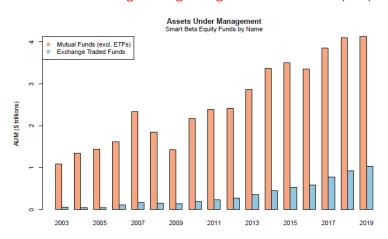
What Alleviates Crowding in Factor Investing?

Victor DeMiguel
London Business School

Alberto Martin-Utrera

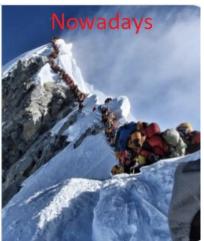
New Jersey Institute of Technology

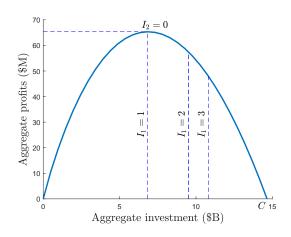

Raman Uppal Edhec and CEPR

Ednec and CEPK

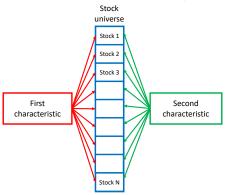
AFA 2021 Annual Meeting

Factor investing growth

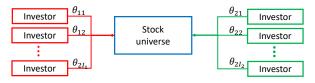

- ► Factor investing: quantitative-investment approach that exploits firm characteristics that predict expected stock returns.
- Assets under management growing fast: Johansson et al. (2020)


- ► Number of factor investors is also growing fast:
 - ▶ Flood (2019): 145 managers launched factor-investing products in 2018.

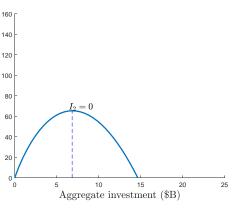
- Number of factor investors is also growing fast:
 - ► Flood (2019): 145 managers launched factor-investing products in 2018.



- Crowding: as increasing number of institutions exploit the same characteristic
 - competition leads them to overinvest as in Cournot (1838) and
 - price-impact costs erode profits.

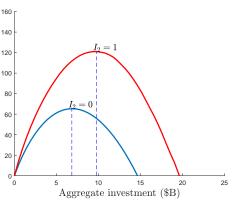

What we do

- Identify mechanism (trading diversification) that alleviates crowding: institutions exploiting different characteristics reduce each other's price-impact costs.
 - ▶ Theory: even when their trades are not negatively correlated.
 - ► Empirical: combining 18 characteristics leads to 50% increase in capacity and investment and 25% increase in profits.


What we do

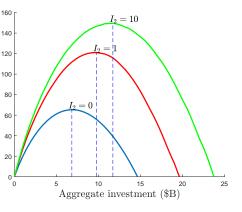
- Identify mechanism (trading diversification) that alleviates crowding: institutions exploiting different characteristics reduce each other's price-impact costs.
 - ▶ Theory: even when their trades are not negatively correlated.
 - ► Empirical: combining 18 characteristics leads to 50% increase in capacity and investment and 25% increase in profits.
- 2 Study effect of trading diversification on equilibrium:
 - ▶ Develop game-theoretic model with two groups of investors exploiting different characteristics.
 - ► Characterize equilibrium in closed form and take model to the data.

Effect of trading diversification on equilibrium



 Competition among investors exploiting same characteristic erodes profits because of crowding.

Effect of trading diversification on equilibrium



- Competition among investors exploiting same characteristic erodes profits because of crowding.
- ► Trading diversification increases capacity, investment, and profits of first characteristic, alleviating crowding.

Effect of trading diversification on equilibrium

 Competition among investors exploiting same characteristic erodes profits because of crowding.

- Trading diversification increases capacity, investment, and profits of first characteristic, alleviating crowding.
- ► Competition among investors exploiting second characteristic further alleviates crowding of first characteristic.

Relation to literature (1/3)

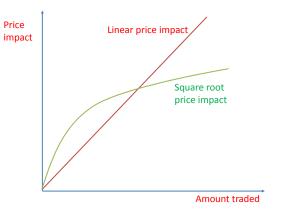
Competition in investment management:

- ▶ Bonelli, Landier, Simon, and Thesmar (2019) consider competitive traders and show capacity and profits increase with signal persistence.
- ► We study how trading diversification affects capacity and profits when competing investors exploit different characteristics.

