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Abstract

We introduce a deep learning classification (DLC) method for analyzing equilibrium in discrete-

continuos choice dynamic models. As an illustration, we solve Krusell and Smith’s (1998) heterogeneous-

agent model with incomplete markets, borrowing constraint and indivisible labor choice. The novel

feature of our analysis is that we construct state-contingent discontinuous decision functions that tell

us when the agent switches from one employment state to another. We use deep learning not only to

characterize the discrete indivisible labor choice but also to perform model reduction and to deal with

multicollinearity. Our TensorFlow-based implementation of DLC is tractable in models with thousands

of state variables.
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1 Introduction

Dynamic macroeconomic models are generally built on the assumption of continuous-set choices. For

example, the agent can distribute wealth in any proportion between consumption and savings or she can

distribute time endowment in any proportion between work and leisure. But certain economic choices

are discrete: the agent can either buy a house or not, be either employed or not, either retire or not,

etc.1 The progress in modeling discrete choices is still limited because such choices are more challenging

to characterize.

In the present paper, we introduce a deep learning classification (DLC) method that can be used to

solve a broad class of dynamic economic models with both continuous-set and discrete-set choices. To

solve for continuous-set choices, we apply a projection-style method, specifically, we parameterize decision

functions with a deep neural network, and we find the coefficients of the neural network (biases and weights)

to satisfy the model’s equations. Our main novelty is a classification method for constructing discrete-set

choices. We define a state-contingent probability function that, for each feasible discrete choice, gives the

probability that this specific choice is optimal; we parameterize the probability function with a deep neural

network; and we find the network parameters to satisfy the optimality conditions for the discrete choices.

As an illustration, let us consider the image recognition problem, which us a typical classification prob-

lem in data science. For example, a machine classifies images into cats, dogs and sheep. We parameterize

the probabilities of the three classes with a deep neural network. The machine is given a collection of

images and is trained to minimize the cross-entropy loss (which is equivalent to maximizing the likelihood

function) that ensures the correct classification of images; see Goodfellow, Bengio and Courville (2016) for

a survey of classification methods in data science.

Our classification method for constructing discrete choices in economics is analogous to the above

image-recognition analysis. For example, in a model with three indivisible labor choices, we use a deep

neural network to parameterize the probabilities of being full-time employed, part-time employed and

unemployed.2 The machine is given a collection of employment choices conditional on state and is trained

to maximize the likelihood function that those choices are optimal. The same idea can be applied for

analyzing the models with retirement, default, house purchase, etc.

However, the analogy between the image recognition and our solution technique is not exact. Image

recognition is the skill that human beings instinctly know how to do, so that software is trained on a set of

images that human being first identified as matching or not matching. In our application, the software is

trained to do something that human beings do not instinctly know how to do, namely, to construct matched

vectors of independent and corresponding dependent variables that satisfy a set of model’s equations.

The classification solution method we propose can be used to solve small-scale representative agent

models. However, the power of deep learning consists in its ability to solve large-scale applications that are

intractable with conventional solution methods. To illustrate these remarkable capacities of the proposed

DLC method, we solve a large-scale application, specifically, a version of Krusell and Smith’s (1998) model

in which the agents face indivisible labor choices.

The studied model features heterogeneous agents, incomplete markets and borrowing constraints and

is computationally challenging even in the absence of discrete choices. The state space of the studied

model may include thousands of state variables of heterogenous agents and is prohibitively large. To

make the model tractable, Krusell and Smith (1998) construct a reduced state space of each agent by

considering her own state variables and one or few aggregate moments of the wealth distribution; see Den

Haan (2010) for a review of earlier techniques for reducing the state space. Furthermore, several recent

1 Examples include indivisibile labor models (Hansen (1985), Rogerson (1988), Chang and Kim (2007), Prescott, Rogerson

and Wallentius (2009), Chang, Kim, Kwon and Rogerson (2019)), retirement models (Iskhakov, Jørgensen, Rust and Schjerning

(2017)), sovereign default models (Arellano (2008), Chatterjee, Corbae, Nakajima and Ríos-Rull (2007)).
2 The earlier literature on indivisible labor (e.g., Rogerson (1996) and Hansen (1994)) convexifies the choice set by intro-

ducing lotteries, i.e., they assume that the agent chooses the probability to be employed and unemployed. In our analysis, we

also construct probabilities but such probabilities have totally different meaning: they indicate which of the available discrete

choices is most likely to be optimal and hence, is selected by the agent.
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papers use linearization and perturbation to simplify the analysis of equilibrium in heterogeneous-agent

models, including Reiter (2010), McKay and Reis (2016), Childers (2016), Boppart et al. (2018), Mertens

and Judd (2017), Ahn et al (2018), Winberry (2018), Bayer and Luetticke (2020); see Reiter (2019) for a

thoughtful discussion of that literature.

A distinctive feature of our DLC method is that it does not rely on moments, linearization, perturbation

or any other pre-designed reduction of the state space but works with the actual state space consisting of

all individual and aggregate state variables — we let deep neural network to choose how to condense large

sets of state variables into much smaller sets of features. Our code is written using Google’s TensorFlow

platform — deep learning software that led to many ground breaking applications in data science — and is

it tractable in models with thousands of state variables.

The studied indivisible labor model was analyzed in important contributions of Chang and Kim (2007)

and Chang et al. (2019). The former paper extends Krusell and Smith’s (1998) analysis to include

indivisible labor choice by constructing value functions of employed and unemployed agents; their approach

reduces the discrete choice problem to the analysis of two continuous-choice value functions. The latter

paper offers a more simple and tractable way of modeling indivisiile-labor choice by discretizing the first-

order conditions of the associated divisible labor model, namely, it assumes that the labor is divisible and

that the agent decides on how many hours to work but if the chosen hours fall below a certain level, the

agent becomes unemployed. With that assumption, the model with discrete choices is reduced to a familiar

setup with continuous labor choices and occasionally binding constraints. We go a step further and solve

for entirely discrete choices by using classification techniques instead of relying on some continuous choice

representations. Our decision functions tell us when the agent switches from one discrete choice to another,

conditional on the individual and aggregate states.

We solve three numerical examples: a version of Krusell and Smith’s (1998) model with continuous

choices (i.e., divisible labor), a version of that model with continuous-discrete choices (i.e., indivisible labor)

and the corresponding representative-agent model. We find that the introduction of indivisible labor helps

us correct some shortcomings of the divisible labor model in reproducing the data, in particular, the data

on labor markets. One improvement relatively to empirical data is that the volatility of labor increases

relatively to the output; in that respect, our findings are similar to the indivisible labor framework of

Rogerson (1994) and Hansen (1993). Another improvement is a reduction in the correlation between labor

and wages which is excessively high in the representative-agent model with divisible labor; this implication

is an outcome of both the assumptions of indivisible labor and heterogeneous agents. As for distributional

implications, the predictions of our heterogeneous-agent model with indivisible labor are similar to those of

the models studied by Chang and Kim (2007) and Chang et al. (2019). First, the assumption of indivisible

labor increases the degrees of inequality, helping to bring the model closer to the data. Furthermore,

unlike in the divisible labor model, the degrees of income and wealth inequalities in the indivisible labor

economics are less sensitive to variations in the coefficient of risk aversion. However, we conclude that the

assumption of indivisible labor alone is not sufficient to produce empirically relevant degrees of income and

wealth inequality in the model. We should emphasize that this is a common outcome of the Krusell and

Smith (1998) type of model (without assuming heterogeneity in discount factors).

Our DLC method is related to recent papers on deep learning, including Duarte (2018), Villa and

Valaitis (2019), Fernández-Villaverde, Hurtado, and Nuño (2019), Azinovíc, Luca and Scheidegger (2019),

Lepetyuk, Maliar and Maliar (2020) and especially, Maliar, Maliar and Winant (2018, 2019, 2021). How-

ever, this literature does not analyze models with discrete choices, which is the main subject of the present

paper. From the other side, there are numerous methods in econometrics for estimating discrete-choice

models but these methods are limited to statistic applications; see Train (2009) for a review. An exception

is an endogenous grid method with taste shocks by Iskhakov et al. (2017) that is designed to deal with

discrete choices in dynamic environment; see also Iskhakov and Keane (2020) for an application of this

method for estimating a partial equilibrium model with discrete labour supply. In the context of Carroll’s

(2005) analysis, these papers suggest to apply logistic smoothing to the kinks by transferring the problem

into the choice probability space via the taste shocks. There is an important conceptual difference between

3



our analysis and those papers, namely, we do not attempt to smooth the kinks but instead to accurately

approximate such kinks by using the-state-of-the-art deep learning classification method.

