sz (z)v−2ss

∫
K2
s (γ) dγ.

Remark 5. The relative efficiency gain of θ̃s,sur(z) to θ̂s(z) or θ̃s(z) can be easily verified by

comparing Vs,2 and Vs,1. Denote a typical element in Pm by psl for s, l = 1, · · · ,m. Given

Σm = PmP
′
m, we have σss =

∑s
l=1 p

2
sl ≥ p2ss = v−2ss which gives the desired result Vs,2 ≤ Vs,1.

Remark 6. Note that the construction of this second-stage nonparametric SUR estimator

9This originates from a spherical transformation of Eq. (3.7) where Y∗ = (Y∗′1 , · · · ,Y∗′m)
′ ≡ H ·Θ(Z) +

V U = VY + (H −V ) ·Θ(Z) and H is a diagonal matrix with the same diagonal elements as V ; see Su et al.
(2013) for more details.

10It can be easily shown that a local-polynomial kernel estimation of equation y∗si = vssθs(zsi) + εsi can
be achieved by treating y∗si/vss as the regressand.

17



θ̃s,sur(z) in Eq. (3.8) depends on the choice of square root for Σm via elements of V̂ , the

inverse of the square root of Σ̂m. The other square root for Σm that is induced by the Spectral

decomposition (Σm = BmBm where Bm = B′m) does also work in our context. An interesting

finding here is that the asymptotic variance of θ̃s,sur(z) and thus its efficiency depend on such

choice via vss in Vs,2(z). Conventionally, researchers either simply overlook this dependency

and thus distinctions between these two methods inducing the square root (see Martins-Filho

& Yao 2009; Su et al. 2013); or simply choose one of them without discussing further the

impact of such choice (see Linton et al. 2004). A more detailed investigation into it seems

necessary and we leave it as future work.

3.4 Bandwidth selection

In (3.4) we assume the same bandwidth hs when estimating gsy(·) and gsx(·) simply for ease

of theoretical proof. In practice, we choose the data-driven least squares cross-validation

(LSCV) method, rather than specifying them in an ad hoc manner. That is, for each s, we

select bandwidths hsy to minimize

n∑
i=1

(
ysi − ĝ(−i)sy (zsi)

)2
, (3.10)

where ĝ
(−i)
sy (zsi) =

∑
j 6=iKs

(
zsj−zsi
hsy

)
ysj
/∑

j 6=iKs

(
zsj−zsi
hsy

)
is the leave-one-out kernel con-

ditional mean. This is obtained by evaluating gsy(·) at zsi using all the information except

that about i. The jth element of the bandwidths hsx is selected similarly by replacing ysi

and hsy in (3.10) with the jth element of xsi and hsx, respectively, for j = 1, · · · , qs.

The bandwidth vector, h2s, of the nonparametric SUR estimation in Section 3.3 can be

obtained in a similar manner. That is, for each s, we minimize

n∑
i=1

(
ŷ∗si/v̂ss − θ̃(−i)s,sur(zsi)

)2
, (3.11)

where θ̃
(−i)
s,sur(zsi) = es(0ps)

′
(∑n

j 6=iMsj(zsi)Msj(zsi)
′Ks

(
zsj−zsi
h2s

))−1
∑n

j 6=iMsj(zsi)(ŷ
∗
sj/v̂ss)Ks

(
zsj−zsi
h2s

)
is the leave-one-out estimator of θs(zsi).
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3.5 Test for parametric functional form

If the functional form of θs(zsi) in Eq. (3.1) were known, a standard parametric SUR model

would give more efficient estimates than the partially linear counterpart. The parametric

SUR model can be written as

ysi = θs(zsi, δs) + x′siβ
o
s + uosi,

where θs(zsi, δs) = z′siδs is a linear parametric function with a ps-vector of parameters, δs.

In the case that this parametric model is misspecified, any parametric estimator based on it

would be inconsistent. Therefore, it would be interesting to test the parametric SUR against

its partially linear counterpart.

To do this, we follow Cai et al. (2000) goodness-of-fit test procedure and compare the

RSS’s from the parametric and the semiparametric fittings. The null hypothesis is H0 :

θs(zsi) = z′siδs for any s. Let {ûosi}
m,n
s=1,i=1 be the residuals from the standard parametric SUR

regression (Zellner 1962) where ûosi = ysi − z′siδ̂s − x′siβ̂os . The RSS of the parametric SUR

is calculated as RSS0 = 1
mn
ûo′ûo where ûo = (ûo′1 , û

o′
2 , · · · , ûo′n )′ and ûoi = (ûo1i, û

o
2i, · · · , ûomi)′.

Given that the residuals of the partially linear SUR are ûi = ŷ∗i − x̂∗′i β̂sur, the RSS of the

partially linear SUR is calculated as RSS1 = 1
mn
û′û where û = (û′1, û

′
2, · · · , û′n)′.

The test statistic can then be constructed by Tn = RSS0/RSS1 − 1. If the parametric

model is close enough to its partially linear counterpart, then Tn will be close to zero;

otherwise it will be greater than zero. Therefore, the test is one-sided. In what follows,

we propose a cluster bootstrap procedure to obtain the p-value of the test and determine

whether to reject the null hypothesis or not with the following steps.

Step 1: Re-center the residuals from the partially linear SUR model and obtain {ûi −
¯̂u}ni=1, where ¯̂u = 1

n

∑n
i=1 ûi, ∀s.11

Step 2: Generate bootstrapped residuals, ubi , by re-sampling the re-centered residuals

with replacement, ∀i.12

11We follow Cai et al. (2000) and bootstrap the residuals from the partially linear SUR model because
its residuals are consistent under both the null and the alternative hypotheses.

12For the cluster bootstrap, each i is viewed as a cluster and the re-sampling is applied to all the m
elements of the cluster. The number of clusters n goes to infinity, while the size of each cluster m is finite.
See Cameron & Trivedi (2005, Chapter 11) for more details about the bootstrap methods.
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Step 3: Generate ybi = z′iδ̂+x′iβ̂
o +ubi . That is, the bootstrapped residuals, ubi , are added

to the fitted values under the null to generate the bootstrapped dependent variable.