Relation to literature (2/3)

Competition in the mutual-fund industry, Berk and van Binsbergen (2017)

- Berk and Green (2004): diseconomies of scale at fund level. Thus, rational fund flows chase past performance and fund net returns are zero in equilibrium.
- Pástor and Stambaugh (2012); Pástor, Stambaugh, and Taylor (2015): diseconomies of scale at industry level.
- ▶ Edelen, Evans, and Kadlec (2007): trading costs primary source of diseconomies of scale.
- ▶ In contrast, we consider diseconomies of scale at the characteristic level, but show competition among investors exploiting different characteristics alleviates diseconomies due to trading diversification.

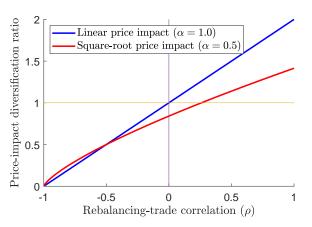

Relation to literature (3/3)

Capacity of quantitative strategies

- ► Korajczyk and Sadka (2004); Novy-Marx and Velikov (2016); Bonelli et al. (2019) study strategy capacity; capital allocated before price impact erodes gains.
- Ratcliffe et al. (2017); Frazzini et al. (2018) show strategy capacity is much larger for large money managers because they can trade cheaply.
- Barroso and Santa-Clara (2015); Novy-Marx and Velikov (2016); Frazzini et al. (2015);
 DeMiguel et al. (2020): combining characteristics reduces transaction costs.
- ▶ We show how the strategic interactions among financial institutions alleviate crowding in factor investing due to trading diversification.

Trading diversification

Modelling price-impact costs

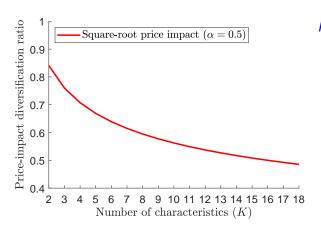


- ► Several papers assume linear price impact, but empirically price impact grows with square root of amount traded; Torre and Ferrari (1997); Grinold and Kahn (2000); Almgren et al. (2005); Ratcliffe et al. (2017); Frazzini et al. (2018).
- For game-theoretic model we use linear model, but for empirics we use model of Frazzini et al. (2018) with linear and square-root terms.₁₂

Theoretical results

$$\frac{\textbf{Ratio}}{\textbf{Cost of trading } \textit{K} \textbf{ char.'s combined}} = \frac{\left[}{}$$

$$=\frac{\left[K(1+(K-1)\rho)\right]^{\frac{1+\alpha}{2}}}{K}$$


Two characteristics:

- Linear price impact: combining characteristics reduces costs only when $\rho < 0$.
- Square-root price impact: combining characteristics reduces costs even for moderately positive *ρ*.

Theoretical results

$$\frac{\textbf{Ratio}}{\textbf{Cost of trading } \textit{K} \textbf{ char.'s combined}} = \frac{\textbf{Cost of trading } \textit{K} \textbf{ char.'s in isolation}}{\textbf{Cost of trading } \textit{K} \textbf{ char.'s in isolation}} = \frac{\textbf{Cost of trading } \textit{K} \textbf{ char.'s in isolation}}{\textbf{Cost of trading } \textit{K} \textbf{ char.'s in isolation}} = \frac{\textbf{Cost of trading } \textit{K} \textbf{ char.'s in isolation}}{\textbf{Cost of trading } \textit{K} \textbf{ char.'s in isolation}} = \frac{\textbf{Cost of trading } \textit{K} \textbf{ char.'s in isolation}}{\textbf{Cost of trading } \textit{K} \textbf{ char.'s in isolation}} = \frac{\textbf{Cost of trading } \textit{K} \textbf{ char.'s in isolation}}{\textbf{Cost of trading } \textit{K} \textbf{ char.'s in isolation}} = \frac{\textbf{Cost of trading } \textit{K} \textbf{ char.'s in isolation}}{\textbf{Cost of trading } \textbf{ char.'s in isolation}} = \frac{\textbf{Cost of trading } \textit{K} \textbf{ char.'s in isolation}}{\textbf{Cost of trading } \textbf{ char.'s in isolation}} = \frac{\textbf{Cost of trading } \textit{K} \textbf{ char.'s in isolation}}{\textbf{Cost of trading } \textbf{ char.'s in isolation}} = \frac{\textbf{Cost of trading } \textit{K} \textbf{ char.'s in isolation}}{\textbf{Cost of trading } \textbf{ char.'s in isolation}} = \frac{\textbf{Cost of trading } \textbf{ char.'s in isolation}}{\textbf{Cost of trading } \textbf{ char.'s in isolation}}} = \frac{\textbf{Cost of trading } \textbf{ char.'s in isolation}}{\textbf{ char.'s in isolation}}} = \frac{\textbf{Cost of trading } \textbf{ char.'s in isolation}}{\textbf{ char.'s in isolation}}} = \frac{\textbf{Cost of trading } \textbf{ char.'s in isolation}}{\textbf{ char.'s in isolation}}} = \frac{\textbf{Cost of trading } \textbf{ char.'s in isolation}}{\textbf{ char.'s in isolation}}} = \frac{\textbf{Cost of trading } \textbf{ char.'s in isolation}}{\textbf{ char.'s in isolation}}} = \frac{\textbf{Cost of trading } \textbf{ char.'s in isolation}}{\textbf{ char.'s in isolation}}} = \frac{\textbf{Cost of trading } \textbf{ char.'s in isolation}}{\textbf{ char.'s in isolation}}} = \frac{\textbf{Cost of trading } \textbf{ char.'s in isolation}}{\textbf{ char.'s in isolation}}} = \frac{\textbf{Cost of trading } \textbf{ char.'s in isolation}}{\textbf{ char.'s in isolation}} = \frac{\textbf{Cost of trading } \textbf{ char.'s in isolation}}{\textbf{ char.'s in isolation}}} = \frac{\textbf{Cost of trading } \textbf{ char.'s in isolation}}{\textbf{ char.'s in isolation}} = \frac{\textbf{Cost of trading } \textbf{ char.'s in isolation}}{\textbf{ char.'s in isolation}} = \frac{\textbf{Cost of trading } \textbf{ char.'$$

