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ABSTRACT

Prevailing wisdom suggests the matching function choice is innocuous in search and match-

ing models. We show this is not the case when accounting for nonlinearities. Using a closed-

form global solution to a textbook model, we show the Den Haan et al. (2000) matching func-

tion features gross complementarity between vacancies and unemployed workers that creates

procyclical variation in the matching elasticity and nonlinear job finding rate dynamics. These

effects are absent from the Cobb-Douglas matching function. A quantitative assessment shows

the latter specification provides a better account of key nonlinearities in the U.S. labor market.
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1 INTRODUCTION

The matching function—the mapping from unemployed workers and vacancies into matches—is
a core component of search and matching models. While a growing literature uses versions of this
model to interpret nonlinearities in the data (e.g., Abbritti and Fahr, 2013; Den Haan et al., 2020;
Dupraz et al., 2019; Ferraro, 2018; Hairault et al., 2010; Petrosky-Nadeau et al., 2018; Pizzinelli
et al., 2020), the matching function choice has received little discussion, with some papers using the
Cobb-Douglas (CD) specification and others using the Den Haan et al. (2000, DRW) specification.
Prevailing wisdom suggests this choice is innocuous.1 We show that is not true because the match-
ing function impacts the extent of the nonlinearity in the model. A quantitative assessment shows
the CD matching function provides a better account of key nonlinearities in the U.S. labor market.

The DRW matching function generates stronger nonlinearities because it exhibits gross com-
plementarity between vacancies and unemployed workers and a procyclical matching elasticity—
the elasticity of matches with respect to the number of unemployed workers. Gross complementar-
ity implies that the matching elasticity is increasing in labor market tightness, so an increase in the
stock of unemployed workers generates more matches when vacancy creation is high. In contrast,
the CD matching function has a constant matching elasticity, which shuts down this mechanism.

The matching elasticity matters because it determines the slope of the mapping from produc-
tivity shocks to the job finding rate. Under the CD specification, the constant elasticity implies that
the job finding rate is approximately linear in productivity, with the slope declining in the size of
the elasticity. Intuitively, when the matching elasticity is higher, unemployed workers are relatively
more important than vacancies in the matching process. Since only vacancies respond on impact to
productivity shocks, a higher matching elasticity weakens the transmission of productivity shocks
to the job finding rate. In contrast, the procyclical variation in the matching elasticity generated by
the DRW matching function implies that the job finding rate is a concave function of productivity.
When productivity is high, the matching elasticity is high and vacancies are relatively less impor-
tant in the creation of new matches. As a result, the transmission of productivity shocks to the job
finding rate is weaker than when productivity is low and vacancies are relatively more important.

Unemployment is inherently nonlinear due to its interactions with the job finding rate (Hairault
et al., 2010; Jung and Kuester, 2011). This generates state-dependent responses to a productivity
shock. We show the DRW matching function creates nonlinear job finding rate dynamics that am-
plify the responses of unemployment. Intuitively, a productivity shock causes a stronger response
of the job finding rate. If unemployment is high, that leads to a larger response of unemployment
inflows or outflows. This does not happen for plausible calibrations of the CD matching function.

1For example, Petrosky-Nadeau and Wasmer (2017) say the “business cycle moments of the model using either [the
CD or DRW] functional form are similar.” The stated justification for the DRW matching function is that it restricts the
job filling and finding rates to the unit interval without requiring truncation in the solution and simulation of the model.
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We find little evidence for a key prediction of the DRW matching function: concavity of the job
finding rate. An inspection of the raw data shows there is no concavity before the Great Recession,
even though there were several recessions during that period, including the highest unemployment
rate in our sample. While the deepest part of the Great Recession features low job finding rates
and appears to offer some support for concavity, the recovery shows the data is much better ex-
plained by a non-transitory downward shift in finding rates, consistent with the well-documented
decline in matching efficiency since 2009 (Barnichon and Figura, 2015; Lubik, 2009; Sedláček,
2014; Veracierto, 2011). We corroborate this story using regression analysis. When we account
for the secular decline in matching efficiency, the concavity estimates are small and statistically in-
significant. This shows the CD matching function provides a more convincing account of the data.

To quantitatively assess whether the matching function choice matters, we estimate our theo-
retical model with the CD and DRW specifications. While both models produce similar first-order
dynamics, the DRW matching function generates skewness in the job finding rate as a generic fea-
ture of business cycles, unlike in the data where the skewness is an artifact of the non-transitory
decline in matching efficiency. As a consequence, it significantly over-predicts the skewness and
kurtosis of the unemployment rate. In contrast, the weaker nonlinearities of the CD matching
function produce empirically consistent skewness and kurtosis in the labor market, indicating its
superior empirical fit. We show these differences explain why a model with a DRW matching func-
tion can generate deep recessions and the disaster dynamics emphasized by Petrosky-Nadeau et al.
(2018), while a CD matching function cannot. In addition, the welfare costs of business cycles are
about 50% larger under the DRW matching function. Finally, we confirm that our results are robust
to changing the wage bargaining protocol and to including job separation rate shocks in the model.

Related Literature Our closed-form solution offers a clean way to analyze the sources of nonlin-
earity in the textbook search and matching model. In important earlier work, Petrosky-Nadeau et al.
(2018) numerically analyze the nonlinearities and disaster dynamics in a similar model. They argue
that downward rigidity in the marginal cost of hiring is the main driver of the nonlinearities. Our
analytical results show the nonlinearities primarily stem from procyclical variation in the matching
elasticity created by the DRW matching function and the law of motion for unemployment. While
a recent literature uses the DRW specification, these papers do not analyze how this choice influ-
ences outcomes other than noting that it restricts the job finding and job filling rates to the unit inter-
val (Ferraro, 2018; Hagedorn and Manovskii, 2008; Hashimzade and Ortigueira, 2005; Petrosky-
Nadeau et al., 2018).2 Our analysis emphasizes that the matching function choice is not innocuous.

Earlier work examined nonlinearities in the search and matching model using the CD matching
function. For example, Hairault et al. (2010) argue the impact of productivity shocks on the job

2Others include Petrosky-Nadeau and Zhang (2017, 2021), Ferraro and Fiori (2020), and Bernstein et al. (2021).
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finding rate is ambiguous because the job finding rate is a concave function of labor market tight-
ness, while labor market tightness is a convex function of productivity. The lower the matching
elasticity, the lower the average job finding rate and the higher the welfare costs of business cycles.
Similarly, Jung and Kuester (2011) show that search frictions amplify the welfare costs of business
cycles because of the nonlinear interaction between the unemployment and job finding rates in the
law of motion for unemployment. They also find these interactions create state-dependent effects of
productivity shocks.3 Our analysis of nonlinear dynamics focuses on the role of the matching func-
tion choice. We show the DRW specification generates quantitatively significant nonlinearities that
do not exist under the CD specification. Furthermore, we use the skewness and kurtosis of the un-
employment and job finding rates to provide new empirical support for the CD matching function.

Our identification strategy for the structural labor market parameters synthesizes the results of
earlier papers. To generate realistic volatilities of unemployment and vacancies, we combine the
matching elasticity with the “fundamental surplus,” defined as the marginal product of labor minus
any resources not allocated to vacancy creation (Ljungqvist and Sargent, 2017). The fundamental
surplus sets the overall level of labor market volatility, while the matching elasticity determines
how the volatility is split between vacancies and unemployment (Mortensen and Nagypal, 2007).
Additionally, we follow Hagedorn and Manovskii (2008) and target the wage elasticity. Relative to
this earlier work, we show our strategy allows the model to perfectly match these empirical targets.