Step 4: Use the bootstrapped sample {ybi , xi, zi}ni=1 to calculate the bootstrapped test

statistic T bn.

Step 5: Repeat Step 2–4 for a large number of times, say, B = 399, and the p-value is

calculated as the mean frequency of the event {T bn > Tn}, i.e., 1
B

∑B
b=1 I(T bn > Tn), where

I(·) is an indicator function that equals one if its argument is true. The null hypothesis can

be rejected if the p-value is less than a pre-specified level of significance.

4 Simulations

In Section 3, we show that our SUR estimator for the linear part is asymptotically effi-

cient relative to Robinson (1988) estimator, and that our nonparametric SUR estimator is

asymptotically more efficient than the Robinson single-equation and two-step nonparamet-

ric estimators by taking into account cross-equation correlation. In this section, we conduct

some simulations and compare the finite sample performances of these estimators for a two-

equation system with a data generating process (DGP):

y1i = θ1(z1i) + β1x1i + u1i,

y2i = θ2(z2i) + β2x2i + u2i,
(4.1)

where i = 1, . . . , n. z1i and z2i are both generated as i.i.d. U [0, 2]. We set θ1(z1i) = sin(z1i),

θ2(z2i) = cos(z2i), β1 = 1, and β2 = 2. xsi = %zsi + esi, where % = 0.6 captures the

degree of correlation between xsi and zsi, and esi ∼ i.i.d. N (1, 0.52), ∀s = 1, 2. (u1i, u2i)
′ ∼

i.i.d. multivariate normal N (0,Ω) with Ω = {σsl}2,2s,l=1. Here we let σ11 = σ22 = 1 and

consider cross-equation correlation such that σ12 = σ21 = 0.6.13 Sample size n is set at

100, 200, 400, 800, and 1600. Bandwidths in all cases are selected via the LSCV method as

discussed in Section 3.4.

For a parametric component estimator, we report its bias, variance (var), and mean

13We also consider the no cross-equation correlation case, i.e., σ12 = σ21 = 0, and find that for all sample
sizes, the parametric and nonparametric component estimators have similar MSEs and AMSEs, respectively,
and therefore results are omitted to save space, but are available upon request.
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squared error (MSE) over R = 1000 Monte Carlo replications. For a nonparametric com-

ponent estimator, we report its average bias (Abias), average variance (Avariance or Avar),

and average MSE (AMSE) over the R replications. Specifically,

Abias =
1

R

R∑
γ=1

(
bias

(γ)
θs

)
=

1

R

R∑
γ=1

(
1

n

n∑
i=1

(
θ̂(γ)s (zsi)− θ(γ)s (zsi)

))
,

where θ̂
(γ)
s (zsi) and θ

(γ)
s (zsi) are the estimated and true nonparametric components for the

γth replication, respectively,

AMSE =
1

R

R∑
γ=1

(
MSE

(γ)
θs

)
=

1

R

R∑
γ=1

(
1

n

n∑
i=1

(
θ̂(γ)s (zsi)− θ(γ)s (zsi)

)2)
,

and

Avariance =
1

R

R∑
γ=1

(
MSE

(γ)
θs
−
(

bias
(γ)
θs

)2)
.

It is clear from Table 1 that, when cross-equation correlation exists, the parametric

component estimates of the partially linear SUR model have smaller variances and MSEs

than those of Robinson’s, and these relative efficiency gains are quite stable and robust for all

sample sizes considered. With an increase in the sample size, the variances and MSEs drop

significantly. Most of the time, the parametric component estimates of the partially linear

SUR model have smaller biases than those of Robinson’s. For the nonparametric part, the

superiority of the two-step nonparametric estimator over Robinson’s in terms of Avariance

is not obvious as sample size increases. This result echoes with the previous finding in

Remark 4 that cross-equation correlation information might not be effectively used for the

two-step nonparametric estimator. However, with the extra step of the nonparametric SUR

estimation that effectively takes into account the cross-equation correlation, although there

is an increase in Abias, the reduction in Avariance is large enough such that the AMSEs

become much smaller than those of the Robinson single-equation and two-step nonparametric

estimators for all sample sizes considered.
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Table 1: Finite Sample Performance with Cross-Equation Correlation (σ12 = 0.6)

β1 β2 θ1(·) θ2(·)

n Bias Var MSE Bias Var MSE Abias Avar AMSE Abias Avar AMSE

Robinson’s single-equation — β̂s, θ̂s(·)

100 0.0025 0.0469 0.0469 0.0087 0.0464 0.0465 0.0000 0.0438 0.1754 -0.0078 0.0435 0.1727

200 0.0063 0.0198 0.0198 -0.0045 0.0211 0.0211 -0.0014 0.0230 0.0785 0.0148 0.0242 0.0822

400 0.0015 0.0094 0.0094 0.0045 0.0100 0.0100 0.0010 0.0122 0.0393 -0.0034 0.0124 0.0413

800 0.0028 0.0051 0.0051 0.0052 0.0052 0.0052 -0.0031 0.0073 0.0214 -0.0052 0.0073 0.0220

1600 0.0010 0.0025 0.0025 0.0002 0.0024 0.0024 -0.0005 0.0041 0.0113 0.0029 0.0040 0.0111

Partially linear SUR — β̂s,sur, θ̃s(·)

100 0.0046 0.0298 0.0298 0.0097 0.0309 0.0310 -0.0033 0.0421 0.1292 -0.0093 0.0414 0.1306

200 0.0050 0.0128 0.0128 -0.0017 0.0140 0.0140 0.0007 0.0223 0.0590 0.0104 0.0234 0.0634

400 -0.0011 0.0063 0.0063 0.0032 0.0066 0.0066 0.0052 0.0118 0.0306 -0.0011 0.0121 0.0322