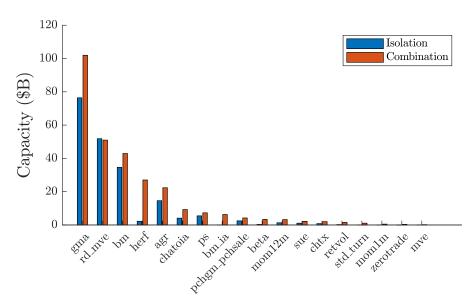
$$=rac{\left[\mathcal{K}(1+(\mathcal{K}-1)
ho)
ight]^{rac{1+lpha}{2}}}{\mathcal{K}}$$

K characteristics:

 Combining multiple characteristics further reduces costs.

Empirical results: Data

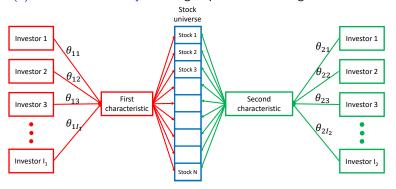
- Collect monthly data on 18 firm-specific characteristics:
 - ► Size, value, and momentum plus the 15 characteristics that DeMiguel et al. (2020) find jointly significant.
 - ► We combine data from CRSP, Compustat, and I/B/E/S from January 1980 to December 2017.
 - ► Form value-weighted long-short portfolios for each characteristic using the 30th and 70th percentiles as thresholds.
- ▶ Use characteristic data to estimate rebalancing trades \tilde{x}_{kt} .
- ▶ Use price-impact model of Frazzini et al. (2018):
 - Captures linear and square-root price impact, stock market capitalization and idiosyncratic volatility, market variance, and time trend.
 - ► Calibrated running a panel regression on trade-execution data from large money manager covering a 19-year period.


Empirical results: Capacity, Investment, and Profit

Exploiting 18 characteristics in combination rather than isolation results in:

- ▶ 50% increase in capacity and optimal investment and
- ▶ 25% increase in optimal profit.

	Capacity			Investment			Profit		
Characteristic	Isol. (\$bill.)	Comb. (\$bill.)	Incr. (%)	Isol. (\$bill.)	Comb. (\$bill.)	Incr. (%)	Isol. (\$mill.)	Comb. (\$mill.)	Incr. (%)
gma	76.410	101.973	33	36.665	49.690	36	208.80	308.65	48
rd_mve	51.836	51.001	-2	25.918	24.852	-4	686.08	681.92	-1
bm	34.617	42.938	24	16.474	20.923	27	163.61	215.18	32
herf	2.225	27.024	1115	1.025	13.168	1184	0.44	13.03	2878
agr	14.586	22.358	53	6.863	10.895	59	65.33	119.91	84
chatoia	4.117	9.257	125	1.925	4.511	134	9.91	31.08	214
ps	5.478	7.285	33	2.542	3.550	40	15.54	25.91	67
bm_ia	0.000	6.296	-	0.000	3.068	-	0.00	1.32	-
:	:	:	:	:	:	:	:	:	:
Total	195.564	286.859	47	94.312	139.782	48	1165.89	1465.15	26


Empirical results: Capacity

Game-theoretic model

Game-theoretic model

- ► Game-theoretic model of competition between group of I₁ investors exploiting first characteristic and group of I₂ investors exploiting second characteristic.
 - (i) Negative externality (diseconomies) within groups due to price impact.
 - (ii) Positive externality across groups due to trading diversification.

