Identification and Estimation of Demand Models with Endogenous Product Entry and Multiple Equilibria

Victor Aguirregabiria (Toronto) Alessandro Iaria (Bristol) Senay Sokullu (Bristol)

ASSA Meetings - Korea-America Economic Association Session

Jan 3, 2021

Motivation

- Estimation of demand of differentiated product when **firms do not** offer some products in some markets.
- Product entry if the firm's expected profit > 0.
- Firms' information about demand may include variables that are unobservable to the researcher. Endogenous selection in demand estination.
- This selection problem is not standard:
 - Unobsersables enter non-additively in selection condition.
 - High dimension of demand unobservables.
 - Multiple equilibria in entry game.

イロト イポト イヨト イヨト

This Paper

- We consider a structural model that combines:
 - BLP demand of differentiated products.
 - Price competition between active firms/products.
 - Entry game with flexible information structure.
- In the entry game, the **specification of firms' information about demand unobservables** is crucial for the robustness of a method that tries to control for selection.
- In our model, specification of unobservables is such that:
 - Nonparametric distribution of all the unobservables.
 - Flexible: firms may know from all to nothing of demand unobs.
 - Both private and common info. unobservables.
 - Multiple equilibria unobservables.

イロト 人間ト イヨト イヨト

Main contribution

- We prove the identification of demand parameters in this model.
- Our identification approach is **contructive and sequential** and implies a two-step estimation procedure.
- [Step 1] Nonparametric identification of entry probabilities conditional on the information that firms have about demand observables and unobservables.
- [Step 2] GMM semiparametric estimator of demand that controls for endogenous prices and selection.

(日) (周) (三) (三)

Related Literature

- Recent literature on the problem of zeroes in market shares.
- There are potentially multiple **sources of zeroes** in market shares: small sample of consumers; consumer demand; stockouts; product not offered **product not oferred**.
- Closest papers to ours:

Ciliberto et al. (2018); Li et al. (2019); Dube et al. (2020).

- In contrast to Ciliberto et al. (2018) and Li et al. (2019):
 - Nonparametric specification of unobservables;

- Not joint estimation of demand and entry game but much simpler sequential estimation of demand.

イロト イポト イヨト イヨト

Outline

[1] Model

- [2] Identification Results
 - ... [3] Estimation method
- [4] Monte Carlo experiments
 - ... [5] Empirical application airlines

(日) (同) (三) (三)

1. MODEL

Aguirregabiria, Iaria, Sokullu ()

Demand-Entry

↓ ▲ ■ ▶ ■ つへで Jan 3, 2021 7 / 21

イロト イヨト イヨト イヨト

Model - Demand

- BLP demand model. J single-product firms indexed by $j \in \mathcal{J} = \{1, 2, ..., J\}.$
- $a_{jm} \in \{0, 1\}$: indicator that product/firm j is available in market m.
- Market shares:

$$s_{jm} = \int \frac{a_{jm} \exp\left\{\delta_{jm} + v(p_{jm}, \mathbf{x}_{jm}, v)\right\}}{1 + a_{im} \exp\left\{\delta_{im} + v(p_{im}, \mathbf{x}_{im}, v)\right\}} dF_v(v|\sigma)$$

Lemma 1. If outside alternative j = 0 is available, then Berry (1994) invertibility applies to the subsystem of available products such that:

$$d_j^{-1}(\mathbf{s}_m,\sigma) = lpha \ p_{jm} + \mathbf{x}'_{jm} \ m{eta} + \xi_{jm}$$
 if and only $a_{jm} = 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Model - Price competition

• Bertrand competition as in BLP model.

Assumption 1. Suppose that:

• (i) No random coefficients in p_{jm} . (ii) Marginal cost mc_{jm} is constant and $mc_{jm} = \omega_{jm} + \widetilde{mc}_j(\mathbf{x}_{jm})$. (iii) The equilibrium selection mechanism does not depend on (ξ_{jm}, ω_{jm}) .