800 0.0022 0.0034 0.0034 0.0039 0.0033 0.0034 -0.0021 0.0072 0.0170 -0.0031 0.0071 0.0169

1600 0.0012 0.0016 0.0016 0.0020 0.0017 0.0017 -0.0008 0.0040 0.0088 0.0001 0.0040 0.0090

Nonparametric SUR estimator — θ̃s,sur(·)

100 - - - - - - -0.0240 0.0376 0.1261 -0.0215 0.0241 0.1142

200 - - - - - - -0.0218 0.0207 0.0586 -0.0031 0.0130 0.0535

400 - - - - - - -0.0167 0.0110 0.0304 -0.0154 0.0068 0.0276

800 - - - - - - -0.0228 0.0057 0.0162 -0.0168 0.0036 0.0139

1600 - - - - - - -0.0171 0.0030 0.0081 -0.0117 0.0020 0.0073

Note: (1) This table compares the effects of sample size on the partially linear SUR and Robinson equation-by-equation
models when there exists cross-equation correlation (i.e., σ12 = 0.6). (2) For the partially linear SUR model, the parametric
components are estimated with the feasible SUR estimator, and the nonparametric components are estimated with the two-step
nonparametric estimator.
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5 Empirical example

As an empirical example, we use a firm-level Italian banking data set obtained from Bankscope.14

This data set covers information about 739 banks over 10 years from 1996 to 2005. The ob-

servations are indexed by i = 1, . . . , 2989. In this paper, we use the intermediation approach

(Sealey & Lindley 1977) and consider capital, labor, and purchased funds as the three bank-

ing inputs.15 They are used to produce the three outputs: loans, other earning assets, and

off-balance sheet accounts. The environmental factors include the three types of banking

risks—1) credit risk, measured by loan loss provisions in log; 2) solvency risk, measured by

equity capital amount in log; and 3) liquidity risk, measured by amount of liquidity assets in

log—along with a time trend. Note that an increase in one of these risk measures (e.g., loan

loss provisions in log) indicates a decrease in the corresponding risk level (e.g., credit risk

level). These environmental variables may affect the total cost of banks in unknown fashions.

Table B1 in Appendix B contains summary statistics of all the variables used.16 For ease of

comparison, the three different model specifications are estimated using the same data: 1)

the partially linear SUR model, i.e., (2.6) and (2.7); 2) the partially linear single-equation

model, i.e., (2.6) only; and 3) the linear SUR model, i.e., (2.6) and (2.7) in which θ(·) in (2.6)

is replaced by a linear parametric function of z. Results from all the models are reported in

Table B2, Table 2, and Figures 1–3.

Table B2 in Appendix B reports the translog cost function parameter estimates for input

prices and outputs. These parameters are not input price or output elasticities, and therefore

have few economic meanings. However, it can be seen that most parameter estimates are

the same in signs or similar in magnitudes across the three models. Most standard errors

under the partially linear SUR model are smaller than their partially linear single-equation

and linear SUR counterparts. The partially linear SUR and single-equation models contain

exactly the same number of parameters—this is because the share equations of the translog

cost system are the first-order partial derivatives of the translog cost function with respect

to input prices. However, the former utilizes more information from the additional share

14See bankscope2.bvdep.com for details.
15Purchased funds such as customer deposits are viewed as inputs which are used to produce loans and

other assets. See Hughes & Mester (1993) for more details about treating deposits as inputs in estimating
a cost function.

16See Resti (1997) for a brief introduction to the Italian banking system.
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equations for estimation, and therefore is expected to produce more efficient estimates.17

The partially linear and linear SUR models have the same number of equations, including

the share equations. However, the translog cost function of the partially linear model, Eq.

(2.6), is more flexibly specified than its linear parametric counterpart. This indicates that

the partially linear SUR has better goodness-of-fit, and therefore smaller estimated error

variance than the linear SUR.

Table 2 reports the mean and quartile values (Q1–Q3) of estimated elasticities and RTS.

The estimated input price elasticities are the estimated cost shares of inputs—they should

be close to the actual cost shares (S1–S3) reported in Table B1. It can be seen that the

partially linear SUR and linear SUR yield similar input price elasticity estimates, and the

mean estimates of these two models are close to the actual means of capital, labor, and

purchased funds shares, respectively, in Table B1. In particular, purchased funds (i.e.,

interest expenses) have the largest share of cost in producing the three outputs—the mean

of the estimated ∂ lnC/∂ lnW3 is 0.4364 from the partially linear SUR model. This result is

unsurprising as banks utilize portfolios of risk-free and risky-assets to generate income. In

contrast, the mean estimated cost share of capital is only 0.0777 from the partially linear

single-equation regression. Without exploiting the share equations, the seemingly flexible

single-equation regression fails to predict the capital share.

All the three models generate similar output elasticities, which can be viewed as the

marginal costs of producing the outputs, except that the elasticity estimates of other earning

assets (O2) under the linear SUR are slightly smaller than those under the other two models.

It is obvious that for all the models, it is the most costly to produce loans: for an average

bank under the partially linear SUR model, as the loan output increases by 1%, the total

cost increases by 0.4780%, ceteris paribus. To reduce the non-performing loans (NPLs) and

increase loan quality, extra tasks must be undertaken, such as additional credit monitoring

and screening of the borrowers, working out new contract terms on problem loans, selling

off the NPLs, etc.—all these activities would involve extra costs/efforts on the part of bank

managers (Berger & DeYoung 1997).