 θ_{ki} : investment position of *i*th investor exploiting *k*th characteristic.

Game-theoretic model

▶ The *i*th investor exploiting first characteristic chooses θ_{1i} :

$$\max_{\theta_{1i}} \quad \underbrace{\theta_{1i}\mu_{1}}_{\text{mean return}} - \underbrace{\theta_{1i}\lambda_{1}(\theta_{1i} + \theta_{1,-i})}_{\text{price-impact cost}} - \underbrace{\theta_{1i}\lambda_{12}\sum_{j=1}^{l_{2}}\theta_{2j}}_{\text{price-impact cost}}$$

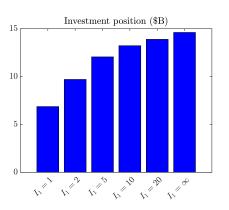
▶ The *i*th investor exploiting second characteristic chooses θ_{2i} :

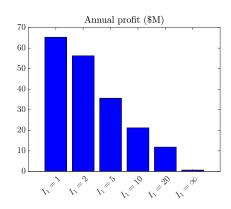
$$\max_{\theta_{2i}} \quad \theta_{2i}\mu_2 - \theta_{2i}\lambda_2(\theta_{2i} + \theta_{2,-i}) - \theta_{2i}\lambda_{12} \sum_{j=1}^{l_1} \theta_{1j}$$

 μ_k : mean return of kth characteristic.

 λ_k : price-impact parameter for kth characteristic.

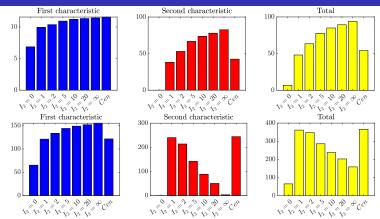
 λ_{12} : price-impact parameter for interaction between characteristics.


 $\theta_{k,-i}$: investment position of rest of investors exploiting kth characteristic.



Data

- We consider asset growth (investment) as first characteristic and gross profitability as second characteristic.
 - ▶ Robustness check: book to market and gross profitability.
- ▶ We combine data from CRSP and Compustat from January 1980 to December 2017.
- ► Use price-impact model of Frazzini et al. (2018), which considers linear and square-root terms.
 - Compute the equilibrium numerically.


Crowding

- ▶ Increasing number of investors in first characteristic (I₁) from one to twenty doubles aggregate investment position and reduces aggregate profits to a fifth because of crowding.
- As investors become perfectly competitive $(I_1 = \infty)$, aggregate profits vanish.

Trading diversification

- ► Single investor in second characteristic leads to an increase in investment in first characteristic by 45% and profits by 85% due to trading diversification.
- ► Increasing number of investors in second characteristic from one to twenty increases investment in first characteristic by 14% and smart-beta profits by 25%.
- Centralization increases total profits by reducing investment in both characteristics.

Conclusion

Main findings

• What Alleviates Crowding in Factor Investing?

- Trading diversification: institutions exploiting different characteristics can reduce each other's price-impact costs.
- ▶ Theory: even when their trades are not negatively correlated.
- ► Empirics: combining 18 characteristics leads to 50% increase in capacity and investment and 25% increase in profits.

2 Game-theoretic model:

- Competition among factor investors exploiting same characteristic erodes profits because of crowding,
- but competition among investors exploiting other characteristics alleviates crowding.

3 Empirical calibration:

► Trading diversification and competition among investors exploiting the second characteristic increase investment in the first characteristic by 65% and profits by 132%.

Implications for industrial organization and regulation

- Financial institutions should focus on characteristics that are not only profitable, but also exploited by only a few institutions.
 - ▶ BlackRock, Vanguard, State Street hold 79% of ETF assets (Baert, 2018).
 - Incentive to acquire competitors; e.g. Invesco (Carlson, 2019).

BLACKROCK

Implications for industrial organization and regulation

- Financial institutions should focus on characteristics that are not only profitable, but also exploited by only a few institutions.
 - ▶ BlackRock, Vanguard, State Street hold 79% of ETF assets (Baert, 2018).
 - Incentive to acquire competitors; e.g. Invesco (Carlson, 2019).
- 2 Financial institutions should exploit characteristics that allow them to benefit from trading diversification.
 - ► For instance, institutions exploiting "investment" benefit from other institutions exploiting "gross profitability".

