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Abstract: 

To explore factors that may be contributing to the underrepresentation of women in patenting, we adopt 
a model that explores: (i) the relationship between local economic and inventive environments and 
increasing women inventor participation, and (ii) how higher education influences a county’s probability of 
hosting its first woman inventor. To this end, we combine patent grant and inventor gender and location 
information from PatentsView (1990-2019) with U.S. Census and Bureau of Economic Analysis county-level 
higher education and economic information. Our findings indicate that a county’s per-capita income and 
labor force size had small but positive effects on increasing the number of women inventors. The evidence 
favors an environment of other inventors as being relatively more influential to expanding the number of 
women inventors. Counties with higher patenting activity in chemistry technologies had the highest and 
most consistent impact on increasing women inventor counts. We further find that team size has a non-
linear relationship with women inventorship. While average team size is 2.7, larger teams (4.475) have a 
higher propensity to have women inventors, but then decreases as team size increases thereafter. The 
effect of team size also varies regionally. For example, larger inventor teams in the USPTO Silicon Valley 
region had the highest likelihood of adding women inventors relative to the other USPTO regions. 5 
Interestingly, although the size of all male inventor teams was weakly complementary to women inventor 
counts in all areas of the country, its effect was largest on the East Coast.  
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Assessing Factors that Influence Women’s Participation in the Invention Ecosystem  

Motivation 

There is increasing recognition among U.S. public and private sectors that a lack of diversity in intellectual 
property (IP) fields hinders technological progress (Bell et al. 2019). In response, various initiatives to 
diversify representation in IP, especially among women, minorities, and veterans, have moved to the 
forefront of policy discussions in recent years. 6   

Women’s underrepresentation in the IP ecosystem continues to be a persistent problem as women make 
up about 13% of US inventors as of 2019 (Toole et al. 2020). Bunker-Whittington and Smith-Doerr (2008) 
investigate lower patenting rates of female life scientists (which includes chemistry, the most prolific 
patenting field for women) and find that, conditional on education and career history, women are less likely 
to patent than men.  In addition, Delgado, Mariani and Murray (2019) test the hypothesis that women are 
more geographically constrained than men, finding that women source their knowledge for patenting more 
locally than men.  

While it is established that there is persistent, secular underrepresentation of women in all of U.S. IP, 
Delgado, Mariani and Murray (2019) elude to significant geographical heterogeneity of women’s 
participation throughout the U.S.  Related studies on geographical inequality have largely focused on 
regional disparities as it pertains to a narrow definition of human capital accumulation, such as access to 
education (Logan et al. 2012) and wages and income (for example, Nunn et al. 2018). Our analysis indicates 
regional differences in women inventor counts as our measure for human capital. For example, figure 1a 
and b show three-year average counts of unique women inventors by county between 1990-1992 and 
2017-2019. In 1990-1992, the most concentrated areas of women inventors were in the Silicon Valley and 
East Coast regions. By 2017-2019, Silicon Valley and East Coast regions maintained their dominance in 
women’s participation, but there is expansion in the middle of the country, particularly around large cities 
such as Denver, Minneapolis-St. Paul and Houston, TX. We propose to extend the analysis of geographical 
human capital inequality measured via women’s patenting rates, disaggregating based on USPTO regional 
areas. 

                                                             
6 Despite notable growth in the last 40 years, women remain underrepresented at all points in the IP lifecycle (SUCCESS Act 
2018), from applying for and being granted a patent, to staying active by inventing again, (USPTO 2019 & USPTO 2020) to seeking 
commercialization for their patents (Shaw and Hess 2018). This is shown in several USPTO studies, which calculate measures of 
women’s involvement in patenting and track progress. Although the Women Inventor Rate (WIR) continues to increase, it is still 
only 12.84% of the total patent inventor population for 2019. This is significantly lower than other benchmarks of women’s 
education and employment as scientists and engineers (National Science Board 2020). 
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Figure 1a. Unique Women Inventors by USPTO Region, (1990-1992) 

 

 

Figure 1b. Unique Women Inventors by USPTO Region, (2017-2019)  



3 
 

In this analysis, we investigate factors that capsulize conditions within the female inventor’s environment. 
Specifically, we examine the effects of team size, the number of all male inventor teams and local presence 
and concentration of R&D by technology fields on women’s representation in patenting. Following past 
literature, we assume that team size is a proxy for capital investment (Breitzman and Thomas, 2015) where 
small team sizes approximate lower capital investment. There is evidence suggesting that gender 
inclusiveness is particularly useful with development of the most novel technologies (Díaz-García, González-
Moreno and Saez-Martinez, 2013), where perhaps smaller teams are more prevalent and where capital 
investment is lower because of perceived high investment risk. Following this literature, we hypothesize 
that women inventor counts have a non-linear relationship with team size. Considering the regional 
clustering of technology fields (Kerr and Robert-Nicoud, 2020), we suspect that team size will differentially 
effect women’s representation by region and by technology field. In addition, we believe that higher 
educational attainment will have a positive effect on accommodating women inventors in a county.   