RTS is one of the most discussed topics in banking. For example, Mester (1996) found

17A caution is that too many share equations might inflate the estimated error variance in practice.
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Table 2: Summary Statistics of Elasticities and RTS

Input price elasticity Output elasticity RTS

∂ lnC
∂ lnW1

∂ lnC
∂ lnW2

∂ lnC
∂ lnW3

∂ lnC
∂ lnO1

∂ lnC
∂ lnO2

∂ lnC
∂ lnO3

Partially linear SUR

Mean 0.2492 0.3144 0.4364 0.4780 0.4127 0.0383 1.0843

Q1(25%) 0.2210 0.2708 0.3855 0.4563 0.3861 0.0185 1.0178

Q2(50%) 0.2489 0.3146 0.4376 0.4777 0.4062 0.0349 1.0916

Q3(75%) 0.2779 0.3603 0.4872 0.5006 0.4324 0.0541 1.1521

Partially linear single-equation

Mean 0.0777 0.5533 0.3690 0.4788 0.3997 0.0428 1.0995

Q1(25%) 0.0527 0.5056 0.3175 0.4526 0.3609 0.0180 1.0098

Q2(50%) 0.0752 0.5556 0.3687 0.4749 0.3894 0.0385 1.1096

Q3(75%) 0.0997 0.6050 0.4187 0.5026 0.4310 0.0642 1.1888

Linear SUR

Mean 0.2467 0.3159 0.4373 0.4681 0.2939 0.0497 1.2330

Q1(25%) 0.2168 0.2735 0.3789 0.4165 0.2247 0.0019 1.2150

Q2(50%) 0.2468 0.3164 0.4370 0.4746 0.2927 0.0495 1.2330

Q3(75%) 0.2786 0.3615 0.4935 0.5289 0.3633 0.0952 1.2500

Note: (1) The numeriare input price elasticity is calculated as

∂ lnC/∂ lnW1 = 1 −
∑J
j=2 ∂ lnC/∂ lnWj . (2) The RTS is calculated

as
(∑P

p=1 ∂ lnC/∂ lnOp

)−1
.
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increasing RTS by estimating a single translog cost function using a sample of 214 U.S. banks

from 1991 to 1992. Hughes & Mester (1998) had the similar finding by estimating a translog

cost system, including the share equations, with a sample of 286 U.S. banks from 1989 to

1990. Our finding in this paper—RTS is greater than unity—is in line with the previous

two papers. This indicates that banks could benefit from expansion via, e.g., mergers and

acquisitions. However, the RTS estimates under the linear SUR is overly large as they

substantially deviate from unity. The testing procedure described in Section 3.5 suggests

that the null of linear SUR is rejected at the 1% level and the alternative of the partially

linear SUR is preferred, given that the bootstrapped p-value is zero to the fourth decimal

place with 399 replications.

In all the three models, the productivity parameter, θ, depends on the environmental

factors z. It is easy to see that the marginal effects of z on θ are also the marginal effects of

z on total cost of production. For the partially linear models, the z variables shift the cost

function in fully flexible manners, given that θ is an unknown nonparametric function of z,

whereas for the parametric model, they only affect banks’ costs in linear manners. In this

application, the z variables include the three banking risks and time. It is important to take

account of risk-taking behavior of banks when investigating their performances (Hughes &

Mester 1998). Since risk exposure provides a bank with higher profit while risk management

that prevents the bank from failure requires additional costs, it would be desirable to examine

the marginal impact of risks on a bank’s performance, especially when a cost function is

employed to represent its technology. Meanwhile, the marginal effects of time on θ measure

technical change. The local-linear nonparametric SUR estimator provided in Section 3.3

facilitates the calculation of these marginal effects.

To easily compare and contrast the marginal effect estimates, Figure 1 plots the ker-

nel density functions for each of the estimators, along with a grey vertical line at zero to

highlight the heterogeneity of the marginal effects. It is obvious that the marginal effects

from the linear SUR are all constants—in particular, an increase in the measurements of

risks (i.e., a decrease in the risks), ceteris paribus, causes the total cost to increase, as the

degenerate marginal effects of all the risk variables are positive. This is because risk man-

agement requires extra costs, including additional non-interest expenses in administering the
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loan portfolios and managing financial capital and liquidity assets. However, the linear SUR

ignores the heterogeneity in these marginal effects. For banks that are exposed to lower

levels of risks, the managers might have less motivation to spend extra time and efforts in

controlling the risks, by skimping on the resources contributed to risk management (Hughes

& Mester 1993), leading to cost reduction. Indeed, the correlation coefficients between ∂θ/∂z

and the corresponding z are all significantly negative at the 5% level, which indicates that

low level of risks (i.e., large values of z’s) is associated with negative ∂θ/∂z.18 This hetero-

geneity can be captured by the flexible partially linear models as shown in Figure 1. For

the partially linear SUR model, both the two-step nonparametric estimator and nonpara-

metric SUR estimator are employed. It is obvious that for all the plots in Figure 1, the

nonparametric SUR estimates have much smaller variations than the two-step and single-

equation nonparametric counterparts. It can also be seen that for the marginal effects of

credit risk, the two-step and single-equation nonparametric estimators generate similar es-

timates. However, it seems that the single-equation one underestimates (overestimates) the

marginal effects of the solvency (liquidity) risk as most parts of its related density function

are to the left (right) of those of the density functions of the two-step nonparametric and

nonparametric SUR estimates, respectively. It is important for policy makers to correctly

understand these heterogeneous marginal effects, and therefore make appropriate regulations

for the banks to reduce the probability of bank failure with sound risk management while

not profoundly harming profitability.

Finally, technical progress is found for the Italian banking system during the period 1996–

2005: the marginal effect of time on total cost is -0.0154 from the linear SUR, indicating

that the total cost decreases by 1.54% per annum, ceteris paribus. This marginal effect esti-

mate is close to the mean counterparts from the two-step and single-equation nonparametric

estimators, which generate similar technical change estimates. According to Berger (2003),

technical progress in banking stems from improvements in information technology and the

use of financial engineering models to improve credit and portfolio analysis. Altunbas et al.