The paper proceeds as follows. Section 2 lays out our model. Section 3 derives a closed-form
solution and discusses the sources of nonlinearity. Section 4 provides reduced-form empirical sup-
port for the CD matching function. Section 5 describes our estimation methods. Section 6 quanti-
tatively assesses our model and provides additional evidence in favor of the CD matching function.
Section 7 shows our insights are robust to alternative modeling assumptions. Section 8 concludes.

2 ENVIRONMENT

We use a textbook search and matching model similar to Hagedorn and Manovskii (2008). Time is
discrete, and the population size (equal to the labor force) is normalized to unity. We consider risk
neutral and risk averse households. Under risk aversion, we assume perfect insurance so all house-
holds choose the same consumption path (Andolfatto, 1996; Den Haan et al., 2000; Merz, 1995).

Search and Matching Entering period t, there are nt−1 employed workers and ut−1 = 1 − nt−1

unemployed workers. Within the period, a fraction s̄ of the employed workers exogenously lose
their jobs. The newly separated workers are able to search for new jobs within the same period as
their job loss, but they have less time to search for new jobs in period t than those who became
unemployed in a previous period. Therefore, let χ ∈ [0, 1] denote the fraction of a period that newly

3Lepetit (2020) computes welfare costs in a New Keynesian model with labor search and a CD matching function.
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separated workers are able to spend searching for work in the same period as their job loss.4 Given
these labor market flows, the total number of unemployed searching workers in period t is given by

ust = ut−1 + χs̄nt−1. (1)

The matching process is described by a constant returns to scale matching functionM(ust , vt),
where vt is vacancy postings.5 We consider the CD and DRW specifications used in the literature:

M(ust , vt) =

ξ(ust)αv1−α
t , CD,

ustvt/((u
s
t)
ι + vιt)

1/ι, DRW,
(2)

where ξ > 0 denotes matching efficiency and α ∈ (0, 1) and ι > 0 govern the relative importance
of unemployed searching workers to vacancies in the matching process. Section 3 shows how these
parameters map into key elasticities. The number of matches in period t, mt, is then defined by

mt = min{M(ust , vt), u
s
t , vt}. (3)

We can use the matching process to define the job finding and job filling rates,

ft = mt/u
s
t , qt = mt/vt, (4)

where the feasibility condition, (3), ensures ft, qt ∈ [0, 1]. The DRW matching function guarantees
mt =M(ust , vt), whereas (3) could bind under the CD matching function. Whenmt =M(ust , vt),
we can express the job finding and job filling rates in terms of labor market tightness θt ≡ vt/u

s
t ,

ft =

ξθ1−α
t , CD,

1/(1 + θ−ιt )1/ι, DRW,
qt =

ξθ−αt , CD,

1/(1 + θιt)
1/ι, DRW.

Since each period lasts one month, we assume newly matched workers begin employment in the
same period they are matched with a firm (Blanchard and Galı́, 2010). Hence, employment follows

nt = (1− s̄)nt−1 + ftu
s
t . (5)

The unemployment rate ut includes anyone who is not employed in period t, so it is given by

ut ≡ ust −mt = 1− nt. (6)
4Shimer (2005) sets χ = 0.5 when constructing a measure of the monthly job finding rate in the data. Our

theoretical insights do not depend on the value of χ. However, including this additional parameter allows us to match
the mean unemployment and job finding rates, which is important to accurately quantify the nonlinearity in the model.

5Pissarides (2000) formalizes the axioms of the matching function and its role in a search and matching model.
Petrongolo and Pissarides (2001) survey the empirical evidence for constant returns to scale in the matching function.
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Firms A firm chooses vacancies and employment {vt, nt} to maximize the present value of divi-
dends, Vt = atnt−wtnt−κvt+Et[xt+1Vt+1], subject to nt = (1− s̄)nt−1 +qtvt and vt ≥ 0, where
κ > 0 is the vacancy posting cost, wt is the wage rate, andEt is an expectation operator conditional
on time-t information. The pricing kernel, xt+1 = β(ct/ct+1)γ , where ct is consumption, β ∈ (0, 1)

is the discount factor, and γ ≥ 0 is the coefficient of relative risk aversion. Productivity, at, follows

at+1 = ā+ ρa(at − ā) + σaεa,t+1, 0 ≤ ρa < 1, εa ∼ N(0, 1). (7)

The optimality conditions imply

κ−λv,t
qt

= at − wt + (1− s̄)Et
[
xt+1

κ−λv,t+1

qt+1

]
, (8)

λv,tvt = 0, λv,t ≥ 0, (9)

where λv,t is the multiplier on the non-negativity constraint vt ≥ 0. Condition (8) sets the marginal
cost of hiring, (κ − λv,t)/qt, equal to the marginal benefit of hiring, which consists of the flow
profits from the match, at −wt, plus the savings from not having to post the vacancy in the future.

Wages To solve the model in closed-form, we specify a wage rule given by

wt = ηat + (1− η)b, (10)

where η ∈ (0, 1) and b > 0. Following Hall and Milgrom (2008) and Freund and Rendahl (2020),
this rule is motivated by an alternating-offers bargaining game in which workers discount future
payoffs at rate η and receive flow payoff b before a wage agreement is reached. Following Jung
and Kuester (2011), the wage rule can alternatively be derived by maximizing the Nash product
(at − wt)1−η(wt − b)η, where η is the worker’s bargaining power and b is the outside option. Our
quantitative results are robust to Nash bargaining that maximizes the total surplus of a new match.

Equilibrium The aggregate resource constraint is given by

ct + κvt = atnt. (11)

An equilibrium includes sequences of quantities {ct, nt, ut, ust , vt,mt, qt, λv,t}∞t=0, prices {wt}∞t=0,
and productivity {at}∞t=1 that satisfy (1)-(11) given the initial state {n−1, a−1} and shocks {εa,t}∞t=0.

3 ANALYTICAL RESULTS

3.1 SOLUTION For tractability, assume risk neutrality. Then combine (8) and (10) to obtain

κ−λv,t
qt

= (1− η)(at − b) + β(1− s̄)Et[κ−λv,t+1

qt+1
]. (12)
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We guess and verify that (12) has a solution of the form,

(κ− λv,t)/qt = δ0 + δ1(at − ā), (13)

where

δ0 =
(1− η)(ā− b)
1− β(1− s̄)

, δ1 =
1− η

1− β(1− s̄)ρa
,

and λv,t > 0 only when qt = 1.6 The remaining variables can then be solved for recursively as
functions of (at, nt−1) with (1)-(11). δ0 is the steady-state marginal cost of hiring, while δ1 mea-
sures the response of marginal cost to changes in the marginal product of labor. Intuitively, δ1 is
increasing in the profit share of a match, 1− η, and the persistence of the productivity shock, ρa.

We use our solution to highlight the matching function and its interaction with the law of motion
for unemployment as a new source of nonlinearity.7 In addition, we can immediately clarify the
mechanism described in Petrosky-Nadeau and Zhang (2017) and Petrosky-Nadeau et al. (2018),
in which the real marginal cost of hiring, κ/qt, runs into a “downward rigidity”. As (13) makes
clear, κ/qt only faces such a rigidity when productivity falls so low that it causes vacancies to hit
the nonnegativity constraint. Since vt > 0 in the data and almost all simulations, this cannot be the
primary source of nonlinearity, which instead stems from the matching function and law of motion.

3.2 NONLINEAR JOB FINDING RATE DYNAMICS We use (13) and the matching function to de-
rive the supply curve for vacancy creation. Assuming vt > 0 and λv,t = 0 for tractability, we obtain

κ/qt =

(κ/ξ)θαt , CD,

κ (1 + θιt)
1/ι , DRW,

(14)

where vt = θtu
s
t implies that vacancies inherit the properties of labor market tightness, θt, since ust

is pre-determined. This expression captures the positive relationship between the marginal cost of
hiring and vacancies. Since δ1 > 0, vacancies are increasing in productivity. In equilibrium, higher
productivity raises the marginal benefit of hiring, causing firms to post more vacancies. A rise in
vacancies increases θt, which raises the marginal cost of hiring until it equals the marginal benefit.