Data 

For patent, inventor, and inventor teams, we draw from the PatentsView (PV) database that contains 
information on the gender and location of inventor-patentees.7 Economic variables specified at the county 
level are sourced from the Census, Bureau of Labor Statistics (BLS) and the Bureau of Economic Analysis 
(BEA).8 

Table 1 provides summary statistics for our variables of concern. Our data span through years 1990 to 2019. 
Our dependent variable is county-level women inventor counts. We control for average county per capita 
income and labor force numbers and are interested in the effects of team size, number of all male inventor 
teams, and technology field on the propensity to generate additional women inventors at the county-level. 
We are also interested in understanding the effect of educational attainment on generating a county’s first 
woman inventor.  

Data Construction 

Using PV data we construct our dependent variable, number of women inventors, by county and year. PV 
provides gender attributed, location specific patent grant data for all patents from 1976-2019. We summed 
the number of unique female inventors for every county and year combination to generate number of 
women inventors. Similarly, PV lists all inventor names for every patent. We identified team size of every 
patent and averaged this to get the average team size for every county-year combination. Because PV 
provides gender attributed data, we were also able to identify all male inventor teams. Because the location 
of inventors within a team can vary, we counted the team in every inventor location reported in each 
patent.  

PV also provides data for the Cooperative Patent Classification (CPC) for every patent, we used the eight 
CPC sections to categorize every patent in our dataset to a technology field9. For the indicator variables, a 
county-year observation would be assigned a technology field if at least one patent in a county-year was 

                                                             
7 See www.PatentsView.org. 
8 See Table 1 for variables, data coverage and source. 
9 The eight CPC sections are: Human necessities, Performing operations; transporting, Chemistry; metallurgy, Textiles; paper, Fixed 
constructions, Mechanical engineering; lighting; heating; weapons; blasting engines or pumps, and Physics, Electricity IPC. For more 
information see: https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/classification/cpc.html.  

https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/classification/cpc.html
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designated a particular CPC section. The %CPC(1-8)  variables were created as the percentage of patents 
within each county-year under one of the nine CPC sections.  

Labor force are county-year level data which gives the number of people who are working or actively 
looking for work. The data come from the BLS Local Area Unemployment Statistics (LAUS) program.  

Per capita income data is sourced from the Bureau of Economic Analysis. County-year level averages of per 
capita income are used in our analysis.  

Using IPUMS NHGIS data, we combine Census decennial data and 5-Year American Community Survey 
(ACS) estimates to construct our education variables. For the intervening years for which we do not have 
education estimates (1991-1999), we used a linear interpolation to infer educational attainment values. 
Starting in 2005, Census changed their data collection process to the American Community Survey (ACS), 
which collects data in all counties every 5 years. Although a new 5-year ACS is published annually, due to 
guidance from Census concerning overlapping 5 year estimates, we use a stepwise construction for the 
years 2005-201910. Specifically, the 2005 5-year ACS education estimates for years 2005-2009, the 2010 
5-year ACS is used from years 2010-2014, and the 2015 estimate for 2015-2019. For the years in between 
the decennial and implementation of the 5 year ACS (2000-2004), we linearly interpolated from the 2000 
decennial Census to the 2005 5 year ACS estimates. This gives the number of women with a bachelors, 
masters and PhDs for every county and between 1990-2019. 

Summary Statistics 

Table 1 indicates that the average inventor team size is 2.7, while there are 72 all male inventor teams in a 
typical county. In terms of technology concentrations, patents in Human necessities, Performing 
operations; transporting had the highest average county-wide technology concentrations at 23%. Textiles; 
paper was the lowest while Chemistry and Mechanical patents were on average 10% and 11% of technology 
concentration respectively for a typical county. In terms of the percentage of counties with at least one 
patent in any of the eight technology fields, we see that nearly 67% of year-county observations had patents 
in performing operations; transporting technology fields, while only 15% of counties have patents in 
textiles; paper. Patents in Chemistry; metallurgy which is known to have the highest rates of women 
inventors were present in 43% of counties, while  Mechanical engineering; lighting; heating; weapons; 
blasting engines or pumps, known to have one of the lowest levels of female representation, is present in 
50% of year-county observations (Toole et al., 2019). Finally, as expected the average number of Bachelors 
graduates was highest at almost 7,500 per county with a precipitous drop in the number of PhD holders at 
almost 350 graduates for an average county.   