18To see this more clearly, in Figure 2 we first show a scatter plot of estimated θ with the nonparametric
SUR estimator against each risk variable, and then fit a locally weighted scatter plot smoothing (LOWESS)
regression line on each scatter plot. All the three fitted lines are inverse-U shaped. This means that the
slopes, ∂θ/∂z, decrease as the z’s increase, and therefore supports the negative correlation between the risk
measures and their marginal effects on the cost of production.
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Figure 1: Kernel Density Plots of Marginal Effects of z on θ(·)
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Note: The kernel density functions of the marginal effects of each environmental variable, z, on the cost of
production, θ(·), are plotted. For example, the upper left panel reports the marginal effects of credit risk on
cost of production. In this panel, kernel density functions from the four estimators are plotted for ease of
comparison. In addition, a grey vertical line at zero is drawn to highlight the heterogeneity of the marginal
effects.

Figure 2: LOWESS Plots of θ(·) on z
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Note: The locally weighted scatter plot smoothing (LOWESS) regression lines of θ(·) estimated with the
nonparametric SUR estimator on the risk variables are plotted. For example, in the first panel, we show a
scatter plot of estimated θ(·) on credit risk, before fitting a LOWESS regression line on the scatter plot.
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(1999) found similar evidence of cost diminution per annum due to technical progress using a

sample of European banks from 1989 to 1996. In fact, most of the nonparametric estimates

are to the left of the grey vertical line at zero in Figure 1, and therefore indicate technical

progress. Furthermore, most parts of the density function of the nonparametric SUR esti-

mates are to the left of those of the density functions of the two-step and single-equation

nonparametric estimates, indicating that the evidence of technical progress is stronger with

the nonparametric SUR estimator. The linear SUR fails to capture any possible technical

regress in banking that could happen during financial crisis. However, all the nonparametric

estimates generate technical regress for some observations—most of the technical regress

happened from 1997 to 1998 during the Asian financial crisis, which triggered a worldwide

economic downturn due to financial integration.

To see whether a marginal effect estimate from the nonparametric SUR estimator is

statistically significant at a conventional level, we conduct a cluster wild bootstrap to obtain

the standard error of each of the marginal effect estimate. Specifically, we first re-center the

residuals from the partially linear SUR model and obtain {ûi − ¯̂u}ni=1, where ¯̂u = 1
n

∑n
i=1 ûi,

∀s. Then, generate bootstrapped residuals, ubbi , where ubbi = [(1 −
√

5)/2](ûi − ¯̂u) with

probability (1+
√

5)/(2
√

5) and ubbi = [(1+
√

5)/2](ûi−¯̂u) with probability (
√

5−1)/(2
√

5), ∀i.

Next, generate the bootstrapped dependent variable by adding the bootstrapped residuals

to the fitted values of the partially linear SUR model, i.e., ybbi = θ̃sur(zi) + x′iβ̂sur + ubbi ,

where ybbi , ubbi , and xi are defined analogously as y∗i , ui, and x∗i , respectively, and θ̃sur(zi) ≡

(θ̃1,sur(zi), θ̃2,sur(zi), . . . , θ̃m,sur(zi))
′.19 Finally, we use the bootstrapped sample {ybbi , xi, zi}ni=1

to estimate the marginal effects, and call them the bootstrapped marginal effect estimates.

Repeat the preceding steps 399 times, and then for each observation, we would have a

sample of 400 marginal effect estimates, including the original marginal effect estimate. The

standard error of the estimate for each observation is calculated as the standard deviation

using the original and bootstrapped marginal effect estimates. For each observation, the

confidence interval is constructed by adding and subtracting twice the standard error from

the original marginal effect estimate.

To report all the marginal effect estimates and their statistical significance in a concise

19For the translog cost system, the nonparametric component is in the cost function only. Therefore, in
this particular example with a cost function and two share equations, θ̃2,sur(zi) = θ̃3,sur(zi) = 0.
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Figure 3: Marginal Effect Estimates and Their Confidence Intervals
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Note: The 45 degree plots of the marginal effect estimates of each environmental variable, z, on the cost of
production, θ(·), are presented. For example, the upper left panel reports the marginal effect estimates of
credit risk on cost of production (as circles), along with their confidence intervals (as triangles). The vertical
line at zero is drawn to highlight the heterogeneity of the marginal effects, and the horizontal line at zero
indicates statistical significance.
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manner, we use the 45 degree plot suggested by Zhang et al. (2012) and Henderson et al.

(2012) as shown in Figure 3. Particularly, in the upper left panel of Figure 3, we first

plot marginal effect estimates of credit risk against themselves—this would generate a 45

degree scatter plot, and then plot the upper and lower confidence bounds against marginal

effect estimates of credit risk, respectively. If an upper (lower) confidence bound is below

(above) the horizontal line at zero, then the marginal effect estimate for this observation

is significantly different from zero at the 5% level. If the horizontal line at zero passes

through a confidence interval, then the marginal effect estimate for this observation would

be statistically insignificant. Results show that marginal effects of credit risk, solvency risk,

and liquidity risk are significantly positive (negative) for 29.98% (4.55%), 17.16% (9.00%),

and 19.97% (7.09%) of the observations, respectively. This confirms the heterogeneity of

risk management across banks. There are 61.86% (4.12%) of the observations that exhibit

significant technical progress (regress). This shows that a majority of the banks enjoyed

technical progress over most years while technical regress occurred occasionally amid adverse

financial environment.

6 Discussion: heteroscedasticity in estimating produc-

tion system

The cost/profit function is correlated with the share equations as implied by Shephard/Hotelling’s

Lemma, and the share equations are correlated with each other due to input substitutability

(or complementarity). However, production decisions and degrees of input substitutability

might vary across firms because firms use different levels of inputs or face different produc-

tion environments (e.g., firm age, size, etc.), leading to heterogeneity of technology. There-

fore, contemporaneous correlations among equations can vary across observations (Chavas

& Segerson 1987, Mandy & Martins-Filho 1993).