Finally, our solution method is related to the fields of supervised, unsupervised and reinforcement

learning from machine learning literature. First, nonlinear regression equations, which we estimate using

artificial data, can be viewed as a generalization of canonical supervised learning; see Maliar et al. (2021)

for a discussion. Second, the decision and value functions are not known in economic models, so we can

also interpret our solution method as unsupervised learning; such interpretation is advocated in Azinovíc

et al. (2019) Third, our solution method approximates not only the decision and value functions but also

the ergodic set, so it has a direct connection to reinforcement learning; see Goodfellow et al. (2016) for a

review of supervised and unsupervised learning in the computer science literature including deep learning;

see Sutton and Barto (2018) for a review of reinforcement learning literature, and see Powell (2008) for a

review of the related field of approximate dynamic programming.

The rest of the paper is as follows: In Section 2, we set up the Krusell and Smith (1998) model with

divisible labor choice; in Section 3, we solve the model with indivisible labor choice; in Section 4, we analyze

the model with full- and part-time employment; in Section 5, we compare the aggregate and distributional

predictions of divisible and indivisible labor models; and finally, in Section 6, we conclude.

2 Krusell-Smith model with divisible and indivisible labor choices

We consider a version of Krusell and Smith’s (1998) model with three different sets of labor choice: divisible

labor in which the agent can work any number of hours, indivisible labor in which the agent chooses between

employment and unemployment, and a version of indivisible labor model in which the agent can work part

time and full time.

Consumer side. The economy consists of a set of heterogeneous agents  = 1   that are identical

in fundamentals, but differ in dimensions of productivity and capital holdings. The agents experience

idiosyncratic productivity shocks and the economy experiences aggregate shock. Each agent  solves

max
{+1}∞=0
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=0
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 are consumption, hours worked, capital and idiosynratic labor productivity;  ∈ (0 1)

is the discount factor;  ∈ (−1 1) and  ≥ 0; and initial condition
¡
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0

¢
is given. The capital choice is

restricted by a borrowing limit  ≤ 0. The three different versions of the model are distinguished by the
set of allowable labor choices  . We normalize the idiosyncratic productivity levels to one by

P
=1 


 = 1

for all , so that they have no impact on the aggregate productivity level.

Production side. The production side of the economy is described by a Cobb-Douglas production

function exp () 
−1
 1− , where  =

P
=1 


 is aggregate capital,  =

P
=1 





 is aggregate efficiency

labor, and  is an aggregate productivity shock following a first-order autoregressive process,

ln +1 =  ln  +  with  ∼ N (0 1)  (6)

where  ∈ (−1 1) and  ≥ 0. The interest rate  and wage  are given by

 = 1− + 
−1
 1− and  =  (1− )  

−
  (7)

where  ∈ (0 1] is the depreciation rate.
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Intertemporal choice. The Kuhn-Tucker condition of the agent’s problem (1)—(5) with respect to

capital is



 = 0 (8)

where  ≡ +1 −  ≥ 0 is the distance to the borrowing limit, and  ≥ 0 is the Lagrange multiplier
associated with the borrowing constraint (5) which satisfies the Euler equation,

 ≡ 1
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´
+1

i
 (9)

where 1 denotes a first-order partial derivative of function  with respect to the first argument. Whenever

  0, the agent is not at the borrowing limit, i.e., 

+1  , so the Euler equation must hold with equality

leading to  = 0, and whenever the Euler equation does not hold with equality, it must be that the agent

is at the borrowing constraint  = 0.

The optimality conditions for labor To characterize labor choice, we assume that the utility function

in (1) takes the form

 ( ) =
1− − 1
1− 

+
(− )1− − 1

1− 
 (10)

where ,   0 and  is the total time endowment which we normalize to  instead of the conventional

normalization to 1 because it helps to calibrate the divisible and indivisible labor models to the same

steady state.

We consider three versions of the model that differ in the set of allowable labor choices  ∈  : i) the

divisible labor model, ii) indivisible labor model and iii) full- and part-time employment model.

i) divisible labor model  = [0 ] 

ii) indivisible labor model  = {0 } 
iii) three-state employment model  = {0  } 

In the divisible labor model i), the labor choice is characterized by a FOC of (1)—(5) with respect to

labor, which, under the utility function (10), is

 = −
"

−
 






#−1
 (11)

In the indivisible labor model ii), the agent chooses to be employed ( = ) or unemployed ( = 0)

depending on which of the two choices leads to a higher continuation value, i.e.,

 =  if   = max
©
   

ª
and  = 0 otherwise. (12)

where   and   denote value functions of the agent in the employed and unemployed states, respectively.

Finally, in the three-state model iii), the three employment states,  = ,  =  and  = 0,

correspond to full-time unemployment, part-time employment and unemployment, respectively,

 =  if   = max
©
       

ª
,  =  if   = max

©
       

ª
and  = 0 otherwise,

(13)

where   ,   and   denote value functions of full-time employed, part-time employed and unemployed

agents, respectively.

3 Deep learning algorithm for divisible labor model

In this section, we first describe a collection of machine learning techniques for analyzing large scale dynamic

economic models. We then combine these techniques into a deep learning solution algorithm for solving

large scale dynamic economic models. We finally apply the developed deep learning algorithm to solve a

version of Krusell and Smith’s (1998) model with divisible labor.
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3.1 The ingredients of the deep learning analysis for continuous choice

The state space of Krusell and Smith’s (1998) model includes the state variables of  heterogenous agents,

as well as aggregate productivity, (
©
 




ª
=1

 ). In total, this is 2+1 state variables; for example, with

 = 1 000, the state space has 2 001 state variables. To deal with so large dimensionality, we rely on a

combination of techniques introduced in Maliar et al. (2018, 2019, 2021), including: i) stochastic simulation

that allows us to restrict attention to the ergodic set in which the solution "lives" - this technique is not

specific to deep learning but it help reduce the size of the solution domain under any approximation func-

tion; ii) multilayer neural networks that perform model reduction and help deal with multicollinearity; iii)

a (batch) stochastic gradient descent method that reduces the number of function evaluations by operating

on random grids; iv) a Fischer-Burmeister function that effectively approximates the kink; v) and most

importantly, "all-in-one expectation operator" that allows us to approximate high-dimensional integrals

with just 2 random draws (or batches) on each iteration. We implement the numerical method using Ten-

sorFlow — a Google data science platform that is used to facilitate the remarkable data-science applications

such as image and speech recognition, self driving cars, etc. Below, we describe this methodology in more

details. Later, we will augment this methodology to accommodate the indivisible labor model.

Ergodic-set domain. We solve the model on simulated series (ergodic set) instead of a hypercube-

style domain used by the classical projection methods (like the Smolyak method, see Maliar and Maliar,

2014). Under normally distributed shocks, stochastic simulation typically have a shape of a hypersphere

(hyperoval), like the one shown in Figure 1.

Figure 1. Hypercube versus hypersphere.

The ratio of a volume of a hypersphere to the volume of an enclosing hypercube is an infinitesimally small

number in high-dimensional applications; for example, for a 30-dimensional case, this ratio is of order

10−14; see Judd et al. (2011) for a discussion. Thus, by solving the model on simulated series, we restrict
attention to a relatively small ergodic set in which the solution "lives" — this is the first technique that

helps us deal with the curse of dimensionality.

Neural networks. We use neural networks for parameterizing decision and value functions instead of

more conventional approximation families like polynomial functions. Examples of an artificial neuron and

a neural network are represented in Figures 2a and 2b, respectively.
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Figure 2a. Artificial neuron. Figure 2b. Neural network.

In Figure 1a, the circle represents an artificial neuron that receives 3 signals (inputs) 1, 2 and 3. We

construct a weighted sum of the signals  ≡ 0+11+22+33, where 0 is a constant term called "bias"

and 1, 2, 3 are called "weights". We then apply an activation function  (·) to the linear combination
 to obtain output  () =  (0 + 11 + 22 + 33). The coefficients  control the strength of a signal

that is passed to the output.

In Figure 1b, we combine multiple neurons into a neural network. Each neuron of the hidden layer

receives a combination of inputs 1   (state variables in terms of our model); it aggregates these signals

with some weights and a bias, applies some activation function (linear or nonlinear transformation) and

passes the resulting output forward. Similarly, the output neuron collects the activated signals from the

neurons of hidden layer, aggregates them with some weights and bias and transforms them with (possibly)

another activation function to produce the final output (decision and value functions in terms of our model).

Thus, the neural network is a collection of nested linear and nonlinear polynomial functions to which we

apply nonlinear transformations. To our purpose, it is a flexible approximating family characterized by

a vector of weights and biases in the same way as a polynomial function is characterized by a vector of

polynomial coefficients. However, neural networks may be more effective than polynomial functions for

constructing approximations on unstructured data such as collections of simulated points.