Methods 

The present analysis assesses how economic, technology, and team factors influence women inventor-
patentees, as well as differences in how various levels of education influence the probability that a U.S. 
county has a woman inventor-patentee. The analysis uses the zero-inflated negative binomial (zinb) model. 
A strength of the zinb model is that it accommodates data with excessive zeros (Lambert, 1992; Lord et al., 
2004; Raihan et al., 2019). This is of particular applicability to our analysis, as the majority of U.S. counties 
in our sample do not have a woman inventor in 1990-2019. Alternatively, some counties (ir)regularly hosted 
                                                             
10 See https://www.census.gov/programs-surveys/acs/guidance/estimates.html. 
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women inventors. Thus, there are two different processes in our data – one in which counties may or may 
not be attempting (unsuccessfully) to create an environment conducive to women inventors, and one in 
which the innovation ecosystem is present and attracts, produces, and supports women inventors. 

The zinb model is uniquely suited to account for these different processes. It is a mixed model, combining 
a logistic function to estimate how education influences the probability that a county will have its first 
woman inventor, and a negative binomial function to estimate how economic factors influence the number 
of women inventors. To generate additional insight, we further specify a model that allows for comparison 
of the economic and educational factors across USPTO regions11.  

As noted by table 1, the dependent variable, women inventor counts, is overdispersed. Overdispersion 
occurs when the data’s distributional variance exceeds its mean. In the event that the data is not 
overdispersed, a zero-inflated Poisson (zip) model is most efficient (Cameron and Trivedi, 2005). We test 
the women inventor data for overdispersion in three ways. As previously mentioned, we examine whether 
the mean-to-variance ratio > 1 among the number of women inventor counts. Second, our model estimates 
an alpha (𝛼𝛼) parameter that tests for overdispersion after including explanatory variables in our zinb model 
of women inventors. Third, we test whether the zero-inflated poisson (zip) model is more appropriate for 
these count data. All three tests confirm our application of the zinb. Essentially, the zinb inverts to a zip 
model when the mean equals the variance. 

Empirical Model 

We allow counts of women inventors (y) in county i to be distributed, 

𝑦𝑦𝑖𝑖~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜇𝜇𝑖𝑖),      (1) 

where 𝜇𝜇𝑖𝑖 = exp (𝐗𝐗𝑖𝑖𝚩𝚩 + 𝑣𝑣𝑖𝑖) is the mean woman inventor frequency, and 𝑒𝑒𝑣𝑣𝑖𝑖~𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 �1
𝛼𝛼

, 𝛼𝛼� (Stata, 2019, 

p.1635). Equation (1) states that counts of women inventors may be explained by a vector of independent 
variables(X), estimable parameters (𝛃𝛃), an unobserved parameter 𝑣𝑣𝑖𝑖 , and the overdispersion parameter 𝛼𝛼. 
When α = 1 , y is Poisson distributed and the zip model is most efficient. When α > 1 , y is distributed by 
a negative binomial process and the zinb model is more appropriate than the zip. 

 

 

 

 

 

 

 

                                                             
11 The USPTO Regions are the Following: East Coast, Midwest, South/Texas, Rocky Mountain (Mountain) and Silicon Valley/West 
Coast.  
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Table1. Pooled summary statistics  

 

There are three elements to the zinb model. The first is a probability density function (PDF) of observing 
county i with zero women inventors (y):  

Pr(𝑦𝑦𝑖𝑖 = 0) = 𝐹𝐹𝑖𝑖 + (1 − 𝐹𝐹𝑖𝑖)𝑓𝑓(𝑦𝑦𝑖𝑖 = 0)     (2) 

(Stata, 2019, pp. 1635, 2859; Raihan et al., 2019). Note, there are two terms in (2), indicating that there are 
two possible explanations for observing a county with zero women inventors. The first term, 𝐹𝐹𝑖𝑖 , is the 
probability of observing a structural-zero county and is determined by a logistic distribution function where 

𝐹𝐹𝑖𝑖 = 𝜆𝜆𝑖𝑖
1+𝜆𝜆𝑖𝑖

 and 𝜆𝜆𝑖𝑖 = exp (𝒁𝒁𝒊𝒊Δ). Structural-zero counties are those that have not produced a women 

inventor. The second term in (2), (1 −𝐹𝐹𝑖𝑖)𝑓𝑓(𝑦𝑦𝑖𝑖 = 0) follows a negative binomial distribution of women 
inventors. These counties host women inventors. Some of these counties, however, do not consistently 
host women inventors each year. Hence, they are termed observational zero counties.  