Lemma 2. Under Assumption 1, the equilibrium variable profit function V_j has the following structure:

$$V_{jm} = V_j(\mathbf{a}_m, \mathbf{x}_m, \boldsymbol{\xi}_m^*) \text{ where } \boldsymbol{\xi}_m^* \equiv (\boldsymbol{\xi}_{jm}^* : j \in \mathcal{J})$$

with
$$\boldsymbol{\xi}_{jm}^* = \boldsymbol{\xi}_{jm} + \alpha \ \omega_{jm}. \quad \blacksquare$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Model - Entry game and information structure

Assumption 2. The information set of firm j at the moment of its entry decision in market m consists of the triple $(\mathbf{x}_m, \kappa_m, \eta_{jm})$. (a) $\kappa_m \equiv (\kappa_{jm} : j \in \mathcal{J})$ is a vector of noisy signals for the demand-cost variables ξ_j^* such that, for every product j:

 $\xi_j^* = \kappa_{jm} + e_{jm}$

where e_{jm} represents the error or noise in signal κ_{jm} and it is independent of (\mathbf{x}_m, κ_m) . (b) Variable η_{jm} in the fixed cost function $f_j(\mathbf{x}_{jm}, \eta_{jm})$ is private information of firm j and independently distributed over firms with CDF F_{η} , and is additive:

$$f_j(\mathbf{x}_{jm}, \eta_{jm}) = \overline{f}_j(\widetilde{\mathbf{x}}_{jm}) + \eta_{jm}.$$
 I

イロト イポト イヨト イヨト 二日

Model - Bayesian Nash Equilibrium

• $\pi_j(\mathbf{a}, \mathbf{x}_m, \kappa_m)$ is firm j's expected variable profit given its information about demand and costs, (\mathbf{x}_m, κ_m) , and conditional on the hypothetical entry profile **a**.

$$\pi_j(\mathbf{a}, \mathbf{x}_m, \mathbf{\kappa}_m) = \int V_j(\mathbf{a}, \mathbf{x}_m, \mathbf{\kappa}_m + \mathbf{e}_m) p(\mathbf{e}_m) d\mathbf{e}_m - \overline{f}_j(\widetilde{\mathbf{x}}_{jm})$$

• Given $(\mathbf{x}_m, \mathbf{\kappa}_m)$, a **Bayesian Nash Equilibrium (BNE)** is *J*-tuple of entry probabilities, $(P_{jm} : j \in \mathcal{J})$, that satisfies:

$$extsf{P}_{jm} = extsf{F}_\eta\left(\pi^{ extsf{P}}_{jm}
ight) \,\, extsf{for every}\, j \in \mathcal{J},$$

where $\pi^{\rm P}_{jm}$ is firm $j{\rm 's}$ expected profit – up to $\eta_{jm}.$ That is,

$$\pi_{jm}^{P} = \sum_{\mathbf{a}_{-j} \in \{0,1\}^{J-1}} \left(\prod_{i \neq j} \left[P_{im} \right]^{\mathbf{a}_{i}} \left[1 - P_{im} \right]^{1-\mathbf{a}_{i}} \right) \pi_{j}(\mathbf{a}_{-j}, \mathbf{x}_{m}, \mathbf{\kappa}_{m})$$

2. IDENTIFICATION RESULTS

Aguirregabiria, Iaria, Sokullu ()

Demand-Entry

Jan 3, 2021 12 / 21

-

• • • • • • • • • • • •

Selection problem & Identification of demand

• Regression equation for demand is:

$$d_j^{-1}(\mathbf{s}_m,\sigma) = lpha \; p_{jm} + \mathbf{x}'_{jm} \; oldsymbol{eta} + \lambda_j(\mathbf{x}_m) + \widetilde{oldsymbol{ec{\xi}}}_{jm},$$

where $\lambda_j(\mathbf{x}_m)$ is the selection control function:

$$\lambda_j(\mathbf{x}_m) \equiv \mathbb{E}\left[\xi_{jm} \mid \mathbf{x}_{jm}, \ \mathbf{a}_{jm} = 1
ight]$$

• Our model implies that:

$$\lambda_j(\mathbf{x}_m) = \sum_{\substack{\kappa_m=1\\ \kappa_m=1}}^{L} f_{\kappa}(\kappa_m) \widetilde{\lambda}_j \left(P_j(\mathbf{x}_m, \kappa_m), \kappa_m \right) \\ = \psi_j(\mathbf{P}_{jm})$$

with:
$$\begin{split} \widetilde{\lambda}_{j}\left(P_{j}(\mathbf{x}_{m},\kappa_{m}),\kappa_{m}\right) &= \mathbb{E}\left[\xi_{jm} \mid \mathbf{x}_{jm}, \ \kappa_{m}, \ \mathbf{a}_{jm} = 1\right]. \\ \mathbf{P}_{jm} &\equiv \left(P_{j}(\mathbf{x}_{m},\kappa):\kappa = 1, 2, ..., L\right). \end{split}$$

Aguirregabiria, Iaria, Sokullu ()