Inverting (14) yields labor market tightness in terms of marginal cost. Combining this with (13)
and the matching function implies the finding rate is an increasing function of productivity, where

ft =

ξ
1
α

(
δ0+δ1(at−ā)

κ

) 1−α
α
, CD,(

1−
(

κ
δ0+δ1(at−ā)

)ι)1/ι

, DRW.
(15)

6Note that for vt arbitrarily close to 0, mt = vt by (3). By continuity, λv,t > 0 implies qt = 1. Therefore, if
productivity is low enough that δ0 + δ1(at− ā) < κ/qt for all qt ∈ [0, 1], then qt = 1 and λv,t = κ− δ0− δ1(at− ā).

7Den Haan et al. (2020) independently developed a similar solution to shed light on the effects of volatility shocks.
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Figure 1: Sensitivity of the job finding rate to changes in productivity.

Intuitively, more vacancies generate more matches given a mass of unemployed searching workers.
To observe the nonlinearities in (15), Figure 1 plots ft for different values of the curvature

parameter, ι, in the DRW matching function. In each case, the CD parameter, α, is set so that both
matching functions have the same steady-state matching elasticity ε̄m,us , defined as the elasticity of
matches with respect to unemployed searching (ε̄m,us = f̄ ι = α). The other parameters are set to
their estimated values in Section 6.1. The values of ε̄m,us are all in the range of matching elasticities
in the data (Mortensen and Nagypal, 2007; Petrongolo and Pissarides, 2001). To facilitate inter-
pretation, we compute the slope of the job finding rate function in terms of the matching elasticity,

dft
dat

=


1−α
α
φCDt , CD,

1−εmt,ust
εmt,ust

φDRWt , DRW,
(16)

where φCDt and φDRWt combine terms that do not impact the key properties of the job finding rate.8

Figure 1 shows the DRW matching function is a source of nonlinearity in the job finding rate.
Increasing ι makes the job finding rate more concave by increasing the steepness of the policy
function at low productivities relative to high productivities. More concavity drives greater devia-
tions between the CD and DRW job finding rates, especially at low productivities. We can see the
source of concavity analytically in (16) by noting that the DRW slope term, (1− εmt,ust )/εmt,ust =

(1−f ιt )/f ιt is time-varying. Since the matching elasticity is increasing in ft, the slope coefficient is
decreasing in ft. Therefore, the job finding rate is more sensitive to productivity shocks when ft is
low. Intuitively, when ft is low, εmt,vt = 1− εmt,ust is high and vacancies are important in the pro-
duction of matches. This amplifies the transmission of productivity shocks to the job finding rate.

To understand why the matching elasticity is procyclical under the DRW matching function,

8Specifically, φCDt = (ξf1−2α
t )1/(1−α)δ1/κ and φDRWt = ft(1− f ιt )1/ιδ1/κ. Given a plausible range for the job

finding rate, ft ∈ (0.2, 0.6), setting a realistic value of α = f̄ ι ≈ 0.5 implies that φCDt and φDRWt are nearly constant.
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note that the elasticity of substitution between unemployed searching workers and vacancies is
1/(1 + ι) < 1, so that the matching function features gross complementarity between inputs.
Therefore, a larger stock of unemployed searching workers generates more matches when vacancy
creation is high and the labor market is tight. This is captured by the matching elasticity εmt,ust =

f ιt , which is increasing in the job finding rate and hence in labor market tightness. It is also
useful to note that relatively little time-variation in the matching elasticity is necessary to generate
significant nonlinearities in the job finding rate. For example, when ε̄m,us = 0.5, a ±5% change in
εmt,ust causes a±20% change in the slope of the job finding rate in the neighborhood of steady state.

In contrast, the CD matching function is not a significant source of nonlinearity. For all values
of α, the job finding rate policy function is close to linear. The slope of the job finding rate in (16)
is decreasing in α but is not time-varying due to the lack of gross complementarity in the matching
function (i.e., the elasticity of substitution is equal to 1). Instead, increasing α makes unemployed
searching workers more important and vacancies less important in the production of new matches.
Since only vacancies are able to respond on impact to changes in productivity, a higher α weakens
the transmission of productivity shocks to the job finding rate, resulting in a flatter policy function.

3.3 NONLINEAR UNEMPLOYMENT DYNAMICS The matching function choice also has impor-
tant consequences for unemployment dynamics. The law of motion for unemployment is given by

ut = ut−1 + s̄(1− ut−1)− ftust . (17)

Under both matching functions, the ftust term creates state-dependence and positively skewed un-
employment dynamics (Hairault et al., 2010; Jung and Kuester, 2011). Intuitively, a change in the
job finding rate has a larger effect on unemployment when it is applied to a larger pool of workers.

Since ust is pre-determined, dut/dat = −ustdft/dat, so the unemployment response to pro-
ductivity shocks inherits the properties of the job finding rate response. Under the DRW matching
function, unemployment responds more to shocks during recessionary periods when the job finding
rate is already low, creating additional state-dependence that is absent under the CD specification.

4 EMPIRICAL JOB FINDING RATE DYNAMICS

A testable difference between the DRW and CD matching functions is the concavity of the job find-
ing rate. We inspect the raw data and then run regressions to show there is little evidence of con-
cavity, suggesting the CD matching function provides a better account of labor market dynamics.

4.1 DATA SOURCES AND CONSTRUCTION We use monthly data from 1955-2019. Following
Shimer (2005), the monthly job finding rate is ft ≡ 1 − (Ut+1 − U s

t+1)/Ut, where Ut is total
unemployed and U s

t is the subset who are unemployed one month or less in the Current Population

8
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Survey.9 The unemployment rate is ut = Ut/LFt, where LFt is the labor force. The vacancy rate
vt is based on the series in Barnichon (2010) until 2000, after which it is equal to job openings as
a share of the labor force in the Job Openings and Labor Turnover Survey. These series correct
for trends in the print and online help-wanted indexes published by the Conference Board. To
account for potential aggregation bias, we construct a measure of unemployed searching workers,
ust = χst + (1 − χst)ut−1, where χ = 0.5 is consistent with Shimer (2005). Following Shimer
(2012), the job separation rate is st ≡ 1 − exp(−s̃t), where s̃t is the solution to Ut+1 = (1 −
e−f̃t−s̃t)s̃tLFt/(f̃t + s̃t) + e−f̃t−s̃tUt and f̃t ≡ − log(1− ft). Labor market tightness, θt = vt/u

s
t .
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Figure 2: Job finding rate schedule before and after the Great Recession. Dashed lines are quadratic trends.

4.2 RAW DATA ANALYSIS Our analytical results show that only the DRW matching function
generates concave job finding rate dynamics. To look for this concavity empirically, we work with
the matching functions directly, expressing the job finding rate in terms of labor market tightness,

log ft =

log ξ + (1− α) log θt, CD,

log θt − 1
ι

log(1 + θιt), DRW.
(18)

The log-finding rate is linear under the CD specification and concave under the DRW specification.
Figure 2 plots log ft against log θt. The blue dots show data before the Great Recession (1955-

2008), with recessions highlighted in black squares. The red crosses show data since the Great Re-
cession (2009-2019). The raw data clearly show that the log-finding rate was linear in labor market
tightness before the Great Recession. This is in spite of the fact that there were multiple recessions

9We follow Elsby et al. (2009) to correct for the 1994 redesign of the Current Population Survey that lowered Ust .
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before 2009, including the 1982 downturn which generated the highest unemployment rate in our
sample (10.8% vs. a peak of 10.1% in the Great Recession). To generate any evidence of a concave
relationship, we need to combine the pre-2009 sample with the deepest part of the Great Recession,
captured by the bottom-left corner of red-cross data points. This specific reliance on the Great Re-
cession casts doubt on the notion that concavity is a general feature of job finding rate dynamics and
suggests that the Great Recession was unlike previous downturns. This possibility gains further
weight when we consider the subsequent economic recovery, moving north-east along the red-
cross data sample. Rather than returning to the pre-2009 cluster of data points, the job finding rate
remains depressed as labor market tightness increases. Through the lens of the matching function,
this pattern is driven by a non-transitory decline in matching efficiency during the Great Recession,
consistent with empirical estimates (Barnichon and Figura, 2015; Lubik, 2009; Sedláček, 2014; Ve-
racierto, 2011).10,11 When we view the data from the Great Recession onwards as a whole, the re-
lationship between the job finding rate and tightness is again log-linear, just with a lower intercept.