Once the model determines that a county has or currently hosts women inventors, a second PDF is used to 
calculate the probability of observing the number of women inventors in non-zero counties, given by,  

Pr(𝑦𝑦𝑖𝑖 > 0) = (1 −𝐹𝐹𝑖𝑖)𝑓𝑓(𝑦𝑦𝑖𝑖 ).       (3) 

µ σ Min Max
Dependent Variable (PatentsView)

# of women inventors 7.1           46.5           0.0 2,956.0         
Economic variables

Labor force (BLS) 64,863.2 178,897.4 261.2    5,121,584.0 
Per capita income (BEA) 30,437.8 12,390.3   7,096.0 230,141.0    

Inventor team variables (PatentsView)
Team size 2.7           1.3             1.0         23.0              
# of all male teams 72            401            0 21,415          

% of counties with Cooperative Patent Classification (CPC) concentrations (PatentsView)
Human necessities 23% 28% 0% 100%
Performing operations; transporting 23% 28% 0% 100%
Chemistry; metallurgy 10% 18% 0% 100%
Textiles; paper 2% 8% 0% 100%
Fixed constructions 7% 18% 0% 100%
Mechanical engineering; lighting; heating; weapons; blasting engines or pumps 11% 21% 0% 100%
Physics 14% 21% 0% 100%
Electricity 11% 19% 0% 100%

Human necessities 64% 48% 0% 100%
Performing operations; transporting 67% 47% 0% 100%
Chemistry; metallurgy 43% 49% 0% 100%
Textiles; paper 15% 36% 0% 100%
Fixed constructions 38% 49% 0% 100%
Mechanical engineering; lighting; heating; weapons; blasting engines or pumps 50% 50% 0% 100%
Physics 51% 50% 0% 100%
Electricity 45% 50% 0% 100%

Women's education (Census)
Bachelors 7,483.1   23,522.4   17.0 761,572.0    
Masters 3,192.2   10,135.7   0.0 287,419.0    
PhDs 348.5       1,308.4      0.0 40,577.0       

N= 63,946

Technology indicators by CPC
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Figure 2. Distribution of women inventor counts by county and year 

 

Notably, nested in equation (3) is the third element of the zinb model, link function, 𝑓𝑓(𝑦𝑦𝑖𝑖 ). The link function 
is used to express mean rate µ and overdispersion parameter α as a function of the regression’s 
independent variables with a negative binomial distribution, 𝚪𝚪(. ), and is given by, 

𝑓𝑓(𝑦𝑦𝑖𝑖 ) = Pr(𝑌𝑌 = 𝑦𝑦𝑖𝑖 |𝜇𝜇𝑖𝑖,𝛼𝛼) = 𝚪𝚪(𝑚𝑚+𝑦𝑦𝑖𝑖)
𝚪𝚪(𝑦𝑦𝑖𝑖+1)𝚪𝚪(𝑚𝑚)

𝑝𝑝𝑖𝑖𝑚𝑚(1 − 𝑝𝑝𝑖𝑖)𝑦𝑦𝑖𝑖    (4) 

where 𝐺𝐺 = 1/𝛼𝛼, 𝑝𝑝𝑖𝑖 = 1/(1 + 𝛼𝛼𝜇𝜇𝑖𝑖). Substituting (4) into (2) and (3), adding (2) and (3) together, and taking 
logs forms the following log-likelihood function:    

𝑙𝑙𝑃𝑃L = �𝑤𝑤𝑖𝑖ln {𝐹𝐹𝑖𝑖 + (1 −𝐹𝐹𝑖𝑖)
𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖𝑚𝑚} +�𝑤𝑤𝑖𝑖{ln
𝑖𝑖∉𝑖𝑖

(1 −𝐹𝐹𝑖𝑖) +  𝚪𝚪(𝐺𝐺+ 𝑦𝑦𝑖𝑖) 

−𝚪𝚪(𝑦𝑦𝑖𝑖 + 1) −𝚪𝚪(𝐺𝐺) +𝐺𝐺ln𝑝𝑝𝑖𝑖 + 𝑦𝑦𝑖𝑖(1 −𝑝𝑝𝑖𝑖)}.     (5) 

The zinb model estimates simultaneously the probabilities given in (2) and (3) in a single log-likelihood 
function, nesting the negative binomial distribution of non-zero counties, 𝚪𝚪(. ), inside the logistic 
distribution,𝐹𝐹𝑖𝑖  . S in equation (5) is the set of counties that do not have women inventors (𝑦𝑦𝑖𝑖𝑖𝑖 = 0), and 𝑤𝑤𝑖𝑖  
are weights (Stata 2019, p.2859).  

