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Introduction

While huge theoretical literature studies how the physical
skewness of an asset’s dollar return (i.e., the ratio of
later value to earlier value) affects investor behavior and asset
prices, only few empirical studies convincingly test the main
predictions of that literature. The reason for this gap is that
it is challenging to empirically estimate skewness
with realistic amounts of data, especially over the
long return horizons the theoretical literature focuses
on. Only recently, a handful of studies including Fama and
French (2018) and Farago and Hjalmarsson (2019) have
started addressing the estimation issue head on, proposing
estimators relying on fewer data. Yet, those estimators often
deliver biased estimates under realistic assumptions.

This paper develops a new parametric estimator of the
skewness of an asset’s return over an arbitrary horizon under
the assumption that the asset’s value can be modelled using a
stochastic process from the affine stochastic volatility (ASV)
model class.

The simulation exercise shows that our estimator is close
to unbiased and efficient. In a further contrast to other
estimators, it is also able to forecast skewness.

Theoretical Framework

We first define ASV models in a way consistent with Duffie et
al. (2000, 2003), Chernov et al. (2003), etc. In our definition:

1. the joint conditional moment generating function (MGF)

Mt(u,w, h;Vt) ≡ E[ert,hu+⟨Vt+h,w⟩|Xt, Vt],

where t ≥ 0, (u,w, h) ∈ C×Cd×R+, Xt is the observed
log-value process, Vt is the associated d-dimensional vari-
ance process, and rt,h ≡ Xt+h −Xt;

2. the unconditional MGF also exists, and

M(u,w, h) ≡ E[Mt(u,w, h;Vt)];

3. the third moments of Xt do not explode over any finite
horizon h.

Denote dollar return as Rt,h. By definition, Rt,h = ert,h, thus

Et[R
k
t,h] = Et[e

krt,h] = Mt(k, 0, h) and E[Rk
t,h] = M(k, 0, h).

Let Mt(u, h) ≡ Mt(u, 0, h) and M(u, h) ≡ M(u, 0, h).
Substitute them for the expected moments of dollar return
in the skewness coefficient formula and simplify:

Skewt[Rt,h] =
Mt(3, h)− 3Mt(1, h)Mt(2, h) + 2Mt(1, h)

3

[Mt(2, h)−Mt(1, h)2]3/2
;

Skew[Rt,h] =
M(3, h)− 3M(1, h)M(2, h) + 2M(1, h)3

[M(2, h)−M(1, h)2]3/2
.

Since the MGFs depend on the parameter values of the
stochastic process, we can then obtain consistent estimates
of the two skewness versions from consistent estimates of the
parameters, assuming that the MGFs are smooth functions
of the parameter vector.

Example: the Heston (1993) Model

The model assumes the following processes:

dXt = (µ− 1

2
Vt)dt +

√
VtdWt,

dVt = κ(α− Vt)dt + ξ
√
VtdBt,

where µ, κ, α, and ξ respectively denote drift, mean reversion,
long-run variance, and volatility-of-volatility. Wt and Bt are
Brownian motions with [W,B]t = ρt. When ρ < 0, leverage
effect appears. The model is simple yet flexible, popular, and
has closed-form MGFs available in papers like Bates (2006),
Andersen (2008), etc.

The Estimator for
Heston Parameters

We propose a simple GMM estimator for Heston
parameters, where we match the first four central
moments and two central cross-moments of dollar
return with the corresponding MGFs and cross-
MGFs. The two cross-moments respectively capture
leverage effects and volatility clustering effects.

Innovatively, we use the short-time-increment
power-expansion approximations of the MGFs
and cross-MGFs (see Proposition 3 in paper) instead
of their original forms to increase computational
efficiency and improve parameter identification.

Simulation Setup

We simulate the Heston model with 10,000 repli-
cations of 10-year daily observations, using various
parameter settings (e.g., µ = 0.10, κ = 3.00,
α = 0.09, ξ = 0.30, and ρ = −0.90).

Apart from our skewness estimator, we also ap-
ply Fama and French’s (2018) bootstrap estimator
(F&F), Farago and Hjalmarsson’s (2019) closed-
form estimator (F&H), and the sample skewness
estimator for comparison.