Activation functions. The activation function that we use in our benchmark experiments is a sigmoid

function () = 1
1+− =

1
1+−0+11+22++ ; see Figure 3.

Figure 3. Sigmoid function.

The sigmoid function has two convenient properties: First, its derivative can be inferred from the sigmoid

function itself 0() = ()(1− ()) without using the operator of differentiation. Second, it maps a real

line into a unit interval  : R → [0 1] which makes it a natural candidate for approximating variables
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that are bounded between 0 and 1. There are many other activation functions used in machine learning

literature: (i) heaviside step function: () = 1≥0; (ii) tanh (hyperbolic tangent) () = −−
+− ; (iii)

relu (rectified linear units): () = max(0 ); (iv) leaky relu: () = max( ),  ≤ 0; (v) maxout:

() = max(1+ 1 2+ 2 3+ 3). It depends on a specific problem which activation function works

best.

In our deep learning algorithm, we solve for two decision functions in terms of state variables, which

are hours worked


and the fraction of wealth that goes to consumption



, where wealth is defined as


 ≡ 


 +





. These two decision functions are parameterized by a sigmoid function
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where  (·) is a multilayer neural network parameterized by a vector of coefficients  (weights and biases),
 () = 1

1+− is a sigmoid function which ensures that


and  are bounded to be in intervals [0 1]

and [0 ], respectively, and 0 is a constant term that we use to initialize the network. In addition, we

parameterize the Lagrange multiplier  associated with the borrowing constraint using an exponential

activation function

exp
³
0 + 

³
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ª
=1

 ; 
´´

 (15)

The exponential activation function ensures that the Lagrange multiplier is always non-negative. Since the

agents are identical in fundamentals, the above three 2 + 1—dimensional decision functions are sufficient

to characterize the choices of all  heterogeneous agents.

Model reduction. Our solution method aims at solving models with thousands of heterogeneous agents

(and thus, state variables). The deep learning analysis can deal with such a huge state space because

neural networks possess a remarkable property of model reduction. It condenses the information from a

large number of inputs into a smaller number of neurons in the hidden layers, making it progressively

more abstract and compact. In some sense, this procedure is similar to a photo compression or principal

component transformation when a large dataset is condensed into a smaller set of principal components

without losing essential information; see Judd et al. (2011) for a discussion of model reduction using

principal-component analysis.

In some cases, neural networks can be more effective for approximating non-linear functions than

polynomial functions. For example, if we have 2,001 state variables, a second-order polynomial function

has about 2 millions of polynomial coefficients and yet it is not sufficiently flexible for approximating

kinks. In turn, a neural network with two hidden layers, each of which is composed of 32 neurons, has a

comparable number of coefficients (weights and biases) but produces a far more accurate approximation

to kinks in the context of our model.

Krusell and Smith (1998) proposed one specific model reduction method, namely, they approximate the

distribution of state variables with just one moment — the mean of wealth distribution . For their model,

such model reduction works extremely well because it turned out that the mean is a sufficient statistic for

capturing essentially all relevant information from the distribution, which reduces their state space to just

four state variables ( 

 ).

If Krusell and Smith’s (1998) model reduction is the most efficient representation of the state space,

the neural network is likely to find this reduction as well, as an outcome of training. However, the neural

network will automatically consider many other possible ways of extracting the information from the

distribution
©
1 


1

ª
=1

and condensing it in a relatively small set of hidden layers. The output of the

hidden layers may look like moments or some other statistics — we will not always be able to understand

how the machine learning handles the information in the hidden layers but this fact does not prevent us

from using model reduction in applications.
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Casting the model into an objective function for deep learning. We form the objective function

that minimizes the Euler-residual by minimizing the squared residuals in three model’s conditions,

Ξ() ≡ ()

⎧⎨⎩
∙
Ψ

µ
1− 




 1− 

¶¸2
+

⎡⎣ −
⎛⎝−

"¡

¢−







#−1⎞⎠⎤⎦2

+ 

⎡⎣(Σ+1+1)
h¡
+1

¢−
+1

¯̄̄
Σ+1 +1

i
¡

¢− − 

⎤⎦2
⎫⎪⎬⎪⎭  (16)

where  ≡ ¡1  ¢ and  ≡ ¡1  ¢ are the vectors of individual state variables;  is aggregate
productivity; Σ+1 ≡

¡
1+1  


+1

¢
is the vector of individual productivity shocks; +1 is the aggregate

productivity shock; Ψ is a Fisher-Burmeister objective function

Ψ ( ) = + −
p
2 + 2 (17)

whose solution to Ψ ( ) = 0 satisfies  ≥ 0,  ≥ 0 and  = 0 and is equivalent to the solution to the

Kuhn-Tucker conditions (8) but it is differentiable. Finally,  and  are the two weights that reflect

the relative importance of the different terms in the objective function (for unit-free terms, we can set

these weights to one). The objective function is constructed so that by minimizing it with respect to the

coefficients  of neural network, approximations for decision functions for


, , 


 deliver us the solution.

All-in-one expectation operator. However, the constructed objective function Ξ() is not convenient

for numerical treatment because it contains a square of the expectation operator
£
(Σ+1+1) [·]

¤2
nested

inside another expectation operator () [·]. Constructing two nested expectation operators is costly
if feasible at all because the inner expectation operator (Σ+1+1) [·] has very high dimensionality; in
particular, if  = 1 000, it amounts to a construction of 1 001-dimensional integral. This task would be

simplified enormously if we could combine the two expectation operators into one but this is not possible to

do directly since by Jensen’s inequality we have ()

h£
(Σ+1+1) [·]

¤2i 6= ()(Σ+1+1)

h
[·]2
i
.

Maliar et al. (2021) propose a simple but powerful technique, called all-in-one (AiO) expectation

operator, that can merge the two expectation operators into one. The idea is to replace the squared

expectation function
£
(Σ+1+1) [·]

¤2
under one random draw (Σ+1 +1) with a product of two expecta-

tion functions
h
(Σ0+1

0
+1)

[·]
i
×
h
(Σ00+1

00
+1)

[·]
i
under two uncorrelated random draws

¡
Σ0+1 

0
+1

¢
and¡

Σ00+1 
00
+1

¢
. Since the two random draws are uncorrelated, the expectation operator can be taken outside

of the expectation function which allows us to re-write (16) as

Ξ() ≡ (Σ
0
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0
+1Σ

00
+1

00
+1)
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∙
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Thus, we are able to represent the studied model as an expectation function (18) across a vector of random

variables
¡
  Σ

0
+1 

0
+1Σ

00
+1 

00
+1

¢
; see Maliar et al. (2021) for a discussion and further applications

of the AiO expectation operator.

Training: gradient descent, batches and parallel computing We use a gradient descent method

to train the model, i.e., to search for a vector of coefficients  that minimizes (18). Given that (18) is
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an expectation function, we can bring the gradient operator inside by writing ∇Ξ() = ∇ [ (; )] =

 [∇ (; )], where ∇ is a gradient operator,  ≡
¡
  Σ

0
+1 

0
+1Σ

00
+1 

00
+1

¢
is a vector of all

random variables, and  (·) is an integrand of expectation function (18) (i.e., the expression inside the
curly brackets {·}). The latter expectation function can be approximated by a simple average across

Monte Carlo random draws  [∇ (; )] ≈ 1


P
=1∇ (; ), where  denotes a specific realization

of the vector of random variables. Thus, the gradient descent method can be implemented as

 ←  − ∇Ξ() with ∇Ξ() ≈ 1



X
=1

∇ (; )  (19)

where  and  are the parameter vector and learning rate, respectively.3 The advantage of this represen-

tation is that we implement a cheap computation of the gradient of the integrand instead of computing

far more expensive gradient of the expectation function. The modern data platforms such as TensorFlow

and PyTorch can compute such a gradient using a symbolic differentiation, which facilitates an the im-

plementation of parallel computation.4 Specifically, it allows to construct  multiple realizations of  by

using  batches (replications of the model) and to compute the expectation functions as simple averages

across such batches. TensorFlow and PyTorch are designed to effectively work with batches using parallel

computing, so the calculation of expectation functions is remarkably cheap. Finally, even if we use just

one batch in each iteration which leads to a poor estimator of the expectation function, such an estimator

is still unbiased and converges to its true value over the iteration process.

Dealing with multicollinearity. In the arguments of approximating functions (14), (15), the state

variables of agent  appear twice 
³
 



©
 




ª
=1

 ; 
´
because they enter both as variables of agent 

and as an element of the distribution. This repetition implies perfect collinearity in explanatory variables,

so that the inverse problem is not well defined. Such a multicollinearity would break down a conventional

least-squares method which solves the inverse problem (since an inverse of a matrix with linearly dependent

rows or columns does not exist). However, neural networks are trained by using the gradient-descent

method that avoids solving an inverse problem. As a result, neural networks can learn to ignore redundant

colinear variables; see Maliar et al. (2021) for numerical illustrations and a discussion.5

3.2 Deep learning method for divisible labor model

Below, we combine the above techniques into a deep learning method for solving the divisible labor model.