Empirical Application 

We first ask how average education levels in a county influence the probability that a county hosts its first 
woman inventor. Specifically, we test three categories of female educational attainment:  number of 
women with bachelor’s degrees (bachelors), master’s degrees (masters), and PhDs (phd). We expect that 
education has a positive and increasing influence on the likelihood a county hosts a woman inventor.  

We specify the logistic distribution function shown in equation (2) to account for time (1990-2019), 
although as shown above the empirical model implemented pools the data’s time series dimension: 
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𝜆𝜆𝑖𝑖𝑖𝑖 = exp(𝒁𝒁𝒊𝒊𝒊𝒊Δ) = exp�𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛿𝛿� = exp (𝛿𝛿0 + 𝛿𝛿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝐺𝐺𝑓𝑓ℎ𝑒𝑒𝑙𝑙𝑃𝑃𝑒𝑒𝑃𝑃𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑓𝑓𝑚𝑚𝑓𝑓𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑓𝑓𝐺𝐺𝐺𝐺𝑃𝑃𝑓𝑓𝑒𝑒𝑒𝑒𝑃𝑃𝑖𝑖𝑖𝑖  

+𝛿𝛿𝑓𝑓𝑓𝑓ℎ𝑑𝑑𝑓𝑓𝑝𝑝ℎ𝑑𝑑𝑖𝑖𝑖𝑖 + 𝛿𝛿𝑖𝑖𝑌𝑌𝑒𝑒𝐺𝐺𝑒𝑒𝐹𝐹𝑌𝑌𝑖𝑖 + 𝛿𝛿𝑒𝑒𝑆𝑆𝑓𝑓𝐺𝐺𝑓𝑓𝑒𝑒𝐹𝐹𝑌𝑌𝑒𝑒 ),      (6) 

where subscripts j = bachelors, masters and phd and i=1,…,51 for all U.S. states plus the District of Columbia. 
Equation (6) tests how education influences a county’s probability of never hosting a woman inventor after 
accounting for time-invariant heterogeneity at the state level, as well as common shocks to all U.S. counties 
in a given year.  In addition, we cluster the errors at the county level. 

As demonstrated by equation (3), for non-zero counties, we characterize the environment faced by women 
inventors. In particular, we specify two equations to investigate different facets of how the environment 
affects women inventors. First, we assess the relationship between team size and women inventors, as well 
as the relationship between technology classes and women inventors. To that end, we specify  

𝜇𝜇𝑖𝑖𝑖𝑖 = exp (𝐗𝐗𝒊𝒊𝒊𝒊𝚩𝚩) = exp (𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽 = 𝛽𝛽0 + 𝛽𝛽𝐿𝐿𝐿𝐿𝐿𝐿𝐹𝐹𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 + (𝛽𝛽𝑇𝑇𝑖𝑖𝑇𝑇𝑆𝑆𝑖𝑖𝑖𝑖+ 𝛽𝛽𝑇𝑇𝑖𝑖2𝑇𝑇𝑆𝑆𝑖𝑖𝑖𝑖2  ) +  𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 +
𝛽𝛽%𝑓𝑓𝑓𝑓𝑓𝑓%𝑓𝑓𝑝𝑝𝑓𝑓𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑑𝑑𝑓𝑓𝑝𝑝𝑓𝑓𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑖𝑖𝑌𝑌𝑒𝑒𝐺𝐺𝑒𝑒𝑖𝑖 + 𝛽𝛽𝑒𝑒𝑖𝑖𝑓𝑓𝑖𝑖𝑒𝑒𝑆𝑆𝑓𝑓𝐺𝐺𝑓𝑓𝑒𝑒𝑒𝑒 )    (7) 

where subscript i refers to counties, t refers to time (1990-2019), and j = Laborforce (LF), Per-capita Income 
(PCI), inventor team size (TS), all male inventor teams (AM), technology field concentration (%cpc) and 
presence of technology field (dcpc). To control for unobserved heterogeneity, we include year and i=1,…,51 
state fixed effects, and we cluster errors at the county level. Equation (7) tells us the correlative relationship 
between a given county’s economic environment and its number of women inventors, controlling for other 
factors. The relationships inferred in (6) and (7) reflect a national average. We therefore add a second 
specification, one that assess the relationship between the economic and team size variables with women 
inventors regionally across the U.S. In particular, we add regional slope dummies to specific variables of 
interest to test whether labor force, per capita income, team size and technology field and concentration 
influence the probability that a county produces its first woman inventor differentially by USPTO region (R):     

