Dealing with Logs and Zeros in Regression Models

Christophe Bellégo*, David Benatia[†], and Louis Pape*

*CREST (UMR 9194), CNRS, École Polytechnique, Institut Polytechnique de Paris, 5 Avenue Henry Le Chatelier, 91120 Palaiseau, France † HEC Montréal, Département d'Économie Appliquée, 3000 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 2A7, Canada

Corresponding author: david.benatia@hec.ca

1. Introduction

- Log-linear regressions are very popular within and outside of economics.
- Yet, how to handle zeros in the dependent variable remains obscure.
- Practitioners often **rely on ad hoc transformations** (e.g, using $log(Y_i + \Delta)$ for some $\Delta > 0$).

2. Contribution

- We develop a **new model**: **includes both Log-linear and Poisson** Regression as special cases.
- Neeps interpretation of β as **semi-elasticity** and reconciles $\log(Y_i + \Delta)$ with **econometric theory**.
- We propose a new statistical test to select the best model given pattern of zeros in the data.

3. Proposed Model: Iterated Ordinary Least Squares (iOLS $_{\delta}$)

Consider an iid sample of observations $\{Y_i, X_i\}_{i=1}^n$, generated by the "true" model

$$Y_i = \exp(X_i'\beta)U_i, \tag{1}$$

Like practitioners, we add an **individual-specific** $\Delta_i = \delta \exp(X_i'\beta)$, for some $\delta > 0$, and obtain

$$\log(Y_i + \delta \exp(X_i'\beta)) = X_i'\beta + \nu_i. \tag{2}$$

with new error term $v_i = \log(\delta + U_i)$. This looks like the linear model: is it also estimable by OLS?

4. Properties

Under the moment condition $E[v_i|X_i] = \log(1+\delta)$, we show that

- 1. $\hat{\beta}$ is the **unique fixed-point** of an Asymptotic Contraction Mapping [1]:
 - \blacksquare $\hat{\beta}$ estimable by running OLS iteratively, consistent, and asymptotically normal.
 - **Easy to estimate**: takes **high-dimensional** covariates & **standard errors** from **last-step** OLS.
- 2. δ provides generality and flexibility: ends arbitrary choice of moment condition:
 - Log-linear regression assumes $E(\log(U_i)|X_i)=0$ when Poisson regression uses $E(U_i|X_i)=1$.
 - **iOLS**_{δ} nests both: as $\delta \to 0$, $E(\upsilon_i|X_i) \to E(\log(U_i)|X_i)$ and as $\delta \to \infty$, $E(\upsilon_i|X_i) \to E(U_i|X_i)$.

Endogeneity (i2LS_{δ}): with instruments Z_i and $E[v_i|Z_i] = \log(1+\delta)$, run **2SLS** iteratively.

5. Statistical test to select correct model and best δ given data

Test exploits the implicit assumption placed on the pattern of zeros by moment conditions.

- **Example with Poisson:** decomposed into $E(U_i|X_i) = Pr(U_i > 0|X_i) \times E(U_i|X_i, U_i > 0) = 1$. Simple Testing Procedure:
 - 1. Estimate candidate model (iOLS $_{\delta}$, i2SLS $_{\delta}$, Poisson, etc.)
 - 2. Estimate model of a non-zero dependent variable (with logit or non-parametric model)
 - 3. Regress scaled first-step residuals on inverse probability of second-step.
 - 4. Reject if regression coefficient λ far from 1.

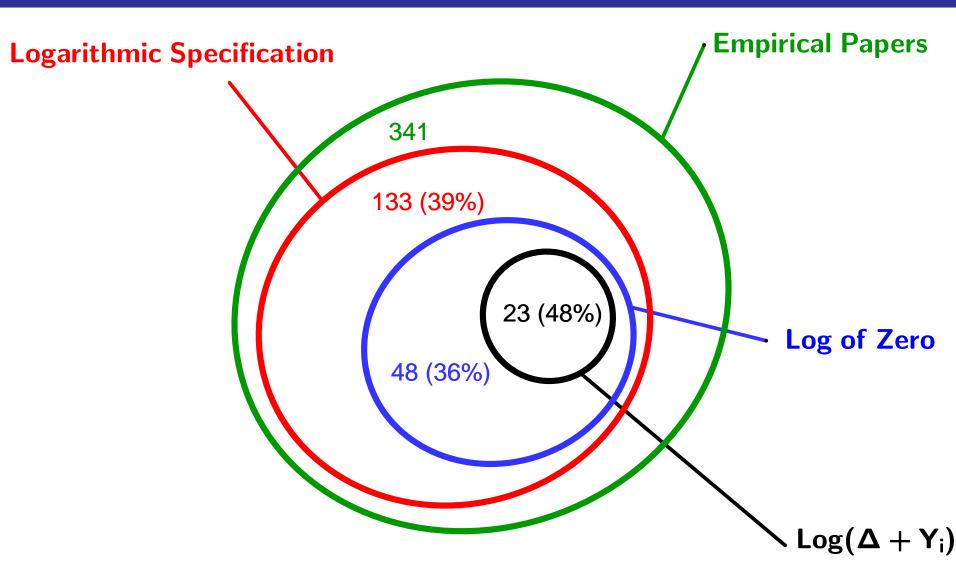
6. Empirical Application: Gravity Equations

Compare iOLS_{δ} to Poisson Regression for the purpose of estimating the Gravity Equation of International Trade (136 countries, 1990) of [2]: **Poisson rejected in favor of iOLS**_{δ} = 100.