Our deep learning method is similar in spirit to Krusell and Smith’s (1998) analysis but is simpler conceptu-

ally as it does not alternate between approximating the individual decision functions and the law of motion

for aggregate variables. We just simulate the panel of heterogeneous agents, use the resulting distributions

to infer the aggregate quantities and prices and train the individual decision functions. As the machine is

trained and the panel is simulated, the decision functions are refined jointly with the ergodic distribution.

Since random variables are autocorrelated, the stochastic gradient is also correlated over time and hence,

it is biased. To reduce the bias, we train the model on cross-sections which are sufficiently separated in

time instead of using all the consecutive periods. Specifically, we train the model and simulate it for 10 or

more consecutive periods before implementing the next training step.

3 In our code, we used a version of the gradient descent method, called ADAM, which updates each coefficient of  at a

different rate which we find to enhance the convergence compared to conventional gradient descent method.
4 Notice that we would not be able to bring the gradient operator inside the expectation function without the AiO operator.

We would have no choice but to approximate the gradient of the expectation function numerically, which may be infeasible

with a large number of agents.
5 It is possible to design a transformation that avoids a repetition of state variables in the set of arguments but it would

require cumbersome and costly permutations, so we find it easier to keep the repeated arguments since their do not have a

significant negative impact on the constructed neural network approximations.
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Algorithm 1: Deep learning for divisible labor model.

Step 0: (Initialization).

Construct initial state of the economy
³©

0 

0

ª
=1

 0

´
and parameterize three decision functions

by a neural network with three outputsn






o
= 

³
0 + 

³
 



©
 




ª
=1

 ; 
´´



 = exp
³
0 + 

³
 



©
 




ª
=1

 ; 
´´



where 
 ≡ 


 +





 is wealth; 


 is Lagrange multiplier associated with the borrowing

constraint;  (·) is a neural network;  () = 1
1+− is a sigmoid (logistic) function; 0 is a constant;

 is a vector of coefficients (biases and weights).

Step 1: (Evaluation of decision functions).

Given state
³
 



©
 




ª
=1

 

´
≡ , compute 


, 


,



from the neural networks, find the prices 

and ; and find +1 from the budget constraint for all agents  = 1  .

Step 2: (Construction of Euler residuals).

Draw two random sets of individual productivity shocks Σ1 =
¡
11  


1

¢
, Σ2 =

¡
12  


2

¢
and

two aggregate shocks 1, 2, and construct the Euler residuals

Ξ() =

½h
Ψ

³
1− 


 1− 

´i2
+

"
 −

Ã
−

∙
()

−







¸−1!#2
+ 

"


(+1)

−
+1

Σ0+10+1
()

− − 

#"


(+1)

−
+1

Σ00+100+1
()

− − 

#)


where Ψ ( ) = + −√2 + 2 is a Fischer-Burmeister function; and ,  are given weights.

Step 3: (Training).

Train the neural network coefficients  to minimize the residual function Ξ() by using a

stochastic gradient descent method  ←  − ∇Ξ() with ∇Ξ() ≈ 1


P
=1∇ (; ),

where  = 1   denotes batches.

Step 4: (Simulation).

Move to + 1 by using endogenous and exogenous variables obtained in Step 3 under

Σ1 =
¡
11  


1

¢
and 1 as a next-period state

³©
+1 




ª
=1

 +1

´
.

For our numerical analysis, we assume  = 036;  = 008;  = 096;  = 09;  = 01;  = 09;

 = 021; and  = 0 — these values are in line with the literature, e.g., Chang and Kim (2007), Reiter

(2010, 2019), Chang et al. (2019). We perform training using the ADAM stochastic gradient descent

method with the batch size of 100 and the learning rate of 0001. We fix the number of iterations (which is

also a simulation length) to be  = 100 000. The choice of these parameters must ensure both convergence

and low running time and it reflects our experience in constructing deep learning approximations. Finally,

we study numerically the role of the elasticities  and  of the utility function by perfoming a sensitivity

analysis.

3.3 Numerical results for the divisible labor model.

In Figure 4, we illustrate the accuracy and cost of our deep learning methods, specifically, the reduction

in the loss function over the process of training (left panel) and the running time per iteration depending

11



on the number of agents (right panel).

Figure 4. Training errors and running time for divisible labor model under  = 1 and  = 1.

From the left panel of the figure, we see that the loss function is reduced to about 10−3 over the training
steps which implies that the unit-free residuals in the model’s equation are of order of 01%. In turn, from

the right panel, we see that the running time increases more than linearly in the logarithmic scale. That

happens because large number of state variables in the model such as 1,000 or 2,000 involves larger memory

usage, in addition to larger running time. Even though our deep learning method is capable of analyzing

models with a very high dimensionality, it does not scale linearly for a very large number of agents.

In Figure 5, we show the solution with  = 300 heterogeneous agents under  = 1 and  = 1.

Figure 5. Solution to divisible labor model under  = 1 and  = 1.

In the top row, we show the individual decision rules as a function of previous capital for seven different

states of individual productivity. We see that next-period capital +1 and consumption  increase in the

current capital , while labor 

 is decreasing meaning that the agent chooses to enjoy more leisure −.

The seven lines in each graph correspond to seven different productivity states representing a mean ± 1,

2 and 3 standard deviations; they show that +1 

 and  are all increasing with productivity . We

observe a soft kink in the consumption function in the area where the agent reaches the borrowing limit.
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In the bottom row, we show simulated series for 5 agents over time (we do not show all agents to avoid

the clutter). Here, we also show as the thick lines the simulation for the corresponding aggregate variables.

As expected, fluctuations in individual capital of agents are significantly larger than the fluctuations in

their consumption and labor. In the bottom row, we also show simulation for the corresponding aggregate

variables +1,  and . The volatility of the aggregate variables is typical for the real business cycle

models and is considerably lower than that of the individual variables. We will quantify the business

cycle and distributive properties of the model in Section 5 after we present the version of the model with

indivisible labor.

Finally, we comment on two alternative solution methods that we could have used instead of the present

one and that would have simplified the construction of equilibrium. First, we could have approximated

numerically just one labor decision function instead of both consumption and labor functions. This point

was emphasized in Maliar and Maliar (2005), who argue that given , we can find ,  and hence, 

,

in a closed form, while given , we need a numerical procedure to construct ,  and  — hence, it

is better to parameterize  than  in a similar model. Second, we could have solved for one individual

decision function (for example, ) and one aggregate variable (for example, ) in terms of state variables

since we can find  in a closed form, given 

 and . We do not follow these approaches because they do

not carry over to the model with indivisible labor.

4 DLC algorithm for indivisible labor: logistic regression

In this section, we introduce the DLC method for solving the indivisible labor model. Like in the divisible

labor case, we consider the actual state space composed of the individual and aggregate state variables,

and we let the neural network to perform the model reduction. To construct the policy function for discrete

labor choice, we use a logistic regression algorithm — a popular technique from the field of machine learning.

We first describe this techniques using a simple regression example, and we then show how the logistic

regression can be used for modeling a discrete labor choice in the context of our indivisible labor analysis.

4.1 Binary classification problem in supervised learning literature

Let us consider a typical classification problem. We have a collection of  data points
©
 

ª
=1

where

 ≡ ¡
1 1 


2 

¢
is a collection of dependent variables (features) and  is a categorical independent

variable (label) that takes values 0 and 1. For example,  is a tumor that can be benign "0" or malignant

"1", and  is a set of observed characteristics such as the size of the tumor and lab test. Our goal is

to construct a line that separates the classes 0 and 1. In Figure 6, we show two examples of a binary

classification with two features 1 and 2 in which the classes 0 and 1 are represented by "o" and "×",
respectively. In both cases, the goal is to constuct a dashed line that separates the known examples of the

two types.

Figure 6. Examples of binary classification.
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There are numerous techniques in the machine learning literature that can be used for training binary

classifiers, including k-nearest neighbors, decision trees, support vector machine, logistic regression, extreme

learning machine, naive Bayes. We will restrict attention to one such technique — logistic regression — which

is simple, general and can be conveniently combined with our deep learning analysis.

As a first step, we form a hypothesis about the functional form of the separating line. For the left

panel, it is sufficient to assume that the separating line is linear

0 : 0 + 11 + 22 = 0

but for the right panel, we must use a sufficiently flexible nonlinear separating function such as a higher-

order polynomial function,

0 : 0 + 11 + 22 + 3
2
1 + 412 + 5

2
2 +  = 0

where (0 1 ) ≡  are the polynomial coefficients. When  ≡ 0 + 11 + 22 +   0, we conclude

that  belongs to class 1 and otherwise, we conclude that it is from class 0.