To model the observation-specific contemporaneous correlations, let Ω = {ωsl}m,ms=1,l=1 be

the m×m variance-covariance matrix with a typical element ωsl, where
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ωsl =


σ1
sl 0 · · · 0

0 σ2
sl · · · 0

...
...

. . .
...

0 0 · · · σnsl

 ,

and σisl denotes contemporaneous correlations between the sth and lth equation for the ith

observation, ∀s, l = 1, . . . ,m and i = 1, . . . , n. To estimate these correlations, define σisl =

E (usiuli | xsi, xli, zsi, zli). First, obtain ûsi, ∀s = 1, . . . ,m, from the equation-by-equation

OLS estimation of (3.3). Then,

1. For s 6= l, estimate ûsiûli = g̃(xsi, xli, zsi, zli) + ẽsi, where g̃(·) is an unknown nonpara-

metric function and E (ẽsi | xsi, xli, zsi, zli) = 0. The estimated cross-equation scedastic

function, σ̂isl, is ̂̃g(xsi, xli, zsi, zli), and captures between-equation heteroscedasticity.

2. For s = l, estimate û2si = ḡ(xsi, zsi)+ ēsi, where ḡ(·) is another unknown nonparametric

function and E (ēsi | xsi, zsi) = 0, subject to the observation-specific inequality con-

straints that ̂̄g(·) ≥ 0, using the constraint weighted bootstrapping procedure (Hall &

Huang 2001, Du et al. 2013). The estimated scedastic function, σ̂iss, is ̂̄g(xsi, zsi) ≥ 0,

and captures within-equation heteroscedasticity.

The between- and within-equation heteroscedasticity in the context of the partially linear

SUR model can be detected by testing if the gradients of ̂̃g(·) and ̂̄g(·) are jointly significant

at a conventional level, respectively.20 Let Ω̂ = {ω̂sl}m,ms=1,l=1, and the heteroscedasticity-

corrected SUR estimator can be written as

β̂csur =
(
X̂∗′Ω̂−1X̂∗

)−1 (
X̂∗′Ω̂−1Ŷ ∗

)
,

where X̂∗ is an mn× q stacked block diagonal matrix and Ŷ ∗ is an mn-vector as defined in

Section 3.

20See Racine (1997) for a consistent significance testing procedure for nonparametric regression.
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7 Conclusions

This paper extends Robinson (1988) partially linear single-equation regression model to a

partially linear SUR model in a straightforward manner. The parametric component is

estimated via a two-step feasible SUR estimation procedure, and the resulting SUR estima-

tor achieves root-n convergence and asymptotic normality. The nonparametric component

is more efficiently estimated with a nonparametric SUR estimator based on the Cholesky

decomposition. A model specification test for alternative parametric functional forms is

proposed, and conducted using a novel cluster bootstrap procedure.

To establish a connection between the partially linear SUR model and production theory,

we propose a partially linear translog cost system that consists of a partially linear translog

cost function and a set of share equations derived via Shephard’s Lemma. Given that the

share equations have the same parameters as the cost function, it would be more efficient to

estimate the cost system than estimating a single cost function. The nonparametric com-

ponent of the cost function is interpreted as a productivity parameter which is an unknown

nonparametric function of z.

A firm-level Italian banking data set obtained from Bankscope is used to estimate the

translog cost system. We find that the partially linear SUR model produces more efficient

and reasonable estimates than the partially linear single-equation and linear SUR counter-

parts. The model specification test suggests that the partially linear SUR is preferred to its

linear counterpart. Furthermore, the partially linear SUR model estimated with the non-

parametric SUR estimator better captures marginal effects of banking risks and time on cost

of production than the other competing estimators considered in this paper.

Finally, the model can be further extended to a panel data SUR with fixed effects possibly

via the least squares dummy variable approach. Besides, non-contemporaneous correlations

among equations can possibly be modeled without changing the framework of the GLS

estimator.
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Appendix A Proof of theorems

Proof of Theorem 1. From Zellner (1962), we have
√
n (βsur − β)

d−→ N (0,Vβ) where Vβ =

(E (x∗iΣ
−1
m x∗′i ))

−1
provided that Σ̂−1m has a parametric convergence rate to Σ−1m . This con-

dition for a semiparametric model is easy to verify given that the unconditional error vari-

ance estimator for the nonparametric regression has a parametric convergence rate; see,

e.g., Theorem 2 of Martins-Filho & Yao (2006). We complete the proof by showing that
√
n
(
β̂sur − βsur

)
= op(1).

Let An ≡ 1
n

∑n
i=1 x

∗
i Σ̂
−1
m x∗′i , Bn ≡ 1

n

∑n
i=1 x

∗
i Σ̂
−1
m y∗i , Ân ≡ 1

n

∑n
i=1 x̂

∗
i Σ̂
−1
m x̂∗′i , and B̂n ≡

1
n

∑n
i=1 x̂

∗
i Σ̂
−1
m ŷ∗i . We have β̂sur = Â−1n B̂n and βsur = A−1n Bn. By Theorem 2.6 in Li &

Racine (2007) together with the bias reduction method using a high-order kernel,21 under

Assumption A1–A4, for a compact subset Gz, we have sup
z∈Gz
|ĝsx(z)− gsx(z)| = Op(Lsn) where

Lsn ≡
(

logn
nhpss

) 1
2

+ hrss . In what follows, we show that Ân = An + op
(
n−1/2

)
and then

B̂n = Bn + op(n
−1/2) follows in a similar manner. Given that both An and Bn are Op(1), we

have Â−1n B̂n = A−1n Bn + op(n
−1/2), which completes the proof.

Let di ≡ x̂∗i − x∗i , then

Ân − An =
1

n

n∑
i=1

diΣ̂
−1
m x∗′i +

1

n

n∑
i=1

x∗i Σ̂
−1
m d′i +

1

n

n∑
i=1

diΣ̂
−1
m d′i ≡ A1n + A2n + A3n.

Given that di = Op(Ln) uniformly where Ln ≡
∑m

s Lsn, we have A3n = Op(L
2
n) = o(n−1/2)

by Assumption A4.