	$log(Y_i + \Delta)$	$iOLS_{\delta=100}$	Poisson
Logit Model of Non-Zero Dependent Variable			
$\hat{\lambda}$	0.04	0.46	1.26
(s.e)	(0.02)	(0.06)	(0.39)
t-Stat.	[-53.45]	[-9.82]	[0.68]
kNN Model of Non-Zero Dependent Variable			
$\hat{\lambda}$	0.27	0.93	1.72
(s.e)	(0.01)	(0.05)	(0.25)
t-Stat.	[-49.85]	[-1.55]	[2.86]

This table displays the $\hat{\lambda}$ -parameter, standard errors (s.e), and t-statistics (t-Stat.) using 300 pairs bootstrap for the test of three models of international trade, with parametric (logit) and non-parametric (kNN) models of non-zero trade.

A. The Log of Zero in the AER



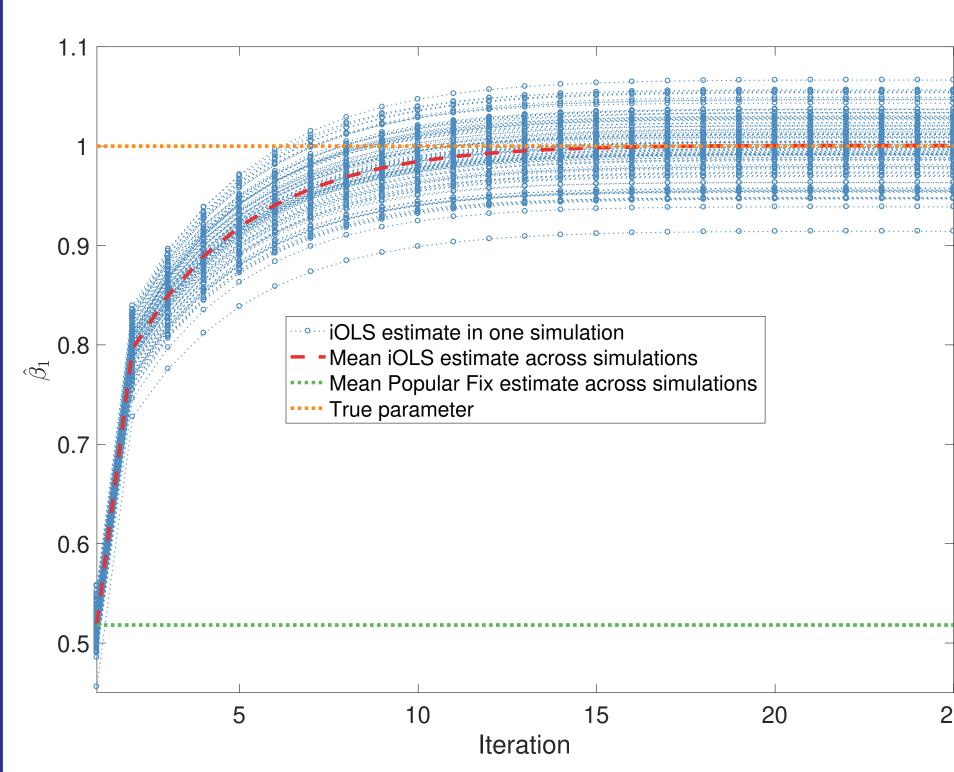
Share of Publications in the AER (2016-2020)

- The issue is widespread: 14% of empirical publications in the AER face this issue.
- **48% of the time, authors use** $log(Y_i + \Delta)$.

B. Computational Procedure

From any starting point, as $n \to \infty$,

OLS run iterativly converges to true value β .



Example of Convergence with $iOLS_{\delta=1}$ (Simulations with n=1,000)

C. Extensions & Software

- \blacksquare iOLS_U: estimate Poisson by iterative OLS,
- Deal with zeros in **log-log regression**.
- Within-Transformation for estimation with high-dimensional fixed effects.
- **Stata programs** for iOLS $_{\delta}$, i2SLS $_{\delta}$ and tests.
- Monte Carlo simulations.

7. Conclusion

- 1. No single method is always correct.
- 2. Need to compare models through testing.
- 3. $iOLS_{\delta}$ is a **good starting** point: flexible and computationally simple.

8. References

- [1] Jeff Dominitz and Robert P. Sherman. Some convergence theory for iterative estimation procedures with an application to semiparametric estimation. *Econometric Theory*, 21(4):838–863, 2005.
- [2] J. M. C. Santos Silva and Silvana Tenreyro. The Log of Gravity. *The Review of Economics and Statistics*, 88(4):641–658, 11 2006.