Our next step is to estimate  coefficients. Since  is a categorical variable  ∈ {0 1}, we cannot use
ordinary least-squares estimator, i.e., we cannot regress  on . Instead, we form a logistic regression

0 : log


1− 
=  (20)

where  is the probability that a data point with characteristics  ≡ ¡
1 1 2 

2
1 

¢
belongs to class

1, and  ≡ (0 1    ) is a coefficient vector. The logistic function is an excellent choice for

approximating probability: First, it ensures that  = 1
1+exp(−)

∈ (0 1) for any  and , and hence 

and (1− ) can be interpreted as probabilities that a data point belongs to classes 1 and 0, respectively.

Second,  = 1
2
corresponds to the separation line  = 0. Hence, when   1

2
, the data point is "above"

the separating line , and thus, belongs to the class 1 and if   1
2
, the opposite is true. Finally, when

 → −∞ and  → +∞, we have that → 0 and → 1, respectively.

The logistic regression (20) provides a convenient way to estimate the decision boundary coefficients 

by using a maximum likelihood estimator.6 A probability that the data point  belongs to classes 0 and

1 can be represented with a single formula by

Prob ( | ; ) =  (1− )1− 

Indeed, if  = 1, we have Prob( = 1 | ; ) = ()1 (1− )0 = ; and if  = 0, we have Prob( = 0 | ; ) =
()0 (1− )1 = 1− . We search for the coefficient vector  that maximizes the (log)likelihood of the event

such that a given matrix of features
©

ª
=1

produces the given output realizations
©

ª
=1
, i.e.,

max

ln () = ln

Y
=1

¡

¡
; 

¢¢ ¡
1− 

¡
; 

¢¢1−
=

X
=1

£
 ln

¡

¡
; 

¢¢
+
¡
1− 

¢
ln
¡
1− 

¡
; 

¢¢¤
, (21)

where the probability 
¡
; 

¢ ≡ 1
1+exp(−)

is given by a logistic function.7 To find the maximizer, we

6 One can be tempted to minimize the least-squares style criteria min



=1


 − 1

1+exp(−)

2
instead of maximizing the

likelihood function but that would not lead to efficient training (as the sigmoid function has many local minima).
7 In the machine learning field, the problem of maximizing the likelihood function is typically formulated as the problem of

minimizing the cross entropy loss, which is defined as a negative likelihood function. The two representations are obviously

equivalent.
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compute the first-order conditions with respect to all coefficients  for  = 0  ,

 ln ()


=

X
=1

"


 (; )


¡
; 

¢


−
¡
1− 

¢
(1−  (; ))


¡
; 

¢


#

=

X
=1

£


¡
1− 

¡
; 

¢¢− ¡1− 
¢


¡
; 

¢¤
=

X
=1

£
 − 

¡
; 

¢¤
 (22)

where  is the feature  of agent .8 To show the second equality in (22), we have used the remarkable

property of the logistic function that its derivative can be computed directly from the logistic function itself
()


= 


h
1

1+exp(−)
i
=  () (1−  ()). The constructed gradient ∇ ln () ≡

h
 ln()
1

 
 ln()


i0
can

be used for implementing the gradient descent-style method  ←  − ∇ ln () described in (19).

Binary classification of labor choice

In the divisible labor model studied in Section 2, we construct a policy function that determines the hours

worked, while in the indivisible labor model studied here, we construct a decision boundary 
¡
; 

¢
= 0

that separates the employment and unemployment choices conditional on state  ≡
³
 



©
 




ª
=1

 

´
.

Whenever 
¡
; 

¢ ≥ 0, the agent is employed  =  and otherwise, the agent is unemployed  = 0. Let

us show how such a decision boundary can be constructed by using the logistic regression classification

method.

Since our model has a large number of explanatory variables (state variables) as well as a highly nonlin-

ear decision boundary, we use neural networks for approximating such boundary (instead of the polynomial

function). We estimate the coefficients of the neural network (weights and biases) by formulating a logistic

regression in the way which is parallel to (20),

0 : log


1− 
=  (; )  (23)

We parameterize the decision functions  and


by a sigmoid function in the indivisible labor model

(instead of parameterization (14) of the divisible labor model):


³
0 + 

³
 



©
 




ª
=1

 ; 
´´

 (24)

where  (·) is a multilayer neural network parameterized by a vector of coefficients  (weights and biases),
 () = 1

1+− is a sigmoid function which ensures that


and  are bounded in the interval [0 1],

respectively, and 0 is a constant term that we use to initialize the network. (Here, we also parameterize

the Lagrange multiplier as is shown in (15)). The function , parameterized by (24), allows us to infer

the indivisible labor choice directly, specifically, an agent is employed  =  whenever  ≥ 1
2
and is

unemployed otherwise  = 0. We can then compute  =
P

=1 



 and find  and  from (7) and

restore the remaining individual and aggregate variables.

Our next goal is to check if the constructed labor choices are consistent with the individual optimality

conditions. To validate the individual choices, we use the decision functions ,


and  to restore the

value functions for the employed and unemployed agents  
¡
; 


¢
and  

¡
; 


¢
, respectively, from

8 Interestingly, the gradient of the logistic regression is given by the same expression as the gradient of the conventional

linear regression, namely, minimizing  () = 1
2


=1


 −

2
with respect to  leads to partial derivatives of type

()


=


=1


 −


 for  = 1  .
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appropriately formulated Bellman equations like those used in Chang and Kim (2007). We next construct

the labor choice b implied by these two value functions
b = ½  if   = max

©
   

ª


0 otherwise.
(25)

In the solution, the labor choice b implied by the value functions must coincide with the labor choice 
produced by our decision function for all  and . If this is not the case, we proceed with training our

classifier. To this purpose, we construct the categorical variable  ∈ {0 1} such that

 =

½
1 if b = ,

0 otherwise,
(26)

and we use it to form the (log)likelihood function

ln () =
1



X
=1

£
 ln

¡

¡
; 

¢¢
+
¡
1− 

¢
ln
¡
1− 

¡
; 

¢¢¤
. (27)

We then maximize the likelihood function (27) by using a conventional / stochastic / batch stochastic

gradient descent methods described in (19), where we construct the gradient as in (22). We iterate on the

decision functions ,


and  until convergence.

4.2 Determining indivisible labor: value functions versus "discretized" FOC

Note that there is an important implementational difference in the construction of the labor choice in the

divisible and indivisible labor models. In the former model, the optimal labor choice must satisfy FOC

(11) and hence, it can be constructed by considering just the current period variables. However, this is not

true for the indivisible labor model in which the agent chooses to be employed or unemployed depending

on which of the two continuation values is larger   or   .

Prescott et al. (2009) propose a cleaver approach to modeling the indivisible labor choice under which

such a choice can be constructed from the current state variables without the need of constructing value

functions; also, see Chang et al. (2019) for implementation of this idea in the context of Krusell and

Smith’s (1998) model. Their main idea is to allow for intensive and extensive margins by "discretizing"

the FOC (11). To be specific, they assume that the labor choice is divisible and is characterized by the

divisible-labor FOC (11) as long as it is above a given threshold  but it jumps to zero whenever the

labor choice falls below  (i.e., the agent becomes unemployed):

b =
⎧⎨⎩ −

∙

−
  exp()



¸−1
≥  

0 otherwise.

(28)

We borrow from Prescott et al. (2009) and Chang et al. (2019) the idea of discretizing the FOCs of the

divisible labor model, however, we go a step further and we make the labor choice entirely indivisible by

assuming that  can take just two values 0 (unemployed) and  (employed):

b =
⎧⎨⎩  if −

∙

−
  exp()



¸−1
≥  

0 otherwise.

(29)

We believe that the above approach can be a simple and effective alternative to conventional methods that

solve for indivisible labor by constructing the value functions   and   explicitely.
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4.3 Solution method for the indivisible labor model

The deep learning method for the indivisible labor model is similar to the one for the divisible labor model

except for the way we construct the labor choice. Concerning the labor choice, we show two options: one

is based on a reconstruction of value functions and the other is based on the discretized FOC. We again

simulate the panel of heterogeneous agents, and we use the resulting distributions to infer the aggregate

quantities and prices. As the machine is trained and the panel is simulated, the decision functions are

refined jointly with the ergodic distribution. The omitted steps coincide with those in Algorithm 1.

Algorithm 2: Deep learning for the indivisible labor model.

Step 0: (Initialization).