Jan 3, 2021 13 / 21

Sequential Identification

[Step 1]. Nonparametric identification of $\mathbf{f}_{\kappa} \equiv (f_{\kappa}(\kappa) : \kappa = 1, 2, ..., L)$ and $\mathbf{P}_{jm} \equiv (P_j(\mathbf{x}_m, \kappa) : \kappa = 1, 2, ..., L).$

[Step 2]. Given P_{jm} , identification of (σ, α, β) in the semiparametric regression model:

$$d_j^{-1}(\mathbf{s}_m,\sigma) = \alpha \ p_{jm} + \mathbf{x}'_{jm} \ \boldsymbol{\beta} + \psi_j(\mathbf{P}_{jm}) + \widetilde{\xi}_{jm}.$$

- We have two results on Step 1 identification. So far, we have focused on the result based on the restriction that κ_m has finite support (nonparametric finite mixture): Xiao (2018); Aguirregabiria and Mira (2019).
- Step 2 identification is based on previous results in the semiparametrics literature: Powell (2001), and Aradillas-Lopez, Honore, and Powell (2007).

Aguirregabiria, Iaria, Sokullu ()

3. MONTE CARLO EXPERIMENTS

Aguirregabiria, Iaria, Sokullu ()

Demand-Entry

Jan 3, 2021 15 / 21

→ ∃ →

Image: Image:

Monte Carlo Experiments: DGP

- Demand: Nested logit; J = 3; one observable x_{jm}; ξ_{jm} is a mixture of two normals.
- $\kappa_m \in \{\ell, h\}$ two market types (L = 2).
- There is also observable z_m that affects entry cost but not demand.

イロト 不得下 イヨト イヨト 二日

Monte Carlo Experiments: DGP

Table 2. Summary Statistics from DGP

	Percentage of Zeros	Avg market Share	Average p-c/p
Firm 1	81.3%	0.16	79.9 %
Firm 2	81.4%	0.16	79.9%
Firm 3	81.4%	0.16	80%

3

< ロ > < 同 > < 回 > < 回 > < 回

Estimators: Bias and Variance

	Monte Experiment with $M = 1000$							
		True	OLS	2SLS	Our	Our(True P)		
β	Mean	2	1.2161	1.6352	1.7754	1.9835		
	Std. Dev.		(0.1483)	(0.1974)	(0.2573)	(0.0203)		
α	Mean Std. Dev.	-2	-1.9046 (0.0134)	-1.9254 (0.0136)	-1.9657 (0.0115)	-1.9967 (0.0017)		
σ	Mean Std. Dev.	0.6	0.5892 (0.0113)	0.6677 (0.0287)	0.6277 (0.0146)	0.6042 (0.0022)		

Aguirregabiria, Iaria, Sokullu ()

3

<ロ> (日) (日) (日) (日) (日)

Estimators: Ratio or RMSE

Monte Experiments with for different values of M**Ratios Between RMSEs of Different Estimators**

	М	= 500	M = 1,000		
	Our/2SLS	$Our/Our ext{-}True$	Our/2SLS	Our/Our-True	
β	0.8435	10.9144	0.8236	13.0788	
α	0.5138	7.9534	0.4772	9.8504	
σ	0.5743	7.0440	0.4262	6.6343	
	<i>M</i> = 5,000		M=10,000		
	Our/2SLS	$Our/Our ext{-}True$	Our/2SLS	$Our/Our ext{-}True$	
β	0.5835	17.7773	0.4947	18.0781	
α	0.1838	7.4314	0.1232	6.4403	
σ	0.1509	4.3426	0.0958	3.2940	

Aguirregabiria, Iaria, Sokullu ()

Jan 3, 2021

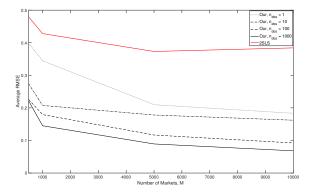
• • • • • • • • • • • •

19 / 21

DGP

Estimators: Ratio or RMSE

Figure 1: Average RMSE of "Our" and 2SLS estimators



Aguirregabiria, Iaria, Sokullu ()

Demand-Entry

-Jan 3, 2021

3

• • • • • • • • • • • •

20 / 21

Conclusions

- New results on the identification of demand of differentiated products when firms' decision to offer a product is endogenous.
- The model and method emphasizes:
 - Nonparametric specification of the unobservables.
 - Flexible information structure for the unobservables.
 - Computationally simple sequential approach.