4.3 REGRESSION ANALYSIS To formally investigate what combination of concavity and match-
ing efficiency best explains the job finding rate, we estimate a linear regression model of the form:

log ft = α0 + α1t+ α21{t ≥ t∗}+ β1 log θt + β2(log θt)
2 + εt. (19)

The matching elasticity implied by this regression is εmt,ust = 1 − β1 − 2β2 log θt, which nests
the CD matching function when β2 = 0. Empirical support for the DRW matching function rests
on whether β2 is significantly negative, so log ft is concave in log θt. We allow for non-transitory
changes in matching efficiency using α21{t ≥ t∗}, which alters the regression intercept for data in
periods t ≥ t∗ for some break date t∗. α1t is a linear time trend that applies to the whole sample.12

Table 1 reports estimates for the change in matching efficiency, α2, and concavity, β2, for a
range of break points, t∗, over the Great Recession. The estimates for the decline in matching effi-
ciency are stable and statistically significant across all values of t∗, in line with the stark change in
intercept shown in Figure 2. In contrast, the magnitudes and t-statistics of the concavity estimates
are sensitive to the break point choice. Even when the estimate of β2 is marginally statistically
significant, the extent of the concavity is very weak. Comparing the R2 values across the different
break points shows the model with the best fit (t∗ = 2008M11) actually features zero concavity.

Our results are further supported by the Bai and Perron (1998) test for the timing and number
of intercept breaks. The test reveals that the data prefer intercept breaks in 2008M11 and 1989M1,

10For example, Barnichon and Figura (2015) estimate that matching efficiency declined during the Great Recession
because of sharp increases in the fraction of long-term unemployed and the fraction of workers on permanent layoff.

11The decline in matching efficiency does not necessarily contradict the DRW matching function. Adding a match-
ing efficiency parameter would not affect its concavity properties but would bound ft and qt above by the min{ξ, 1}.

12We obtain similar results when using a break in time trend rather than intercept (Hall and Schulhofer-Wohl, 2018).
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Break (1000× α2) Concavity (β2)

Break Point (t∗) R2 Estimate t-stat Estimate t-stat

2007M12 0.906 −0.252 −22.26 −0.021 −1.70
2008M6 0.912 −0.262 −25.10 −0.009 −0.76
2008M11 0.916 −0.270 −27.91 0.000 0.03
2009M6 0.913 −0.259 −25.30 −0.029 −2.25

Table 1: Matching function parameter estimates. The estimates are based on monthly data from 1955-2019.
The t-statistics are computed using robust standard errors. 2007M12 and 2009M6 are the first and last
months of the Great Recession, 2008M6 is a reference point for 2008, and 2008M11 fits the data the best.

rather than one break during the Great Recession. The 2008M11 estimate is consistent with the
downward shift in Figure 2 and the results of the regression with the best fit in Table 1. The break
in 1989M1 likely captures an effect from the Great Moderation. When accounting for both breaks,
we find concavity remains weak and statistically insignificant. These results corroborate our raw
data analysis and show that a CD matching function in conjunction with a non-transitory decline in
matching efficiency provides a more convincing account of the empirical relationship between the
job finding rate and labor market tightness than the concavity from the DRW matching function.

5 MODEL IDENTIFICATION AND ESTIMATION

To quantitatively assess the matching function choice, we estimate our model under each specifica-
tion. This section describes the identification scheme that permits an apples-to-apples comparison.

5.1 IDENTIFICATION For simplicity, we explain our identification scheme using the determinis-
tic steady state, but the intuition also holds in the dynamic equilibrium system. The disagreement
payoff b governs the economy’s “fundamental surplus fraction” (Ljungqvist and Sargent, 2017),
defined as the upper bound on the fraction of a worker’s output that can be allocated to vacancy
creation. A small fundamental surplus fraction is crucial to deliver realistic volatilities of unem-
ployment and vacancies (Hagedorn and Manovskii, 2008; Ljungqvist and Sargent, 2017). To see
this, combine the vacancy creation condition, (8), with the wage rule, (10), in steady state to obtain

κ/q̄ = (1− η)(ā− b)/(1− β(1− s̄)).

Differentiating then yields an expression for the elasticity of tightness with respect to productivity,

ε̄θ,a =
ā

ā− b
× 1

ε̄m,us
,

where (ā − b)/ā is the fundamental surplus fraction and ε̄m,us is the steady-state elasticity of
matches with respect to unemployed searching. Given estimates for ε̄m,us typically range from
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0.3-0.7 (Mortensen and Nagypal, 2007; Petrongolo and Pissarides, 2001), a large response of la-
bor market tightness to changes in labor productivity requires a small fundamental surplus fraction,
which requires that b is close to the marginal product of labor, ā. A small fundamental surplus frac-
tion makes labor market tightness, and hence unemployment and vacancies, sensitive to changes
in labor productivity. Therefore, we identify b by targeting the two standard deviations in the data.

While b changes the volatilities of unemployment and vacancies, ε̄m,us affects their relative

volatilities. To see this, differentiate the steady-state conditions ū = s̄(1 − χf̄)/(s̄(1 − χf̄) + f̄)

and v̄ = θ̄ūs to determine the elasticities of unemployment and vacancies with respect to tightness:

ε̄u,θ = −(1− ū)(1− ε̄m,us)/(1− χf̄),

ε̄v,θ = 1− (1− χs̄/ūs)(1− ū)(1− ε̄m,us)/(1− χf̄).

As ε̄m,us increases, the responsiveness of unemployment to changes in labor market tightness
shrinks relative to the responsiveness of vacancies. Intuitively, when ε̄m,us is higher, an increase in
matches requires a smaller increase in unemployed searching, and hence in unemployment. There-
fore, when matches fluctuate, unemployment fluctuates less relative to vacancies. Hence, we iden-
tify ε̄m,us by targeting the relative standard deviations of unemployment and vacancies in the data.

To ensure an apples-to-apples comparison of the matching functions, we use the definitions
ε̄m,us = α = f̄ ι. Identifying ε̄m,us pins down α in the CD matching function. Since we set f̄
to target the average job finding rate in the data, we can also pin down ι in the DRW matching
function. Setting f̄ also pins down the steady-state DRW job filling rate, q̄ = (1− f̄ ι)1/ι. We then
set the CD matching efficiency so q̄ is consistent across the two matching functions, which implies

ξ = q̄1−αf̄α.

Recall from (10) that η governs the responsiveness of the wage rate to changes in the marginal
product of labor, which is driven by labor productivity. Hence, we follow Hagedorn and Manovskii
(2008) and identify η by targeting the elasticity of the wage rate with respect to labor productivity.

We set ū and s̄ to target the average unemployment and job separation rates. We then solve for
the vacancy posting cost, κ, and intra-period search duration, χ, using the steady-state conditions:

κ = q̄(1− η)(ā− b)/(1− β(1− s̄)),

χ = ((1− ū)s̄− f̄ ū)/((1− ū)s̄f̄).

