Asset Pricing via Graph Neural Networks

Yutong Lu, Gesine Reinert, Mihai Cucuringu

Dept. of Statistics, University of Oxford yutong.lu@stats.ox.ac.uk

DEPARTMENT OF **STATISTICS**

Background

'Why do assets have different returns?' is a long-standing question in financial research. Arbitrage Pricing Theory claims that, if there is no arbitrage opportunity in a diversified market, excess returns of assets approximately follow a multi-factor linear model. A recent study [1] illustrates the effectiveness of machine learning models, which can capture nonlinear patterns, in asset pricing. The dynamic linear multi-factor model is defined as

$$\mathsf{R}_t = \beta(c_{t-1}) \, \mathsf{F}_t + \epsilon_t,$$

(1)

where N is the number of assets at time point t, R_t is an $N \times 1$ vector of excess returns, and F_t is an $K \times 1$ vector of risk factors. The asset specific characteristics at time t - 1 are encoded in the matrix c_{t-1} of size $N \times L$. Finally, the $N \times K$ matrix of factor loadings $\beta(\cdot)$ is a function of c_{t-1} , measuring sensitivity to each risk factor, and ϵ_t is an $N \times 1$ vector capturing the idiosyncratic risk of the assets.

Project Goals

Despite the flexible multi-factor structure, a major challenge is that neither the risk factors nor the risk exposures are known a-priori. Additionally, traditional methods have difficulty in modelling the complex cross-correlation among assets. In this project, we aim to

- Collect asset prices, characteristics and macroeconomic data.
- Construct dynamic networks of assets to model time-varying crossimpact, i.e., employ features of asset *i* for predicting asset *j*.
- Develop an asset pricing framework via graph neural network models to incorporate asset specific characteristics, macroeconomic indicators and network effects.

Asset Pricing Framework

Following the linear factor structure (1), we use graph neural networks to estimate both risk factors and factor loadings, using monthly returns.

Graph Neural Networks

Given a graph G = (V, E, A, X), graph neural networks (GNN) are a family of neural network (NN) models that take graphs as inputs. The type of GNN mainly used in this project is a Graph convolutional network (GCN) [2]. The propagation rule is given by

 $H^{(l+1)} = \sigma(\tilde{D}^{-\frac{1}{2}}\tilde{A}\tilde{D}^{-\frac{1}{2}}H^{(l)}W^{(l)}),$

where $\tilde{A} = A + I$ and \tilde{D} is the degree matrix of \tilde{A} , $W^{(I)}$ is the trainable weight and $\sigma(\cdot)$ is a nonlinear activation function. For the input layer, I = 0, $H^{(0)}$ is set to equal the attributes matrix X.

Data

We collect data of US stocks from 1959 to 2016, including

- 94 firm specific characteristics data proposed by [1].
- Daily and monthly prices of all stocks in the characteristics data from CRSP database.
- Monthly macroeconomic indicators from FRED-MD data set [3].

Proof of Concept

Targeting to minimize both cross-sectional and time series errors, we consider the objective function

$$L_{\lambda} = \frac{1}{NT} \sum_{i=1}^{T} \sum_{i=1}^{N} (R_{i,t} - \hat{R}_{i,t})^2 + \lambda \cdot \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{T} \sum_{i=1}^{T} (R_{i,t} - \hat{R}_{i,t}) \right)^2$$

Graph convolutional network outperforms conditional autoencoder [1] (benchmark) on both value and equally weighted long-short portfolios constructed based on model forecasts.

Value weighted portfolios

Equally weighted portfolios

where λ is a trade-off hyperparameter to balance the weight of the time series errors.

Network of Stocks

We use correlation matrices of stock returns to build dynamic graphs of the market $G_t = (V_t, E_t, A_t, X_t)$, with components given by

- \triangleright V_t a collection of vertices, where each vertex is an individual stock
- \triangleright E_t a collection of edges, where each edge encodes the connection between two stocks based on the predefined relationship
- \blacktriangleright A_t an adjacency matrix representing the graph
- \blacktriangleright X_t a matrix of attributes, whose elements encode the features or characteristics of the stocks.

References

- [1] Gu, S., Kelly B., and Xiu, D: Autoencoder asset pricing models, Journal of Econometrics 222.1 (2021): 429-450
- [2] Defferrard, M., Bresson, X. and Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering, Advances in Neural Information Processing Systems 29 (2016): 3844-3852
- [3] McCracken, M. W., and Ng, S: FRED-MD: A monthly database for macroeconomic research, Journal of Business & Economic Statistics 34.4 (2016): 574-589