As A2n = A′1n, we only examine the order of A1n here. Let Σ̂−1m ≡ {v̂sl}
m,m
s,l=1 and a typical

(s, l)th block of A1n be asl ≡ v̂sl
1
n

∑n
i=1(x̂

∗
si − x∗si)x∗′li of dimension qs × ql. Then the (k, j)th

element of asl is

asl,kj ≡ −v̂sl
1

n

n∑
i=1

(ĝsx,k(zsi)− gsx,k(zsi))x∗li,j,

where ĝsx,k(z) denotes the kth element of the vector ĝsx(z) and gsx,k(z) and x∗li,j are defined

21See also Theorem 2 of Geng et al. (2020).
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similarly. By Eq. (3.4), we have

ĝsx,k(zsi)− gsx,k(zsi) =
1

f̂sz(zsi)

1

nhpss

n∑
t=1

Ks

(
zst − zsi
hs

)[
x∗st,k + (gsx,k(zst)− gsx,k(zsi))

]
,

where f̂sz(z) ≡ (nhpss )−1
∑n

t=1Ks

(
zst−z
hs

)
is the Rosenblatt density estimator for the density

function fsz(z) of zsi. As f̂sz(z) has the same uniform convergence rate of Op(Lsn) to fsz(z)

and fsz(z) is uniformly bounded away from zero, we have

ĝsx,k(zsi)−gsx,k(zsi) =
1

fsz(zsi)

1

nhpss

n∑
t=1

Ks

(
zst − zsi
hs

)[
x∗st,k+(gsx,k(zst)−gsx,k(zsi))

]
+Op(L

2
sn).

Given that 1
n

∑n
i=1 |x∗li,j| = Op(1), we have asl,kj = −v̂sl (Q1n +Q2n) + op(n

−1/2), where

Q1n ≡
1

n2hpss

n∑
i=1

n∑
t=1

1

fsz(zsi)
Ks

(
zst − zsi
hs

)
x∗st,kx

∗
li,j,

and

Q2n ≡
1

n2hpss

n∑
i=1

n∑
t=1

1

fsz(zsi)
Ks

(
zst − zsi
hs

)
(gsx,k(zst)− gsx,k(zsi))x∗li,j.

For Q1n, let ψnit ≡ (hpss fsz(zsi))
−1Ks

(
zst−zsi
hs

)
x∗st,kx

∗
li,j and we have Q1n = 1

n2

∑n
i=1

∑n
t=1 ψnit

= 1
n2

∑n
i=1 ψnii + 1

n2

∑n
i=1

∑n
t=1

i 6=t
ψnit ≡ E1n + E2n. Given that E (E1n) = 0 and Var (E1n) =

n−3E (ψnii) = O(n−3h−2pss ) = o(n−1), by Chebyshev’s Inequality we have E1n = op(n
−1/2).

Let Un ≡
(
n
k

)−1∑n
i=1

∑n
t=1

i<t

φnit be a U -Statistic of degree 2 where φnit ≡ ψnit + ψnti and

we have |E2n| ≤ C|Un|. The order of the U -Statistic can be analyzed by examining the

orders of each component in its Hoeffding’s H-decomposition in Hoeffding (1961). Let wi ≡

(z′si, z
′
li, xsi,k, xli,j)

′. In our case, we have Un = θn + 2H
(1)
n + H

(2)
n , where θn ≡ E (φnit) = 0

as E
(
x∗st,k | zst

)
= 0, H

(1)
n ≡ 1

n

∑n
i=1 φ1n(wi) ≡ 1

n

∑n
i=1 E (φnit | wi) = 0 as E

(
x∗st,k | zst

)
=

E
(
x∗lt,j | zt

)
= 0, and H

(2)
n = Un. By Theorem 1 in Yao & Martins-Filho (2015), the order

of H
(2)
n is determined by n and the leading variance σ2

2n ≡ Var (φn), specifically, H
(2)
n =

Op

(
(σ2

2n/n
2)1/2

)
. It is straightforward that σ2

2n = Op(h
−ps) given E

(
x∗2st,k | zt

)
≤ C , which

gives that H
(2)
n = Op

(
(nhps)−1/2n−1/2

)
= op

(
n−1/2

)
. Therefore, we have Q1n = op

(
n−1/2

)
.

Analysis about the order of Q2n is similar. We use the same set of notations for the U -
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Statistic and let ψnit ≡ (hpss fsz(zsi))
−1Ks

(
zst−zsi
hs

)
(gsx,k(zst)−gsx,k(zsi))x∗li,j. As ψnii = 0, we

have Q2n = 1
n2

∑n
i=1

∑n
t=1

i 6=t
ψnit ≡ E3n and |E3n| ≤ C|Un| where Un ≡

(
n
k

)−1∑n
i=1

∑n
t=1

i<t

φnit =

θn+2H
(1)
n +H

(2)
n is a U -Statistic of degree 2 with φnit ≡ ψnit+ψnti. Similar to the arguments

for Q1n, here let wi ≡ (z′si, z
′
li, xli,j)

′ and we have θn = 0 and E (ψnti | wi) = 0 as E
(
x∗li,j | zi

)
=

0. Then we have

φ1n ≡ E (φnit | wi) = E (ψnit | wi)

= (hpss fsz(zsi))
−1 x∗li,jE

(
Ks

(
zst − zsi
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)
(gsx,k(zst)− gsx,k(zsi)) | zsi

)
,

and σ2
1n ≡ Var (φ1n) ≤ E (φ2

1n) = Op (h2rss ) = op(1) by Assumption A3 b) with a high-order

kernel. For σ2
2n, we have

σ2
2n = Var (φnit) ≤ CE

(
ψ2
nit

)
= Cσ2

lx,jE
(

(hpss fsz(zsi))
−2K2

s

(
zst − zsi
hs

)
(gsx,k(zst)− gsx,k(zsi))2

)
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2−ps
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By Theorem 1 in Yao & Martins-Filho (2015), we have H
(1)
n = Op

(
(σ2

1n/n)1/2
)

= op(n
−1/2)

and H
(2)
n = Op

(
(σ2
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(
n−1/2hs(nh

ps
s )−1/2

)
= op(n

−1/2). Therefore, we have

Q2n = op
(
n−1/2

)
and the proof is complete.