Steady-state productivity, ā, is normalized to 1. We identify the process parameters, {ρa, σa},
by targeting the quarterly standard deviation and autocorrelation of labor productivity in the data.
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5.2 SOLUTION We solve the nonlinear model with the policy function iteration algorithm in
Richter et al. (2014), which is based on the theoretical work on monotone operators in Coleman
(1991). The algorithm minimizes the Euler equation errors on each node in the discretized state
space. It then computes the maximum distance between the policy functions on any node and
iterates until it falls below the tolerance criterion. We approximate the productivity process with
Gauss-Hermite quadrature and use piecewise linear interpolation to calculate the updated policy
functions. Following Garcia and Zangwill (1981), we ensure that vt ≥ 0 by introducing an auxil-
iary variable, µt, that satisfies vt = max{0, µt}2 and λv,t = max{0,−µt}2. µt maps into vacancies
when vt > 0 and the Lagrange multiplier, λv,t, when vt = 0. See Appendix B for more information.

5.3 ESTIMATION The discount factor, β, is set to 0.9983, consistent with an annual real interest
rate of 2%, and the coefficient of relative risk aversion, γ, is set to 1, consistent with log utility. The
empirical targets are stored in Ψ̂D

T and estimated with a two-step Generalized Method of Moments
(GMM) estimator, where T = 780 months. Given these values, the parameters are estimated with
a Simulated Method of Moments. For parameterization P and shocks E = {εa}, we solve the non-
linear model and simulate itR = 1,000 times for T months, the same length as our data. The model
analogues of the ΨD

T empirical targets are the mean moments across theR simulations, Ψ̄M
R,T (P , E).

The parameter estimates are obtained by minimizing the following quadratic loss function:

J(P , E) = [Ψ̂D
T − Ψ̄M

R,T (P , E)]′[Σ̂D
T (1 + 1/R)]−1[Ψ̂D

T − Ψ̄M
R,T (P , E)],

where Σ̂D
T is the diagonal of the GMM estimate of the variance-covariance matrix of the empirical

targets. The targets are based on quarterly data, in percent deviations from a Hamilton (2018)
filtered trend.13 Each period in the model is 1 month, so we aggregate the simulated time series to a
quarterly frequency. We then detrend the simulated data by computing percent deviations from the
time average, so the units of each moment are directly comparable to their counterpart in the data.

6 QUANTITATIVE ASSESSMENT

We estimate our model with data from 1955-2019. Using a sample that excludes the decline in
matching efficiency (1955-2008) yields similar estimates, so our results do not depend on the
break discussed in Section 4. The estimates based on the shorter sample are shown in Appendix C.

6.1 ESTIMATED PARAMETERS Table 2a reports the parameter estimates under each matching
function. Both models perfectly match the empirical targets, indicating the strength of our identi-
fication scheme. In the CD model, the disagreement payoff, b, is 0.934, just below the estimate of

13Specifically, we regress each time series on its most recent 4 lags following an 8 quarter window. Hodrick (2020)
shows this approach is more accurate than an HP filter when time series, such as ours, are first-difference stationary.
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Model Parameter CD DRW Empirical Target Data

Intra-Period Search Duration χ 0.5399 0.5295 Average Unemployment Rate 5.89
Vacancy Posting Cost κ 0.3550 0.2137 Average Job Finding Rate 42.14
Job Separation Rate s̄ 0.0327 0.0327 Average Job Separation Rate 3.27
Disagreement Payoff b 0.9336 0.9333 Unemployment Standard Deviation 23.66
Matching Elasticity ε̄m,us 0.5040 0.5904 Vacancy Standard Deviation 21.69
Bargaining Weight η 0.5723 0.5722 Wage-Labor Productivity Elasticity 0.59
Productivity Persistence ρa 0.9537 0.9537 Labor Prod. Autocorrelation 0.89
Productivity Standard Deviation σa 0.0083 0.0083 Labor Prod. Standard Deviation 2.61

(a) Estimated parameter values. Both models perfectly match the empirical targets (J = 0).

Full Sample Pre-2009 CD DRW

Moment Mean SE Mean SE 1 2 1 2

SD(f) 14.96 1.47 12.42 0.92 18.56 18.42 13.24 13.22
Corr(u, v) −0.74 0.04 −0.65 0.05 −0.89 −0.92 −0.85 −0.95
Skew(u) 1.10 0.35 0.88 0.37 0.91 −0.03 1.90 0.70
Skew(f) −0.60 0.45 0.03 0.36 0.01 0.03 −0.78 −0.73
Kurt(u) 1.05 0.57 0.38 0.47 1.30 −0.16 5.92 0.68
Kurt(f) 0.29 0.54 −0.63 0.25 −0.15 −0.15 0.93 0.76

(b) Untargeted moments. Models: (1) All nonlinear; (2) All nonlinear except linear law of motion.

Table 2: Baseline model.

0.955 in Hagedorn and Manovskii (2008). Workers’ bargaining power, η, is 0.572, similar to Jung
and Kuester (2011) who also use a linear wage rule. The steady-state matching elasticity, α =

ε̄m,us , is 0.50, in the middle of the (0.3, 0.7) range suggested by Petrongolo and Pissarides (2001).
The steady-state job filling rate is q̄ = (1− f̄ ι)1/ι = 0.429, where ι = logα/ log f̄ and f̄ = 0.437.
This ensures that q̄ is consistent across models. Matching efficiency is then ξ = q̄1−αf̄α = 0.433.

The estimated DRW parameters are generally similar to their CD counterparts. One exception
is the matching elasticity, ε̄m,us = f̄ ι, which is higher at 0.59, to compensate for its time varia-
tion. Given ε̄m,us = α, the matching parameter, ι = logα/ log f̄ = 0.656. The implied elasticity
of substitution is 1/(1 + ι) = 0.604, which is well below the unitary elasticity implied by a CD
matching function. Furthermore, estimating the second-order approximation of the DRW match-
ing function in (19) using simulated data yields an estimate for β2 = 0.08, which is almost triple
the largest empirical estimates and indicates more pronounced concavity than in the data. Our
elasticity of substitution is also much higher than the implied elasticity of 0.47 in Petrosky-Nadeau
et al. (2018), which would generate much larger nonlinearities from the DRW matching function.

Our estimation shows the matching functions have similar first-order properties. In addition to
matching the volatilities of unemployment and vacancies, Table 2b shows both models generate
realistic job finding rate volatilities and correlations between unemployment and vacancies. These
similarities likely explain the conventional wisdom that the matching function choice is innocuous.
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A frequently mentioned advantage of the DRW matching function is that it guarantees job fill-
ing and job finding rates between 0 and 1, whereas the CD matching function requires truncation.
We find this advantage is small. In simulations of our estimated model with a CD matching func-
tion, ft is always inside this interval, and qt requires truncation in only 0.196% of the simulations.

6.2 IMPLICATIONS OF THE MATCHING FUNCTION CHOICE

Nonlinearities The bottom of Table 2b shows the two matching functions produce vastly different
results when we examine higher-order moments. Consider first the model with a CD matching
function (column CD-1). While the model generates substantial skewness in the unemployment
rate (0.91), it does not generate any skewness in the job finding rate. The fixed matching elasticity
shuts down the gross complementarity mechanism, leaving the law of motion as the only source of
nonlinearity. The nonlinear unemployment dynamics also generate modest excess kurtosis (1.30).