Construct initial state of the economy
³©

0 

0

ª
=1

 0

´
and parameterize the decision functions byn





o
= 

³
0 + 

³
 



©
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=1

 ; 
´´



 = exp
³
0 + 
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ª
=1

 ; 
´´



where  is the probability of being employed  = .

Step 1: (Evaluation of decision functions).

Given state
³
 



©
 




ª
=1

 

´
≡  compute 


 =  if  ≥ 1

2
and  = 0 if 


 

1
2
. Compute


 and



from the decision rules, find the prices  and and ; and find +1 from the budget

constraint for all agents  = 1  .

Option 1: Construct value functions   and   and find b = ½  if   = max
©
   

ª


0 otherwise.

Option 2: Define  and use the discretized FOC to find b =
⎧⎨⎩  if −

∙

−
  exp()



¸−1
≥  

0 otherwise.

Define  =

½
1 if b = ,

0 otherwise,
for each .

Step 2: (Construction of Euler residuals).

Draw two random sets of individual productivity shocks Σ1 =
¡
11  


1

¢
, Σ2 =

¡
12  


2

¢
and

two aggregate shocks 1, 2, and construct the Euler residuals

Ξ() =

½h
Ψ
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´i2
+
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+
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¢
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+1
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#"


(+1)

−
+1

Σ00+100+1
()

− − 

#)


where Ψ ( ) = + −√2 + 2 is a Fischer-Burmeister function; and ,  are given weights.

Step 3: (Training).

...

Step 4: (Simulation).

...

The proposed algorithm can be viewed as policy iteration because it solves for the decision functions by

updating the value functions as opposed to value function iteration which constructs value functions by

inferring the policy functions from the given value function. In that respect, we differ from the related

literature, in particular, from Chang and Kim (2007) and from Chang et al. (2019). In our numerical

experiment, we implemented a version of Algorithm 2, in which we construct the indivisible labor choice
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from the discretized FOC (29). An important role in equilibrium play the parameter  and  which

determine how often the agents will be employed and unemployed. We calibrate the hours of employed

agent at  = 11 and we set the parameter  at  = 05, which implies that the agents who choose to

work less than 05 in the divisible labor model become unemployed in the indivisible labor model. We set

the hours of unemployed agent to a small number  = 001 because  = 0 leads to numerical issues in

training. The resulting parameterization delivers unconditional probability of employment of about 90%,

which is roughly consistent with the data.

4.4 Numerical results

In Figure 7, we show the accuracy and cost of the deep learning classification method, specifically, the

reduction of the loss function during the process of training and the time per iteration depending on the

number of agents in the model. The regularities here are very similar to those observed in the divisible

labor version of the model.

Figure 7. Training errors and running time for indivisible labor model under  = 1 and  = 1.

In Figure 8, we illustrate the solution to the model with discrete labor choice produced by the DLC

method.
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Figure 8. Solution to indivisible labor model under  = 1 and  = 1.

The magnitude of fluctuations of consumption and capital appears to be similar in Figure 8 but this

happens because consumption and capital graphs have different units. In fact, capital is far more sensitive

and volatile than consumption in the constructed solution, which is stylized feature of consumption-saving

models.

The decision rules in the top row are qualitatively similar to those in the divisible labor model, how-

ever, the changes in labor happen in discrete jumps and they induce the corresponding discrete jumps in

consumption and capital (the seven lines again correspond to seven individual productivity levels). The

jumps in consumption happen because in equilibrium, the employed agent accepts a consumption cut to

enjoy more leisure in the unemployed state. The exact moment when the agent switches from the employed

to unemployed states depends on the productivity level. Also, we see that more productive agents remain

employed for larger capital levels than low productive agents.

The simulated series for the individual capital and consumption in Figure 8 are similar to those in the

divisible labor model in Figure 5, althiugh labor fluctuates between the employed and unemployed states

in discrete jumps. Finally, the fluctuations in aggregate series are again typical for the real business cycle

models, except that we can observe that aggregate labor changes in small discrete increments which are a

consequence of discrete jumps in individual labor.

Iskhakov et al. (2017) introduce another method for solving dynamic models with discrete-continuous

choices, namely, an endogenous grid method with taste shocks, so it is interesting to compare our analysis

to theirs. There are three main differences: First, our DLC method is designed to approximate sharp

kinks in policy functions like those shown in the figure, while Iskhakov et al. (2017) suggest to smooth the

kinks by introducing supplementary preference shocks which transform the discrete choice problem into

the choice probability space. Second, in our application, our discrete-choice decisions depend only on the

economy’s state, while in their application, such decisions depend both on state and time, namely, the

agent has to decide which time period to retire. The presence of time among the argument of the choice

function feature creates "secondary" discrete shocks that propagate across time domain; such secondary

shocks are absent in our application. Finally, the problems that we solve have much larger dimensionality

than those studied in Iskhakov et al. (2017), but that paper is more challenging in another respect: they

estimate the model’s parameters which requires solving the model a large number of times. It would be
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interesting to see how our DLC method performs in the context of their application but this lies beyond

the scope of the present paper.

5 Deep learning classification method for multiclass problems: softmax

regression

How can logistic classification approach can be generalized for the case of more than 2 outcomes? Specifi-

cally, we are interested in the case when the agent faces three labor choices: full-time employment, part-time

employment and unemployment. We again start by reviewing the multiclass classification techniques in

the machine learning literature, and we then show how such techniques can be incorporated in a solution

method for dynamic economic models.

5.1 Multiclass classification problem in supervised learning literature

Let us consider a multiclassification problem. We again have a collection of  data points
©
 

ª
=1

where

 ≡ ¡1 1 2 ¢ is composed of dependent variables (features) but now  is a categorical independent

variable (label) that takes  values. For example,  is a tumor that can be benign "1", malignant "2"

or advanced malignant "3", and  is a set of observed characteristics such as the size of the tumor and

lab test. Our goal is to construct the lines that separate the classes 1, 2 and 3. In Figure 9, we show two

examples of multiclass classification problem with two features 1 and 2 in which the classes 1, 2 and 3

are represented by "×", "4" and "o", respectively; in the left panel, the decision boundaries between the
classes are linear, and in the right panel, they are nonlinear.

Figure 9. Examples of multiclass classification.

A popular approach in machine learning is to reformulate a multiclass classification problem as a collec-

tion of binary classification problems.9 The key assumption behind this approach is the hypothesis of an

independence of irrelevant alternatives which postulates that the agent’s choice between any two alterna-

tives is independent of the presence or absence of other alternatives.10 In our analysis, that means that

the choice between {×} and {4} is independent of the availability of {o}, the choice between {4} and
{o} is independent of the availability of {×} and the choice between {o} and {×} is independent of the
availability of {4}.

9 One may think of an alternative approach in which we construct an interval [ ) and one decision boundary 0 :  = 0

which separates the data into multiple classes; for example, if   , we choose 0, if  ∈ [ ) we choose 1 and if   

we choose 2. But this approach requires strong monotonicity and is tractable only in very special cases.
10 It is possible to find some real-life situations in which this assumption is violated, for example, the voting preferences

between two politicians can be affected by the presence or absence of another politician which is nobody preferred alternative

but which everyone prefers to avoid the victory of the least preferred candidate.
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Two binary reformulations of a multiclass classification problems are the one-versus-one and one-

versus-rest (or one-versus-all) classifiers,

one-versus-one ln
(×)
(o)

= (1) ln
(4)
(o)

= (2) ln
(4)
(×) = (3)

one-versus-rest ln
(×)

(o)+(4) = (1) ln
(4)

(o)+(×) = (2) ln
(o)

(4)+(×) = (3)

where (1), (2) and (3) are the regression coefficients and is the matrix of features. Under one-versus-one

method, we construct decision boundaries between each pair of classes by running
(−1)

2
pairwise logistic

regressions, specifically, we separate {×} from {o}, we separate {4} from {o}, and we separate {4} from
{×}, where the number of classes is  = 3. In turn, under one-versus-rest approach, we construct decision

boundaries between each given class and the remaining classes by running  pairwise logistic regressions,

specifically, we separate {×} from {o4}, we separate {4} from {o×}, and we separate {o} from {4×}.
For a larger number of classes, the one-versus-one method is more expensive than one-versus-rest method

but it is more robust to unbalanced data sets. Again, there are numerous techniques in machine learning

literature for constructing and training multiclass classifiers, including k-nearest neighbors, decision trees,

naive Bayes, random forest, gradient boosting, neural networks, extreme learning machine.