 𝜇𝜇𝑖𝑖𝑖𝑖 = exp (𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖′ 𝛽𝛽) = exp (𝛽𝛽0 + (𝛽𝛽1𝐿𝐿𝐹𝐹𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝐿𝐿𝐹𝐹𝑖𝑖𝑖𝑖 ∗ 𝑅𝑅𝑒𝑒−1) + (𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝛽𝛽3 + 𝛽𝛽4𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖 ∗ 𝑅𝑅𝑒𝑒−1) 

+(𝛽𝛽5𝑇𝑇𝑆𝑆𝑖𝑖𝑖𝑖 + 𝛽𝛽6𝑇𝑇𝑆𝑆𝑖𝑖𝑖𝑖 ∗ 𝑅𝑅𝑒𝑒−1) +� 𝛽𝛽(𝑓𝑓+5)%𝑓𝑓𝑝𝑝𝑓𝑓(𝑓𝑓+5)𝑖𝑖𝑖𝑖

9

𝑓𝑓=2
+ � 𝛽𝛽(𝑓𝑓+14)𝑑𝑑𝑓𝑓𝑝𝑝𝑓𝑓 (𝑓𝑓+14)𝑖𝑖𝑖𝑖

9

𝑓𝑓=1
 

+𝛽𝛽𝑖𝑖𝑌𝑌𝑒𝑒𝐺𝐺𝑒𝑒𝐹𝐹𝑌𝑌𝑖𝑖 + 𝛽𝛽𝑒𝑒𝑆𝑆𝑓𝑓𝐺𝐺𝑓𝑓𝑒𝑒𝐹𝐹𝑌𝑌𝑒𝑒 ),               (8) 

where USPTO region subscript r = Eastern, Midwest, South, Mountain, Western. We omit the Eastern region 
in regional assessments, thus all regional estimates are relative to the Eastern region. CPC technology fields 
are subscripted by c. We omit the human necessities concentration variable, %cpc1, thus all cpc 
concentration estimates are relative to human necessities, but include all cpc indicator variables (dcpc1-9) 
since the multiple technology fields can exist concurrently in a given county and year. 

We estimate equations (6) and (7) simultaneously using the log-likelihood function specified by (5) for the 
national model and then again (6) and (8) for the regional model using the STATA package zinb.  

Results  

Recalling our hypothesis, our primary variables of interest are team size, number of all male inventor teams, 
and the technology class (CPC) indicator and concentration variables. The results from table 2 indicate that 
the linear and quadratic terms on team size are all highly statistically significant. The parameter coefficients 
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for team size indicate positive and then negative values. Plotting the logged coefficients indicates a local 
maximum team size of approximately 4.5. Thus, these data indicate that teams up to 4.5 inventors have an 
increasing effect on the likelihood of generating women inventors (figure 3). We also find that the number 
of all male teams shows a small but complementary effect on the creation of women inventors. The exp(β) 
coefficient on all male teams indicates that for every 1400 all male teams there is one women inventor.  

 

 

 

Finally, the CPC indicator variables all show a positive and statistically significant effect at least at the 10% 
level for all technology classes. This indicates that just the existence of one patent in any of the eight CPC 
fields has a strong effect on creating more women inventors. The effect was strongest within mechanical 
engineering and lowest in physics. Additionally, the %CPC variables indicate the marginal effect of 
increasing the concentration of technology development for a given CPC field relative to the human 
necessities field. Chemistry had the highest marginal effect relative to human necessities while counties 
with more technology development in fixed constructions showed the largest decreases associated with 
women inventors. The effects of having other inventors within the county are larger than the small but 
positive effects from increasing the local labor force or per-capita incomes.  