The extent of the nonlinearity is greatly amplified when the law of motion for unemployment
interacts with the time-variation in the matching elasticity that occurs in the DRW model (column
DRW-1). Relative to the CD model, skewness in unemployment more than doubles to 1.90, while
job finding rate skewness is significant at −0.78. The excess kurtosis of unemployment increases
fivefold to 5.92, and there is pronounced excess kurtosis in the finding rate of 0.93, indicating
very non-Gaussian dynamics. These nonlinearities only require small movements in the matching
elasticity, which has a standard deviation of 0.06. Thus, the fluctuations in the matching elasticity
rarely leave the (0.3, 0.7) range in the literature (Mortensen and Nagypal, 2007; Petrongolo and
Pissarides, 2001). This illustrates that the DRW mechanism is a significant source of nonlinearity.

We can isolate the strength of the procyclical matching elasticity by re-solving the model with
a linearized law of motion of unemployment, thus shutting down the other source of nonlinearity.
The results are reported in column DRW-2. By itself, procyclical variation in the matching elas-
ticity generates 37% of the skewness in unemployment and 94% of the skewness in the job finding
rate, corroborating the importance of a time-varying matching elasticity for nonlinear finding rate
dynamics. Notably, the excess kurtosis of unemployment drops to 0.68, indicating the strength of
the interaction between a procyclical matching elasticity and the law of motion for unemployment.
The same comparison with the CD matching function confirms there are no other sources of nonlin-
earity (column CD-2). Linearizing the law of motion essentially removes all traces of nonlinearity.

Empirical Fit To account for the structural break in the data discussed in Section 4, we report
the empirical skewness and kurtosis of unemployment and the job finding rate over the full sample
and up to the Great Recession (column Pre-2009). While the skewness of unemployment is mostly
stable over time (full sample: 1.10; pre-2009 sample: 0.88), the skewness in the job finding rate is
sample-dependent (full sample: −0.60; pre-2009 sample 0.03), and neither estimate is significantly
different from zero. This instability is an artifact of the underlying job finding rate dynamics plotted
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in Figure 2. The downward shift in the job finding rate schedule after 2009 creates artificial neg-
ative skewness when estimated over the whole sample. The excess kurtosis of unemployment and
the job finding rate are also sample-dependent, as both are much smaller in the pre-2009 sample.

With these empirical features in mind, the CD matching function clearly provides a stronger
account of the data. The skewness of unemployment is in line with the data, and the near zero skew-
ness of the job finding rate accords well with the notion that the change in finding rate dynamics
after 2009 is better captured by a decline in matching efficiency rather than concavity. In contrast,
our simulations show that the DRW matching function generates skewness in the job finding rate
as a generic feature of business cycles, unlike in the data where the skewness hinges on the decline
in matching efficiency that occurred only during the Great Recession. As a consequence of these
counterfactual nonlinearities, it also grossly overstates the skewness and kurtosis of unemploy-
ment, and generates counterfactually high kurtosis in the finding rate, even over the full sample.14
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Figure 3: Percentage point responses to a −2 standard deviation productivity shock.

Deep Recessions Recent work has argued that the textbook search and matching model is capa-
ble of producing deep recessions and endogenous disaster dynamics (Petrosky-Nadeau and Zhang,
2017; Petrosky-Nadeau et al., 2018). Our analysis shows this finding rests sensitively on the match-
ing function choice. While the kurtosis moments capture some of this effect, Figure 3 provides fur-
ther context by plotting generalized impulse responses of unemployment and the job finding rate to
a 2 standard deviation negative labor productivity shock.15 We illustrate the state-dependence of the
responses by initializing each of the simulations at steady state (u0 = 5.9%) and a recession (u0 =

14In addition to skewness in levels, recent papers have also considered the skewness of changes in unemployment,
known as steepness asymmetry (Bernstein et al., 2021; Dupraz et al., 2019; Ferraro, 2017, 2018). These papers show
additional model features are required to generate this feature of the data, regardless of the matching function choice.

15Following Koop et al. (1996), the response of xt+h over horizon h is given by Gt(xt+h|εa,t+1 = −2, zt) =
Et[xt+h|εa,t+1 = −2, zt]−Et[xt+h|zt], where zt is a vector of initial states and −2 is the shock size in period t+ 1.
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8%). When we initialize the simulations at steady state, the choice of matching function is innocu-
ous. This follows from the fact that both matching functions generate similar first-order dynamics.

Large differences in the responses emerge when the shock hits in a recessionary state. While
both unemployment responses are larger due to the state-dependence in the law of motion, the
DRW matching function generates almost a 50% larger peak response compared to the CD speci-
fication. The larger response is driven by a larger decline in the job finding rate, which is absent in
the CD model and follows from the decline in the matching elasticity caused by the gross comple-
mentarity embedded in the matching function. This shows the DRW matching function is essential
for the textbook labor search model to generate deep recessions and endogenous disaster dynamics.

Welfare Cost of Business Cycles To further examine the implications of the matching func-
tion, we compute the welfare cost of business cycles by implementing the experiment in Lucas
(1987, 2003). We first compute the representative household’s lifetime utility in an economy
where consumption always equals its stochastic steady state, c̃. Then we compute expected wel-
fare in the stochastic economy and solve for the percentage of stochastic consumption λ house-
holds would require to make them indifferent between the two consumption paths. Formally,
λ = 100× (exp(ln c̃− 1−β

1−βT−1
1
NE

∑NE
j=1E0[

∑T
t=0 β

t ln cj,t|zj,0])− 1), where T = 3000, zj,0 is the
jth draw from the ergodic distribution with path {cj,t} and NE = 20,000 is the number of draws.

With the CD matching function, we find λ = 0.29%, so households require an additional 0.29%

of consumption in each period to accept the fluctuations from business cycles. This number is over
5 times larger than the linear model (0.05%), which is equal to the welfare cost reported in Lucas
(2003) when consumption is a Gaussian process. Under the DRW matching function, the cost of
business cycles is 0.43%, almost 50% higher than the cost with the CD matching function. These
results further emphasize the importance of the matching function for characterizing nonlinearities.

7 MODEL EXTENSIONS

Our key insights are robust to Nash bargaining and job separation rate shocks. In both models, the
CD matching function continues to provide a better account of higher-order moments in the data.16

7.1 NASH BARGAINING Under Nash bargaining, the wage rate is given by

wt = η(at + κ(1− χs̄)Et[xt+1θt+1]) + (1− η)b. (20)

Combine (20) with the vacancy posting condition and impose risk neutrality to obtain

κ/qt = (1− η)(at − b) + βEt[xt+1((1− s̄)κ/qt+1 − ηκ(1− χs̄)θt+1)]. (21)

16Pissarides (2009) and Petrosky-Nadeau et al. (2018) add a fixed hiring cost so the marginal cost of vacancy
creation is κ0/qt+κ1, rather than κ/qt. Our analytical and numerical results are robust to this alternative specification.
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Model Parameter CD DRW Empirical Target Data

Intra-Period Search Duration χ 0.5372 0.5289 Average Unemployment Rate 5.89
Vacancy Posting Cost κ 0.3214 0.2051 Average Job Finding Rate 42.14
Job Separation Rate s̄ 0.0327 0.0327 Average Job Separation Rate 3.27
Disagreement Payoff b 0.9280 0.9247 Unemployment Standard Deviation 23.66
Matching Elasticity ε̄m,us 0.5157 0.5860 Vacancy Standard Deviation 21.69
Bargaining Weight η 0.1074 0.1139 Wage-Labor Productivity Elasticity 0.59
Productivity Persistence ρa 0.9537 0.9537 Labor Prod. Autocorrelation 0.89
Productivity Standard Deviation σa 0.0083 0.0083 Labor Prod. Standard Deviation 2.61

(a) Estimated parameter values. Both models perfectly match the empirical targets (J = 0).