To train the constructed multiclass classifiers, we may omit one of three regressions by imposing the

restriction that the probabilities are added to one. For the one-versus-one classifier, the first two regressions

imply  (×) =  (o) exp
³
(1)

´
and  (4) =  (o) exp

³
(2)

´
so that  (o)

³
1 + exp

³
(1)

´
+ exp

³
(2)

´´
=

1. In turn, for the one-versus-rest classifier, in the first regression, we replace  (o) +  (4) with 1−  (×)
and in the second regression, we replace  (o) +  (×) with 1−  (4). Consequently, we can re-write two
classifiers as

one-versus-one  (×) = exp
³
(1)

´
 (o)  (4) = exp

³
(2)

´
 (o)  (o) = 1

1+exp((1))+exp((2))


one-versus-rest  (×) = 1

1+exp(−(1))
 (4) = 1

1+exp(−(2))
 (o) = 1−  (×)−  (4) 

Note that in the above expressions, we treat the normalizing class {o} differently from the other two

classes {4×}. There is also a symmetric version of the one-versus-rest method in which all  classes

are treated identically by estimating  unnormalized one-versus-rest logistic regressions ln  (×) = (1),

ln  (4) = (2), ln  (o) = (3) and by normalizing the exponential function ex-post by their sum. This

classifier is called softmax and it is a generalization of a logistic function to multiple dimensions,

one-versus-rest softmax  (×) = 1
Σ
exp

³
(1)

´
 (4) = 1

Σ
exp

³
(2)

´
ln  (o) = 1

Σ
exp

³
(3)

´


where Σ = exp
³
(1)

´
+exp

³
(2)

´
+exp

³
(3)

´
. The symmetric treatment is particularly convenient

in the context of our deep learning analysis because it allows us to use a neural network with  symmetric

outputs in which the softmax function in the last layer selects the largest probability from  probabilities

constructed.

The log-likelihood function for the softmx classifier is similar to the one for the binary classifier (21)

except that we also do a summation over  of possible outcomes,

max
1

ln (1  ) =
1



X
=1

X
=1

h
 ln

³

³
; 

´´
+
³
1− 

´
ln
³
1− 

³
; 

´´i
, (30)

where  is a categorical variable constructed so that  = 1 if observation  belongs to class  and it is

zero otherwise. Again, we maximize the constructed likelihood function (30) by using a gradient descent

style method,  ←  − ∇ ln (), described in (19).
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Multiclass classification of labor choice

We next extend our indivisible labor heterogeneous-agent model with two employment choices {0 } to
three employment choices {0  }. In the latter case, we parameterize not one but three decision bound-
aries that separate the three employment choices, so instead of the parameterization (14), we use a sigmoid

function to parameterize four functions
()

Σ

()

Σ

(0)

Σ



, specifically:


³
0 + 

³
 



©
 




ª
=1

 ; 
´´

 (31)

where  (·) is a multilayer neural network parameterized by a vector of coefficients  (weights and biases),
Σ ≡  () +  () +  (0) normalizes the probabilities to one;  () =

1
1+− is a sigmoid function which

ensures that


and

()

Σ

()

Σ
and

(0)

Σ
are bounded in the interval [0 1], and 0 is a constant term that

we use to initialize the network. (In addition, we also parameterize the Lagrange multiplier as shown in

(15)). The output of the logistic function max
n
()

Σ

()

Σ

(0)

Σ

o
allows us to infer the indivisible labor

choice, specifically, an agent is employed  = , part-time employed  =  and unemployed  = 0

whenever its maximum is equal to
()

Σ

()

Σ
and

(0)

Σ
, respectively. We can then compute  =

P
=1 






and find  and  from (7) and restore the remaining individual and aggregate variables.

Our next goal is to check if the constructed labor choices are consistent with the individual optimality

conditions. To validate the individual choices, we use the decision functions
()

Σ

()

Σ

(0)

Σ



and  to

recover the value functions for employed, part-time employed and unemployed agents,  ,   and   ,

respectively, using the appropriately formulated Bellman equations; see Chang and Kim (2007). We then

construct the labor choice b implied by such value functions,
b =

⎧⎨⎩
 if   = max

©
      

ª


 if   = max
©
      

ª


0 otherwise.

(32)

In the solution, the labor choice implied by the value function b must coincide with the labor choice
produced by our decision function  for all  . If this is not the case, we proceed to training of our

classifier. To this purpose, we construct the categorical variable  ≡
³

1
  

2
  

3


´
such that

 =

⎧⎨⎩
(1 0 0) if b = 

(0 1 0) if b = 

(0 0 1) otherwise.

(33)

We then formulate the (log)likelihood function

ln
³
(1) (2) (3)

´
=
1

3

3X
=1

X
=1

hb ln
³

³
; 

()
´´
+
³
1− b ´ ln³1− 

³
; 

()
´´i

. (34)

We train the model to maximize the likelihood function (34) by using a conventional / stochastic / batch

stochastic gradient descent method described in (19) where the gradient can be constructed as in (22). We

iterate on the decision functions  ()  

 ()  


 (0),



and  until convergence.

5.2 Determining three-state labor: value functions versus "discretized" FOC

Chang and Kim (2007) consider a related heterogeneous-agent model with three states but they allow

for intensive and extensive margins. In contrast, we assume an entirely discrete choice between the three
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employment states:

b =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

 if −
∙

−
  exp()



¸−1
≥ 

 if −
∙

−
  exp()



¸−1
∈ [  ]

0 otherwise

(35)

Thus, we assume that the agent chooses full-time employment,  = , whenever her labor choices implied

by the FOC of the divisible labor model (11) is above a threshold  ; she chooses part-time employment,

 = , whenever it belongs to the interval [  ]; and she chooses unemployment whenever it falls below

the part-time employment threshold .

5.3 Solution method for the model with full- and part-time employment

Below, we describe the deep learning method for the indivisible labor model with three employment states

(the omitted steps coincide with those in Algorithm 1). Again, we allow for two options in the construction

of labor choice: one is based on a reconstruction of value functions and the other is based on the discretized

FOC.
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Algorithm 3: Deep learning for the model with full and partial employment.

Step 0: (Initialization).

Construct initial state of the economy
³©

0 

0

ª
=1

 0

´
and parameterize the decision functions byn

()

Σ

()

Σ

(0)

Σ




o
= 

³
0 + 

³
 



©
 




ª
=1

 ; 
´´



where  ()  

 () and  (0) are the probabilities to be full- and part-time employed and unemployed,

respectively, and Σ ≡  () +  () +  (0) is a normalization of probability to one.

Step 1: (Evaluation of decision functions).

Given state
³
 



©
 




ª
=1

 

´
≡  set 


 = ,  =  and  = 0 depending on which probability

 ()  

 () and  (0) is the largest. Compute 






from the decision rules and find +1 from the

budget constraint for all agents  = 1 

Reconstruct the value functions in the employed, part time employed and unemployed agents

    and   , respectively.

Find b =
⎧⎨⎩

 if   = max
©
       

ª


 if   = max
©
       

ª


0 otherwise.

and define  =

⎧⎨⎩
(1 0 0) if b = 

(0 1 0) if b = 

(0 0 1) otherwise.

for each .

Option 1: Construct value functions         and find b =
⎧⎨⎩

 if   = max
©
       

ª


 if   = max
©
       

ª


0 otherwise.

Option 2: Define [  ] and use discretized FOC to find b =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

 if −
∙

−
  exp()



¸−1
≥ 

 if −
∙

−
  exp()



¸−1
∈ [  ]

0 otherwise

Define  =

⎧⎨⎩
(1 0 0) if b = 

(0 1 0) if b = 

(0 0 1) otherwise.

for each .

Step 2: (Construction of Euler residuals).

Draw two random sets of individual productivity shocks Σ1 =
¡
11  


1

¢
, Σ2 =

¡
12  


2

¢
and

two aggregate shocks 1, 2, and construct the Euler residuals

Ξ() =

½h
Ψ

³
1− 


 1− 

´i2
+ 

3

P3
=1

hb ln
³

³
; 

()
´´
+
³
1− b ´ ln³1− 

³
; 

()
´´i2

+ 

"


(+1)

−
+1

Σ0+10+1
()

− − 

#"


(+1)

−
+1

Σ00+100+1
()

− − 

#)


where Ψ ( ) = + −
√
2 + 2 is a Fischer-Burmeister function; and ,  are given weights.

Step 3: (Training).

...

Step 4: (Simulation).

...

We calibrate  = 11 and  = 055. Again, these choices together with the interval [  ] determines

how often the agents will be employed and unemployed. We calibrate these parameters at  = 025 and

 = 075 which means that the agents who would choose to work less than 025 in the divisible labor model
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will become unemployed in the indivisible labor model, the agent who would choose the hours worked in

the range [025 075] would be part time employed and the agent who would choose the hours worked

larger than  = 075 would be full time employed. We again set the hours of unemployed agent to a small

number  = 001 because  = 0 produces numerical issues in training. The resulting parameterization

delivers unconditional probability of employment of about 90%, which is roughly consistent with the data.