To see how model misspecification affect the
performance of our estimator, we further simulate
data from the double-Heston process. Parameters
are set in a way that distinguishes the process as
much as possible from a Heston process.

Results:
Strong Leverage Effect

Our estimator always yields the smallest mean ab-
solute percent error and MSE regardless of horizon,
and the outperformance is economically large.

Horizon True Ours F&F F&H Sample

1 Week -0.040 Mean -0.030 0.094 0.095 -0.028
%|Bias| 24% 336% 338% 29%
MSE 0.001 0.020 0.019 0.011

1 Month -0.066 Mean -0.041 0.244 0.245 -0.041
%|Bias| 38% 471% 472% 38%
MSE 0.005 0.097 0.097 0.035

1 Year 0.279 Mean 0.359 0.941 0.943 0.271
%|Bias| 29% 237% 238% 3%
MSE 0.026 0.444 0.444 0.154

3 Years 1.063 Mean 1.077 1.832 1.838 0.550
%|Bias| 1% 72% 73% 48%
MSE 0.032 0.629 0.619 0.501

5 Years 1.704 Mean 1.653 2.665 2.689 0.572
%|Bias| 3% 56% 58% 66%
MSE 0.054 1.095 1.027 1.611

Unconditional Skewness Estimation (ρ = −0.9)

Assuming that returns are i.i.d., F&F and F&H over-
shoot skewness over all horizons and fail to capture
possible decline in skewness over shorter horizons.
The sample skewness estimator seems to be reliable
only for horizons less than 1-year.
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Mean Unconditional Skewness Estimates (ρ = −0.9)

Results:
Model Misspecification

Our estimator always gets the smallest MSE that
comprehensively reflects bias and standard error of
an estimate. Hence, realistic deviations between the
asset value process assumed by our estimator and the
true process only marginally affect our performance.

Horizon True Ours F&F F&H Sample

1 Week -0.018 Mean -0.009 0.104 0.104 -0.011
%|Bias| 48% 679% 680% 40%
MSE 0.002 0.017 0.016 0.014

1 Month -0.012 Mean 0.008 0.260 0.260 0.001
%|Bias| 161% 2214% 2215% 109%
MSE 0.006 0.075 0.075 0.045

1 Year 0.527 Mean 0.537 0.998 1.000 0.401
%|Bias| 2% 89% 90% 24%
MSE 0.017 0.228 0.227 0.194

3 Years 1.406 Mean 1.321 1.967 1.974 0.603
%|Bias| 6% 40% 40% 57%
MSE 0.033 0.361 0.343 0.888

5 Years 2.167 Mean 1.975 2.911 2.932 0.606
%|Bias| 9% 34% 35% 72%
MSE 0.084 0.808 0.654 2.750

Unconditional Skewness Estimation (Double-Heston)

Results: Forecasts

True conditional skewness varies over sample paths,
but it is on average close to unconditional ones. The
performance measures suggest that our estimates are
generally close to conditional skewness.

Horizon True Mean %|Bias| MSE

1 Year 0.266 0.369 39% 0.032
3 Years 1.059 1.086 3% 0.032
5 Years 1.702 1.662 2% 0.051
10 Years 3.372 3.116 8% 0.248

Our Conditional Skewness Estimation (ρ = −0.9)

Empirical Results: S&P 500

Based on its 1950-2020 daily returns and a rolling 10-
year estimation window, our application suggests:

•The evolutions of the skewness estimates for differ-
ent return horizons are highly correlated over time.

• Leverage effect is strong (weekly estimates often
> monthly estimates) and time-varying.

•The skewness of long-horizon dollar returns is prob-
ably much lower than suggested in recent works.
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Estimated Trends of Unconditional Skewness

Conclusions

Assuming that asset values can be modelled by ASV
models, we derive a novel parametric estimator of
the skewness of dollar returns. The simulation ex-
ercise based on the Heston process shows that our
estimator strongly outperforms the others in most
parameter settings and even under model misspecifi-
cation. Empirical application on stock indexes shows
an important time-varying leverage effect in that as-
set class and refutes the idea that the skewness of
long-horizon returns is usually too high to be useful.