Surprisingly, we only found that the number of women with PhDs had a statistically significant effect on the 
relationship with a county hosting its first woman inventor.  
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Table 2. National model results 

 

 

Table 3 indicates that team size is a significant variable in all regions though there was no significant regional 
variation in the Midwest. Team size had the largest positive impact in the West Coast Region and the lowest 
in the South. The number of all male teams was also significant, but only the West Coast indicated 
significant regional differentiation from the East coast. While the presence of all male inventor teams was  

 
 
 
 
 
 
 
 
 

National Model
Variable β exp(β) p-value

Negative Binomal
Economic variables

Labor force 1.64E-06 1.000002 0.00
Per capita income (USD) 0.000019 1.000019 0.00

Inventor team variables
Team size 0.276013 1.317865 0.00
Team size squared -0.03085 0.96962 0.00
Number of all male teams 0.000681 1.000681 0.02

% of counties with Cooperative Patent Classification (CPC) concentrations 
Performing operations; transporting -0.9668 0.3803 0.00
Chemistry; metallurgy 0.669494 1.953248 0.00
Textiles; paper -1.47264 0.229321 0.00
Fixed constructions -2.06514 0.1268 0.00
Mechanical engineering; lighting; heating; weapons; blasting engines or pumps -1.68458 0.185522 0.00
Physics 0.321866 1.3797 0.09
Electricity -0.01247 0.987607 0.95

Technology indicators by CPC
Human necessities 0.46729 1.595664 0.00
Performing operations; transporting 0.624052 1.866477 0.00
Chemistry; metallurgy 0.438068 1.54971 0.00
Textiles; paper 0.493947 1.638771 0.00
Fixed constructions 0.61252 1.845075 0.00
Mechanical engineering; lighting; heating; weapons; blasting engines or pumps 0.690094 1.993904 0.00
Physics 0.244283 1.276705 0.00
Electricity 0.385308 1.470067 0.00

Logit
Bachelors -0.00046 0.999537 0.07
Masters -0.00077 0.999231 0.20
PhD -0.00482 0.995192 0.04
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Table 3. Regional model preliminary results 

 

exp(β) p-value

Labor force
East coast 1.000002 0.00
Midwest 1.000002 0.42
South 1.000002 0.72
Mountain 1.000004 0.00
West Coast 1.000002 0.38

Per Capita Income ( USD)
East Coast 1.000015 0.00
Midwest 1.000015 0.49
South 1.000015 0.39
Mountain 1.0000023 0.00
West Coast 1.000015 0.63

Team size
East Coast 1.212372 0.00
Midwest 1.212372 0.45
South 1.097086213 0.00
Mountain 1.134009487 0.06
West Coast 1.364214319 0.07

Number of all male teams
East Coast 1.001505 0.00
Midwest 1.001505 0.35
South 1.001505 0.18
Mountain 1.001505 0.74
West Coast 1.000282663 0.00

Performing operations; transporting 0.3763327 0.00
Chemistry; metallurgy 2.218898 0.00
Textiles; paper 0.3363812 0.00
Fixed constructions 0.1533107 0.00
Mechanical engineering; lighting; heating; weapons; blasting engines or pumps 0.1946372 0.00
Physics 1.226501 0.14
Electricity 0.9786238 0.89

Human necessities 1.610621 0.00
Performing operations; transporting 1.92963 0.00
Chemistry; metallurgy 1.533529 0.00
Textiles; paper 1.505251 0.00
Fixed constructions 1.722936 0.00
Mechanical engineering; lighting; heating; weapons; blasting engines or pumps 1.965105 0.00
Physics 1.357513 0.00
Electricity 1.482946 0.00

Bachelors 0.999495028 0.04
Masters 0.999589084 0.43
PhD 0.993760149 0.00

Regional model

Negative Binomial 

% of counties with Cooperative Patent Classification (CPC) concentrations 

Technology indicators by CPC

Logit
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weakly complementary to women inventor counts in all areas of the country, its effect was strongest in the 
East Coast by a factor of over 500% when compared to other regions.12 

The CPC indicator variables are consistent with the national model and all indicate positive and significant 
effects on women inventor counts when a technology field is present in a county. Similar to the national 
model, mechanical engineering had the largest effect on women inventor counts while physics had the 
lowest effect. However, the %CPC variables are quite comparatively different to the results from the 
national model. Recall that the national model indicated that all the marginal effects from increasing 
concentration of any field was complementary to women inventor counts. However, in the regional model, 
only chemistry and physics showed positive and significant effects on women’s representation, while the 
remainder CPC fields indicated an exclusionary effect on women inventor counts.  

Like the national model, both labor force and per capita income show weakly positive effects toward 
women inventor counts. In the logit model, we observe that the number of women with bachelors and 
PhDs increases the likelihood of a county hosting its first woman inventor.  