Proof of Theorem 2. By Theorem 1, we have β̂s,sur − βs = Op

(
n−1/2

)
. Therefore,

√
nhpss

(
θ̃s(z)− θs(z)

)
=
√
nhpss

(
ĝsy(z)− gsy(z)− (ĝsx(z)− gsx(z))′ βs

)
−
√
nhpss (ĝsx(z)− gsx(z))′

(
β̂s,sur − βs

)
−
√
nhpss gsx(z)′

(
β̂s,sur − βs

)
,

where the last two terms are op(1) given the consistency of ĝsx(z) and hs = o(1). For the first

term, its asymptotic properties can be analyzed in a similar manner as the proof of Theorem

4 by Geng et al. (2020). Actually the analysis is simpler here as there is no endogeneity

issue and we do not need to use the so-called “instrument” function for identification of an

additive structure of the nonparametric part. Following their Step 1 and 2 in the proof (we
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do not have the term in Step 3), we have

√
nhpss (ĝsy(z)− gsy(z)− bsy(z))

d−→ N (0,Vsy) ,

where bsy(z) ≡ hpss f
−1
sz (z)µks,rs

∑rs
k=1

1
k!(rs−k)

∑ps
j=1 Dk

j gsy(z)Drs−k
j fsz(z) + op(h

ps
s ) and Vsy =

f−1sz (z)σ2
sy

∫
K2
s (γ) dγ. Extending this analysis to the term

√
nhpss

(
(ĝsx(z)− gsx(z))′ βs

)
and

given that θs(z) = gsy(z)− gsx(z)′βs, we have

√
nhpss

(
ĝsy(z)− gsy(z)− (ĝsx(z)− gsx(z))′ βs − bs,1(z)

) d−→ N (0,Vs,1) ,

where bs,1(z) ≡ hpss f
−1
sz (z)µks,rs

∑rs
k=1

1
k!(rs−k)

∑ps
j=1 Dk

j θs(z)Drs−k
j fsz(z) + op(h

ps
s ) and Vs,1 =

f−1sz (z)σss
∫
K2
s (γ) dγ. The proof is complete.
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Appendix B Data summary and translog parameters

Table B1: Summary Statistics of the Variables

Symbol Variable name Mean SD Min Max

C Total cost (thousands USD) 148,745.76 581,477.33 637.05 9,795,565.82

O1 Loans (thousands USD) 1,586,346.49 6,297,792.74 5,501.32 103,512,670.90

O2 Other earning assets (thousands USD) 1,044,387.57 4,490,291.04 5,005.51 90,949,857.57

O3 Off balance sheet (thousands USD) 785,074.86 4,290,790.06 74.60 76,676,128.04

W1 Capital price 0.93 0.43 0.00 2.41

W2 Labor price 0.02 0.00 0.00 0.03

W3 Purchased funds price 0.04 0.01 0.01 0.07

S1 Capital share 0.26 0.07 0.05 0.83

S2 Labor share 0.31 0.07 0.02 0.51

S3 Purchased funds share 0.43 0.10 0.09 0.88

Environmental variables (z)

Credit risk Loan loss provisions in log 7.18 1.92 4.31 14.02

Solvency risk Equity capital amount in log 10.72 1.59 7.38 16.48

Liquidity risk Amount of liquidity assets in log 11.68 1.58 7.49 17.55

Time (t) Time trend 4.97 2.32 1.00 10.00

Note: (1) The number of obs. is 2,989. (2) Time t is calculated as (year− 1995), where year goes from 1996 to
2005.
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Table B2: Translog Cost Function Parameter Estimates

Partially linear Partially linear Linear

SUR single-equation SUR

Estimate SE Estimate SE Estimate SE

β22 0.1630 0.0019 0.1506 0.0182 0.1569 0.0021

β23 -0.1305 0.0015 -0.1282 0.0110 -0.1256 0.0016

ρ21 0.0275 0.0014 -0.0052 0.0049 0.0325 0.0016

ρ22 -0.0124 0.0012 0.0130 0.0064 -0.0162 0.0015

ρ23 -0.0115 0.0009 -0.0256 0.0023 -0.0122 0.0011

β33 0.1640 0.0020 0.1576 0.0139 0.1680 0.0019

ρ31 -0.0163 0.0011 -0.0163 0.0017 -0.0501 0.0019

ρ32 0.0018 0.0009 0.0042 0.0047 0.0327 0.0017

ρ33 0.0166 0.0011 0.0190 0.0019 0.0193 0.0012

α11 0.0353 0.0069 0.0445 0.0067 0.1626 0.0103

α12 -0.0220 0.0041 -0.0201 0.0039 -0.1009 0.0072

α13 -0.0028 0.0013 -0.0089 0.0017 -0.0568 0.0049

α22 0.0334 0.0138 0.0414 0.0127 0.1628 0.0084

α23 0.0082 0.0015 0.0074 0.0014 -0.0489 0.0052

α33 0.0082 0.0023 0.0169 0.0023 0.0882 0.0038

β2 0.4720 0.0086 0.9194 0.0835 0.4567 0.0107

β3 0.4478 0.0110 0.3145 0.0666 0.4978 0.0113

α1 0.3925 0.0720 0.1943 0.0692 0.2510 0.0488

α2 0.1531 0.1589 0.1373 0.1467 0.1565 0.0488

α3 -0.1051 0.0210 -0.1566 0.0207 0.4010 0.0305

Note: The translog parameter estimates of the input prices and
outputs, along with their standard errors, are reported for the
three models.
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