Full Sample Pre-2009 CD DRW

Moment Mean SE Mean SE 1 2 1 2

SD(f) 14.96 1.47 12.42 0.92 17.93 17.88 14.05 14.01
Corr(u, v) −0.74 0.04 −0.65 0.05 −0.89 −0.92 −0.85 −0.95
Skew(u) 1.10 0.35 0.88 0.37 1.13 0.17 1.98 0.80
Skew(f) −0.60 0.45 0.03 0.36 −0.19 −0.18 −0.84 −0.83
Kurt(u) 1.05 0.57 0.38 0.47 2.08 −0.10 6.40 0.94
Kurt(f) 0.29 0.54 −0.63 0.25 −0.09 −0.09 1.09 1.05

(b) Untargeted moments. Models: (1) All nonlinear; (2) All nonlinear except linear law of motion.

Table 3: Model with Nash bargaining.

Since both the CD and DRW matching functions imply that θt+1 is generally a nonlinear function
of κ/qt+1, (21) shows that the key effect of Nash bargaining is to make the marginal cost of hiring
a nonlinear function of productivity. Importantly, the extent to which this nonlinearity matters is
governed by the size of the Nash bargaining parameter η. To solve (21) in closed form, consider
the DRW matching function with ι = 1, so qt = 1/(1 + θt) and θt = 1/qt − 1. Then (21) becomes

κ/qt = (1− η)(at − b) + βEt[(1− s̄− η(1− χs̄))κ/qt+1 + ηκ(1− χs̄)]. (22)

We can once again guess and verify that (22) has a solution of the form,

κ/qt = δ0 + δ1(at − ā),

where

δ0 =
(1− η)(ā− b) + βηκ(1− χs̄)

1− β(1− s̄− η(1− χs̄))
, δ1 =

1− η
1− β(1− s̄− η(1− χs̄))ρa

.

In this case, the marginal cost of hiring is a linear function of productivity. Consistent with the
general case where ι 6= 1, the extent to which Nash bargaining matters depends on the size of η.

We estimate the model under each matching function. Table 3a shows the parameter estimates
and empirical targets, which both models perfectly match (J = 0). Importantly, the estimates of the
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matching elasticity, ε̄m,us , are close to estimates in our baseline model, and the estimate of η are rel-
atively small, suggesting that Nash bargaining will have a minor effect on our quantitative results.

We quantify this intuition by comparing Table 3b with Table 2b. Focusing on the higher-order
moments, Nash bargaining has a relatively small effect compared to the matching function choice.
For example, in the estimated DRW model (column DRW-1), Nash bargaining increases the skew-
ness of unemployment by 4%, from 1.9 to 1.98. It is more powerful under the CD matching
function (column CD-1), increasing the skewness of unemployment by 24% and generating modest
negative skewness in the job finding rate. However, these effects are still much smaller than switch-
ing to the DRW matching function (comparing columns CD-1 and DRW-1), which increases the
skewness of unemployment by 75% and more than quadruples the skewness of the job finding rate.

7.2 JOB SEPARATION RATE SHOCKS We introduce job separation rate shocks, given their em-
phasis in the literature. Following Coles and Kelishomi (2018) and Mercan et al. (2021), the pro-
ductivity and job separation rate processes are correlated. The two processes evolve according to

at = ā+ ρa(at−1 − ā) + ρasσsεs,t + σaεa,t, 0 ≤ ρa < 1, εa ∼ N(0, 1),

st = s̄+ ρs(st−1 − s̄) + ρasσaεa,t + σsεs,t, 0 ≤ ρs < 1, εs ∼ N(0, 1),

where ρas governs the correlation between the shocks. The vacancy creation condition becomes

κ−λv,t
qt

= at − wt + Et[xt+1(1− st+1)κ−λv,t+1

qt+1
]. (23)

Unfortunately, this model does not have a closed-form solution, even under risk-neutrality. How-
ever, it is clear from (23) that the marginal cost of hiring becomes a nonlinear function of both
shocks, whereas it was a linear function of only labor productivity in our baseline model. Thus,
job separation rate shocks add a potentially important source of asymmetry to the labor market, in
addition to the asymmetry from the matching function and the law of motion for unemployment.

Table 4a shows the parameter estimates for both models. Once again, they are perfectly identi-
fied. The estimated cross-correlation between the two shocks is negative, consistent with the liter-
ature. Most of the labor market parameters are similar to the model without job separation shocks.
Notable exceptions are the steady-state matching elasticities, ε̄m,us , which are slightly higher than
the baseline estimates but still within the conventional range. This decreases ι, which suggests the
DRW matching function will generate slightly weaker nonlinearities than in our baseline model.

Table 4b shows that adding job separation rate shocks improves both models’ abilities to match
the volatility of the job finding rate and the Beveridge curve. This further demonstrates that both
models have similar first-order properties. However, even with a lower estimate of ι, the DRW
model still overstates the skewness and kurtosis of unemployment and the job finding rate, while
the CD model continues to provide a more realistic account of higher-order properties of the data.
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Model Parameter CD DRW Empirical Target Data

Intra-Period Search Duration χ 0.5214 0.5159 Average Unemployment Rate 5.89
Vacancy Posting Cost κ 0.1401 0.0731 Average Job Finding Rate 42.14
Job Separation Rate s̄ 0.0327 0.0327 Average Job Separation Rate 3.27
Disagreement Payoff b 0.9418 0.9419 Unemployment Standard Deviation 23.66
Matching Elasticity ε̄m,us 0.6158 0.6716 Vacancy Standard Deviation 21.69
Bargaining Weight η 0.5744 0.5744 Wage-Labor Productivity Elasticity 0.59
Productivity Persistence ρa 0.9537 0.9537 Labor Prod. Autocorrelation 0.89
Productivity Standard Deviation σa 0.0083 0.0083 Labor Prod. Standard Deviation 2.61
Separation Rate Persistence ρs 0.8985 0.8985 Separation Rate Autocorrelation 0.79
Separation Rate Standard Deviation σs 0.0012 0.0012 Separation Rate Standard Deviation 8.97
Shock Cross-Correlation ρas −0.0814 −0.0814 Prod. and Sep. Rate Correlation −0.47

(a) Estimated parameter values. Both models perfectly match the empirical targets (J = 0).

Full Sample Pre-2009 CD DRW

Moment Mean SE Mean SE 1 2 1 2

SD(f) 14.96 1.47 12.42 0.92 14.41 14.29 13.04 12.85
Corr(u, v) −0.74 0.04 −0.65 0.05 −0.75 −0.74 −0.73 −0.75
Skew(u) 1.10 0.35 0.88 0.37 0.88 0.11 1.41 0.46
Skew(f) −0.60 0.45 0.03 0.36 −0.19 −0.17 −0.80 −0.75
Kurt(u) 1.05 0.57 0.38 0.47 1.35 −0.07 3.80 0.38
Kurt(f) 0.29 0.54 −0.63 0.25 0.00 −0.03 1.05 0.90

(b) Untargeted moments. Models: (1) All nonlinear; (2) All nonlinear except linear law of motion.

Table 4: Model with productivity and separation rate shocks.

8 CONCLUSION

Analyzing macroeconomic nonlinearities through the lens of search and matching models is an ex-
citing and growing area of research. We contribute to this enterprise by analyzing the implications
of a key model ingredient: the matching function. Using closed-form analytics and an estimated
model, we show the matching function choice greatly affects the model’s nonlinearities, in contrast
to the prevailing view that it is innocuous. The matching function is a powerful source of nonlin-
earity when it features a procyclical matching elasticity. This is the case for the DRW matching
function, but not the CD matching function. A quantitative assessment of the CD and DRW match-
ing functions shows the former provides a better account of nonlinearities in the U.S. labor market.
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A DATA SOURCES AND TRANSFORMATIONS

We use the following time-series from 1955-2019 provided by Haver Analytics:

1. Labor Productivity, Non-farm Business Sector, All Persons,
Seasonally Adjusted, Quarterly, 2012=100 (LXNFS@USECON)

2. Labor Share, Non-farm Business Sector, All Persons,
Seasonally Adjusted, Quarterly, Percent (LXNFBL@USECON)

3. Job Openings, Job Openings and Labor Turnover Survey,
Seasonally Adjusted, Monthly, Thousands (LJJTLA@USECON)

4. Unemployed, 16 Years & Over
Seasonally Adjusted, Monthly, Thousands (LTU@USECON)

5. Civilian Labor Force: 16 yr & Over
Seasonally Adjusted, Monthly, Thousands (LF@USECON)

6. Civilians Unemployed for Less Than 5 Weeks
Seasonally Adjusted, Monthly, Thousands (LU0@USECON)

We also use the Help Wanted Advertising Index (HWI) from Barnichon (2010), which is in units
of the labor force. The series corrects for online advertising and is available on the author’s website.