Numerical results

In Figure 10, we illustrate the training procedure and the time per iteration, and we observe that the

tendencies are similar to those in the previously considered models.

Figure 10. Training errors and running time for three-state employment model under  = 1 and  = 1.

In Figure 11, we show the numerical solution to the model with three employment states produced by

the DLC method.

Figure 11. Solution to the three-state employment model under  = 1 and  = 1.

The decision rules in the top row now experience two jumps instead of one jump in Figure 8 because

there are switches, one is between the full and partial employment, and the other is between the partial
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employment and unemployment (for each of the seven productivity levels). For more productive agents, the

switches occur for higher levels of wealth than for less productive agents. This is because the opportunity

cost of leisure is higher for more productive agents.

The simulated series for the individual capital and consumption in the bottom row are similar to those

in the previous figure but the individual labor switches in two discrete steps between full employment,

partial employment and unemployment. Finally, in the bottom row, we show the fluctuations of the

aggregate variables (see the thick lines) where we can distinguish how discrete changes in individual labor

are transformed into discrete changes in aggregate labor.

6 Assessing the role of heterogeneity and labor choice

We discuss the aggregate and distributional implications of indivisible labor choice in Sections 5.1 and 5.2,

respectively.

6.1 Aggregate implications

In Table 1, we provide selected business cycle statistics for the studied divisible and indivisible labor

economies, as well as for the associated representative-agent model with divisible labor.

Table 1. Selected business cycle statistics.

RA HA Divisible labor HA Indivisible labor HA Full/Part time US data(∗)

Elasticity  1
5

1 5 1
5

1 5 1
5

1 5 1
5

1 5

() .046 .044 .035 .045 .033 .043 .037 .040 .031 .034 .039 .036 .021
()

()
.784 .872 .922 .725 .898 .860 .880 .903 .856 .913 .862 .858 .45

()

()
.318 .153 .044 .648 .616 .143 .931 .627 .078 1.044 .654 .225 —

()

()
.318 .153 .044 .769 .389 .100 .685 .402 .032 .761 .439 .134 .82

()

()
2.08 1.75 1.67 1.53 1.88 1.72 2.09 1.79 1.83 2.16 1.87 1.73 2.41

()

()
.789 .885 .960 .935 1.07 .953 1.06 1.02 1.00 1.09 .972 .975 .50

( ) .931 .953 .951 .778 .876 .942 .829 .911 .926 .807 .895 .940 .69

( ) .754 .783 .897 .419 .193 .387 .410 .283 .008 .433 .369 .223 —

( ) .754 .783 .897 .647 .377 .425 .457 .321 .014 .461 .367 .244 .86

( ) .897 .877 .836 .951 .817 .886 .805 .826 .866 .772 .849 .886 .90

( 

 ) .964 .994 1.00 .779 .824 .990 .584 .805 .997 .500 .778 .974 .08

Note: The statistics are computed across 100 simulations, each of which is length 1,000 periods; RA

and HA refer to representative- and heterogeneous-agent models; (∗) source: Chang and Kim (2007)

where the variables , ,  ,  and  are, respectively, the aggregate output, consumption, labor,

efficiency labor, investment and productivity, where  = exp () 

 

1−
  ,  and  are constructed by

aggregating the corresponding individual quantities and  = +1 −  (1− ).

The business cycle statistics of all studied economies are typical for the real business cycle models.

The volatility of output is somewhat higher than that in the US economy because the individual shocks

contribute to the volatility of aggregate variables. To adjust for this effect, we report the ratio of volatilities

of other variables relative to that of output.

It is well known that the representative-agent divisible-labor model is capable of accounting for stylized

features of consumption-saving behavior over the US business cycle, however, has difficulties in reproducing

the labor market statistics. In particular, it underpredicts the volatility of labor and overpredicts the

correlation between labor and output and that between the labor and wage.

Concerning the first problem, the seminal works of Rogerson (1994) and Hansen (1993) showed that the

introduction of indivisible labor helps increase the volatility of labor. Under the assumption of complete
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markets, agents trade employment insurances, and the economy behaves as if the utility is linear in labor,

which magnifies labor fluctuations compared to the economy where agents are risk averse with respect to

labor choice. Chang et al. (2019) consider the model with intensive and extensive margins and find that

this effect is quantitatively important, namely, the volatility of labor ranges between 30% and 60% of the

output. Our analysis for the models with indivisible labor led to similar predictions for the benchmark

case  = 1, however for  = 5, the volatility is excessively low; Chang et al. (2019) do not get so low

volatility because they do not consider so high degrees of risk aversion, as we do.

Concerning excessively high correlation of labor variables, we can see in the table that the assumption

of indivisible labor reduces the correlation ( ) from 0.7—0.8 to 0.4—0.2 relative to the representative-

agent model. A similar reduction is observed for the correlation between efficiency labor and output. The

reduction in correlation is due to the assumption of heterogeneity: in the representative-agent economy,

a higher wage induces higher labor efforts, whereas in the heterogeneous-agent model, the efforts depend

also on the individual productivity and the level of wealth which can offset some of the wage effect; see

Maliar and Maliar (2003) for a related discussion.

6.2 Distributional implications

In Table 2, we summarize the distributional statistics produced by the heterogeneous-agent models.

Table 2. Distributional implications of the studied models.

HA Divisible labor HA Indivisible labor HA Full/Part time US data(∗)

Elasticity  1
5

1 5 1
5

1 5 1
5

1 5

Income distribution

 1% 0.015 0.036 0.032 0.033 0.032 0.029 0.031 0.032 0.030 0.14

 20% 0.270 0.398 0.374 0.385 0.368 0.358 0.371 0.371 0.359 0.38

 40% 0.520 0.636 0.610 0.630 0.606 0.595 0.612 0.610 0.594 0.62

 40% 0.254 0.193 0.214 0.193 0.214 0.224 0.205 0.211 0.226 0.19

 20% 0.082 0.071 0.083 0.068 0.081 0.088 0.072 0.079 0.089 0.08

 0.190 0.327 0.292 0.320 0.288 0.272 0.300 0.294 0.271 0.53

Wealth distribution

 1% 0.013 0.038 0.043 0.042 0.043 0.042 0.037 0.042 0.041 0.28

 20% 0.243 0.422 0.461 0.453 0.446 0.447 0.407 0.447 0.445 0.76

 40% 0.470 0.666 0.708 0.705 0.691 0.696 0.648 0.690 0.689 0.95

 40% 0.319 0.169 0.137 0.135 0.148 0.143 0.181 0.149 0.150 0.02

 20% 0.133 0.059 0.043 0.041 0.047 0.045 0.064 0.048 0.048 -0.01

 0.111 0.365 0.420 0.416 0.401 0.405 0.344 0.400 0.398 0.76

Note: The statistics are computed across 100 simulations, each of which is length 1,000 periods; RA

and HA refer to representative- and heterogeneous-agent models; (∗) source: Chang et al. (2019)

Overall, the distributional implications of the studied models with indivisible labor are similar to those of

the heterogeneous-agent model with intensive and extensive margins studied in Chang et al. (2019). A

robust distributional implication of this class of models is that they underpredict the degree of inequality

relative to the US economy; see, e.g., Aiyagari (1993) for the corresponding statistics on the US economy

data. We see that the introduction of indivisible labor helps us mitigate this problem and increase the

degrees of inequality, in particular, the share of wealth that belongs to the top one percent of the population.

Unlike the divisible labor model, the indivisible labor models are characterized by the degrees of income and

wealth inequalities that do not significantly depend on the inverse of elasticity of intertemporal substitution

of labor. However, the assumption of indivisible labor alone is not sufficient to produce the empirically

relevant degrees of income and wealth inequalities as in the data.
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7 Conclusion

This paper shows how to use deep learning classification approach borrowed from data science for modeling

discrete choices in dynamic economic models. A combination of the state-of-the-art machine learning

techniques makes the proposed method tractable in problems with very high dimensionality — hundreds

and even thousands of heterogeneous agents. We investigate just one example — discrete labor choice — but

the proposed deep learning classification method has a variety of potential applications such as sovereign

default models, models with retirement, and models with indivisible commodities, in particular, housing.
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Appendix A.

In this appendix, we show sensitivity results with respect to the inverse of intertemporal elasticity of

substitution of labor  for the models with divisible labor, indivisible labor model and full- and part-time

employment.

Figure A1. Solution to divisible labor model under  = 1 and  = 15.
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Figure A2. Solution to divisible labor model under  = 1 and  = 5.

Figure A3. Solution to indivisible labor model under  = 1 and  = 15.
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Figure A4. Solution to indivisible labor model under  = 1 and  = 5.

Figure A5. Solution to the three-state employment model under  = 1 and  = 15.
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Figure A6. Solution to the three-state employment model under  = 1 and  = 5.
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