Discussion 

The results from our national model indicate that there is a non-linear relationship with women inventor 
counts and team size. If team size is to be interpreted as a proxy for R&D capital investment as Breitzman 
and Thomas (2015) assert, then representation of women in IP is closely correlated to capital investment. 
Figure 3 indicates that team size has an increasing effect on women’s inventor counts for teams as large as 
4.5, but this promoting effect steadily decreases for larger teams. Our results appear to be consistent with 
the literature: gender diversity is prevalent within new and novel technologies (Díaz-García, González-
Moreno and Saez-Martinez, 2013), where perhaps investment is smaller due to higher risk (hence, smaller 
team sizes). While team size was complementary to women inventor counts in all USPTO regions, the West 
and East coast regions indicated the largest magnitude in this effect.  

Interestingly, while the West coast boasted the highest positive impact from increasing team size, it 
indicated the weakest complementary impact from the number of all male teams on women inventor 
counts. In fact, the complementary impact of this variable in the West coast was over 5 times weaker than 
in the East coast. This suggests that though both the East and West coast regions are established technology 
hubs, the East coast appears more inclusive to women inventors.  

Finally, both the national and regional models indicated that the presence of any technology field benefited 
women inventor counts. However, the marginal effects from increasing R&D concentration by CPC field 
varied largely between models and was in fact exclusionary in some fields in the regional model. This 
supports the notion that there is substantial regional variation in the effect of the intensity of R&D by 
technology field. Comparing both models, we found that chemistry was consistently engendering of female 
inventors. Chemistry R&D is a well-established technology field with a history of high female inventor 
representation (Toole et. al, 2019). 

                                                             
12The relative complementarity of all male team inventors is equal to the following: 
𝑒𝑒𝑓𝑓𝑖𝑖𝑖𝑖𝑒𝑒 𝑒𝑒𝑓𝑓 # 𝑒𝑒𝑓𝑓 𝑛𝑛𝑒𝑒𝑛𝑛 𝑓𝑓𝑒𝑒𝑒𝑒 𝑚𝑚𝑓𝑓𝑒𝑒𝑒𝑒 𝑖𝑖𝑒𝑒𝑓𝑓𝑚𝑚𝑒𝑒 𝑖𝑖𝑛𝑛 𝑖𝑖ℎ𝑒𝑒 𝑊𝑊𝑒𝑒𝑒𝑒𝑖𝑖 𝑓𝑓𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖 𝑖𝑖𝑒𝑒 1 𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛 𝑖𝑖𝑛𝑛𝑣𝑣𝑒𝑒𝑛𝑛𝑖𝑖𝑒𝑒𝑒𝑒 

𝑒𝑒𝑓𝑓𝑖𝑖𝑖𝑖𝑒𝑒 𝑒𝑒𝑓𝑓 # 𝑒𝑒𝑓𝑓 𝑓𝑓𝑒𝑒𝑒𝑒 𝑚𝑚𝑓𝑓𝑒𝑒𝑒𝑒 𝑖𝑖𝑒𝑒𝑓𝑓𝑚𝑚𝑒𝑒 𝑖𝑖𝑛𝑛 𝑖𝑖ℎ𝑒𝑒 𝐸𝐸𝑓𝑓𝑒𝑒𝑖𝑖 𝑃𝑃𝑒𝑒𝑓𝑓𝑒𝑒𝑖𝑖 𝑖𝑖𝑒𝑒 1 𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛 𝑖𝑖𝑛𝑛𝑣𝑣𝑒𝑒𝑛𝑛𝑖𝑖𝑒𝑒𝑒𝑒
= 1 (𝛽𝛽𝐴𝐴𝐴𝐴,𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊−1)⁄

1 (𝛽𝛽𝐴𝐴𝐴𝐴,𝐸𝐸𝐸𝐸𝑊𝑊𝑊𝑊−1)⁄
1 (1.0002855−1)⁄
1 (1.001532−1)⁄

= 5.37 = 537%. This 

indicates for every new female inventor in the West Coast, there are 537% more all male teams also present relative 
to the East Coast.  
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Finally, it was surprising to find that the educational attainment variables were weakly significant in both 
the national and regional models. It suggests that educational attainment is only a small factor in 
determining whether a county is determined to be a zero women inventor county. It alludes to the 
possibility that other factors, other than education are stronger determinants of women inventor counts. 
Perhaps unexplored factors like conditions in the working environment, post educational attainment, are 
stronger determinants in ensuring that a given county women inventors.   

In summary, the results from our analysis suggest that women inventor rates are differentially effected by 
regional effects of technology R&D concentration. It also appears that technology maturity and thus capital 
investment promote women representation in IP for among small IP teams.  
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