We applied the following transformations to the above data sources:

1. Unemployment Rate: ut = 100(LTUt/LFt).

2. Vacancy Rate: HWI from 1954M1-2000M12 andLJJTLA/LF from 2001M1-2019M12.

3. Short-term Unemployed (U s): The redesign of the Current Population Survey (CPS) in
1994 reduced U s

t . To correct for this bias, we follow Elsby et al. (2009) and scale LU0 by the
time average of the ratio of LU0/LTU for the first and fifth rotations groups to LU0/LTU

across all rotation groups. Using IPUMS-CPS data, we extract EMPSTAT (“Employment
Status”), DURUNEMP (“Continuous weeks unemployed”) and MISH (“Month in sample,
household level”). Unemployed persons have EMPSTAT equal to 20, 21, or 22. Short-term
unemployed are persons who are unemployed and have DURUNEMP equal to 4 or less. In-
coming rotation groups have MISH equal to 1 or 5. Using the final weights, WTFINL, we
calculate the LU0/LTU for the first and fifth rotations groups by conditioning on the appro-
priate values of MISH and DURUNEMP. We then apply the X-12 seasonal adjustment func-
tion in STATA. Finally, we take an average of the seasonally adjusted series from 1994-2019
and divide by the average of LU0/LTU across all rotation groups. This process yields a
scale factor of 1.1725. Therefore, U s equals LU0 prior to 1994 and 1.1725×LU0 after 1994.
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4. Job Finding Rate: ft = 1− (LTUt − U s
t )/LTUt−1.

5. Real Wage: wt = LXNFBLt × LXNFSt.

6. Wage Elasticity: Slope coefficient from regressing wt on an intercept and LXNFSt.

7. Unemployed Searching: ust = χst + (1− χst)ut−1, where χ = 0.5 (Shimer, 2005).

8. Labor Market Tightness: θt = Vacancy Rate/ust .

9. Job Separation Rate: st = 1− exp(−s̃t), where s̃t satisfies

LTUt+1 =
(1− exp(−f̃t − s̃t))s̃tLFt

f̃t + s̃t
+ exp(−f̃t − s̃t)LTUt, f̃t = − log(1− ft).

B SOLUTION METHOD

Our baseline model only includes productivity shocks. This section describes the more general
problem that also includes job separation rate shocks. The nonlinear equilibrium system is given by

Et[g(xt+1,xt, Et+1)|zt,P ] = 0,

where g is a vector-valued function, xt is a vector of variables, Et = {εa,t, εs,t} is a vector of shocks,
zt is a vector of endogenous and exogenous state variables, and P is a vector of model parameters.

The bounds on the state variables, at, st, and nt−1 are set to [0.925, 1.075], [0.024, 0.041], and
[0.85, 0.9999], which contain at least 99% of the ergodic distribution. We discretize each state
into 11 evenly-spaced points. The product of the points in each dimension, D, is the total nodes
in the state space (D = 1,331). The realization of zt on node d is denoted zt(d). We discretize
the exogenous states separately from the shocks, εa,t+1 and εs,t+1, which are discretized accord-
ing to Gauss-Hermite quadrature for standard-normal i.i.d. random variables using 7 points (i.e.,
±2.65SD). The Gauss-Hermite method provides integration weights, φ(m), for m ∈ {1, . . . ,M}.

Since vacancies vt ≥ 0, we introduce an auxiliary variable, µt, such that vt = max{0, µt}2 and
λ0,t = max{0,−µt}2, where λv,t is the Lagrange multiplier on the non-negativity constraint. If
µt ≥ 0, then vt = µ2

t and λv,t = 0. When µt < 0, the constraint is binding, vt = 0, and λv,t = µ2
t .

Therefore, the constraint on vt is transformed into a pair of equalities (Garcia and Zangwill, 1981).
The following steps outline our nonlinear policy function iteration algorithm:

1. Use Sims’s (2002) gensys algorithm to solve the linearized model. Then map the solution
for the policy functions to the discretized state space. This provides an initial conjecture.

2. On iteration j ∈ {1, 2, . . .} and each node d ∈ {1, . . . , D}, use Chris Sims’s csolve to find
µt(d) to satisfy E[g(·)|zt(d),P ] ≈ 0. Guess µt(d) = µj−1(d). Then apply the following:

(a) Solve for all variables dated at time t, given µt(d) and zt(d).
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(b) Linearly interpolate the policy function, µj−1, at the updated state variables, zt+1(m),
to obtain µt+1(m) on every integration node, m ∈ {1, . . . ,M}.

(c) Given {µt+1(m)}Mm=1, solve for the other elements of xt+1(m) and compute

E[g(xt+1,xt(d), Et+1)|zt(d),P ] ≈
∑M

m=1 φ(m)g(xt+1(m),xt(d), Et+1(m)).

Set µj(d) = µt(d) when csolve converges.

3. Repeat step 2 until maxdistj < 10−6, where maxdistj ≡ max{|µj − µj−1|}. When that
criterion is satisfied, the algorithm has converged to an approximate nonlinear solution.

The algorithm is programmed in Fortran with Open MPI and run on the BigTex supercomputer.

C ADDITIONAL RESULTS

Model Parameter CD DRW Empirical Target Data

Intra-Period Search Duration χ 0.5463 0.5405 Average Unemployment Rate 5.77
Vacancy Posting Cost κ 0.3219 0.2022 Average Job Finding Rate 44.32
Job Separation Rate s̄ 0.0345 0.0345 Average Job Separation Rate 3.45
Disagreement Payoff b 0.9278 0.9280 Unemployment Standard Deviation 21.53
Matching Elasticity ε̄m,us 0.5330 0.6050 Vacancy Standard Deviation 21.25
Bargaining Weight η 0.5861 0.5862 Wage-Labor Productivity Elasticity 0.60
Productivity Persistence ρa 0.9517 0.9517 Labor Prod. Autocorrelation 0.89
Productivity Standard Deviation σa 0.0090 0.0090 Labor Prod. Standard Deviation 2.78

(a) Estimated parameter values. Both models perfectly match the empirical targets (J = 0).

Full Sample Pre-2009 CD DRW

Moment Mean SE Mean SE 1 2 1 2

SD(f) 14.96 1.47 12.42 0.92 16.56 16.47 12.45 12.41
Corr(u, v) −0.74 0.04 −0.65 0.05 −0.91 −0.93 −0.87 −0.95
Skew(u) 1.10 0.35 0.88 0.37 0.87 0.03 1.67 0.68
Skew(f) −0.60 0.45 0.03 0.36 −0.07 −0.04 −0.76 −0.71
Kurt(u) 1.05 0.57 0.38 0.47 1.15 −0.16 4.49 0.56
Kurt(f) 0.29 0.54 −0.63 0.25 −0.16 −0.14 0.80 0.64

(b) Untargeted moments. Models: (1) All nonlinear; (2) All nonlinear except linear law of motion.

Table 5: Baseline model, pre-Great Recession sample (1955-2008).
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