

Setting: binary treatment T, baseline covariates X (arbitrary), $(T_i, X_i) \stackrel{i.i.d.}{\sim} (T, X)$ (the only assumption!)

Strict overlap condition:

Population overlap slack: $\mathcal{O}^* = \inf_x \min\{e(x), 1 - e(x)\}$

- Strict overlap condition $\iff \mathcal{O}^* \geq \mathcal{O}_0$
- $n\mathcal{O}^*$ is the effective sample size without outcome restriction (Hong et al. '18)
- In practice, high $\mathcal{O}^* \Longrightarrow$ stability of doubly robust estimators

Current approaches for assessing overlap:

- -useful but lack of statistical guarantees
- -"sample overlap" \neq population overlap

-sensitive to model mis-specification or finite sample errors

• Standard two-sample test: testing the wrong null

$$H_0: \mathbb{P}(X \mid T = 1) = \mathbb{P}(X \mid T = 0) \Longrightarrow H_0: e(X) \equiv$$

Definition. $\hat{\mathcal{O}}$ is an O-value if it is an upper confidence bound of \mathcal{O}^* , i.e.

Analogous to p-value:

- A small $\hat{\mathcal{O}}$ provides strong evidence against overlap
- A large $\hat{\mathcal{O}}$ does not necessarily imply sufficient overlap

Some practical implications:

- Strict overlap condition as a composite null hypothesis: reject if $\hat{\mathcal{O}} < \mathcal{O}_0$

- Comparing different matches based on $\hat{\mathcal{O}}$

Main (and perhaps surprising) contribution:

Distribution-Free Assessment of Population Overlap in Observational Studies

Lihua Lei (Stanford), Alexander D'Amour (Google Brain), Peng Ding (UC Berkeley), Avi Feller (UC Berkeley), and Jasjeet Sekhon (Yale)

$$\leq \sqrt{(1-b_{\min}(\mathcal{O}^*;\pi))(b_{\max}(\mathcal{O}^*;\pi)-1)} \ (= B_{\Delta}(\mathcal{O}^*)),$$

5			PSID			RCT	
	\hat{L}	n_0	$\hat{\mathcal{O}}$	Â	$\overline{n_0}$	$\hat{\mathcal{O}}$	Ĺ
)3	77%	2490	0.018	75%	260	0.483	0%
21	71%	253	0.234	45%			
13	53%	128	0.313	23%			