Implications for industrial organization and regulation

- Financial institutions should focus on characteristics that are not only profitable, but also exploited by only a few institutions.
 - ▶ BlackRock, Vanguard, State Street hold 79% of ETF assets (Baert, 2018).
 - Incentive to acquire competitors; e.g. Invesco (Carlson, 2019).
- 2 Financial institutions should exploit characteristics that allow them to benefit from trading diversification.
 - ► For instance, institutions exploiting "investment" benefit from other institutions exploiting "gross profitability".
- 3 Regulators need to recognize that:
 - ► Encouraging competition among fund managers to reduce fees may also erode profitability because of crowding, but
 - encouraging the appropriate balance of competition between managers exploiting different characteristics can alleviate crowding due to trading diversification.

Thank you!

Empirical results: Characteristics considered

Characteristic	Acronym	Definition
Asset growth	agr	Annual % change in total assets (at).
Beta	beta	Beta from three years of weekly firm and EW market returns.
Book to market	bm	Book value of equity divided by end of fiscal-year market capitalization.
Industry-adjusted book to market	bm_ia	Industry-adjusted book value of equity (ceq) divided by market cap.
Industry-adjusted change in turnover	chatoia	industry adjusted change in sales divided by average total assets.
Change in tax expense	chtx	Percent change in total taxes from quarter $t-4$ to t .
Gross profitability	gma	Revenues minus cost of goods sold divided by lagged total assets.
Industry-sales concentration	herf	Sum of squared $\%$ of sales in industry for each company.
12-month momentum	mom12m	11-month cumulative returns ending one month before month-end.
1-month momentum	mom1m	1-month cumulative return.
Market capitalization	mve	Natural log of market capitalization at end of month $t-1$.
$\Delta\%$ gross margin - $\Delta\%$ sales	pchgm	Percent change in gross margin minus percent change in sales.
Financial-statements score	ps	$\label{prop:sum} \mbox{Sum of nine indicator variables that form fundamental financial health F-score}.$
R&D-to-market capitalization	rd_mve	R&D expense (xrd) divided by end of fiscal year market capitalization.
Return volatility	retvol	Standard deviation of daily returns.
Volatility of share turnover	std_turn	Monthly standard deviation of daily share turnover.
Unexpected quarterly earnings	sue	Unexpected quarterly earnings divided by market cap.
Zero trading days	zerotrade	Turnover weighted number of zero trading days.

References I

- Almgren, Robert, Chee Thum, Emmanuel Hauptmann, and Hong Li, 2005, Direct estimation of equity market impact, Risk 18, 58–62.
- Baert, Rick, 2018, Growth of ETFs reflects passive shift; 3 largest firms hold 79% of assets, Pensions & Investments (May 28).
- Barroso, Pedro, and Pedro Santa-Clara, 2015, Beyond the carry trade: Optimal currency portfolios, *Journal of Financial and Quantitative Analysis* 50, 1037–1056.
- Berk, Jonathan B., and Richard C. Green, 2004, Mutual fund flows and performance in rational markets, Journal of Political Economy 112, 1269–1295.
- Berk, Jonathan B., and Jules H. van Binsbergen, 2017, Mutual funds in equilibrium, *Annual Review of Financial Economics* 9, 147–167.
- Bonelli, Maxime, Augustin Landier, Guillaume Simon, and David Thesmar, 2019, The capacity of trading strategies, available at SSRN 2585399.
- Carlson, Debbie, 2019, Invesco focusing on scale, ETF.com (January 24).
- Cournot, Antoine-Augustin, 1838, Recherches sur les Principes Mathématiques de la Théorie des Richesses par Augustin Cournot (chez L. Hachette, Paris).
- DeMiguel, Victor, Alberto Martin-Utrera, Francisco J. Nogales, and Raman Uppal, 2020, A transaction-cost perspective on the multitude of firm characteristics, *Review of Financial Studies* 33, 2180–2222.
- Edelen, Roger M., Richard B. Evans, and Gregory B. Kadlec, 2007, Scale effects in mutual fund performance: The role of trading costs, available at SSRN 951367.
- Flood, Chris, 2019, Investors' smart money piles into smart beta ETFs, Financial Times (February 11).
- Frazzini, Andrea, Ronen Israel, and Tobias J. Moskowitz, 2015, Trading costs of asset pricing anomalies, Fama-Miller Working Paper.

References II

- Frazzini, Andrea, Ronen Israel, and Tobias J. Moskowitz, 2018, Trading costs, AQR Working Paper.
- Grinold, Richard C., and Ronald N. Kahn, 2000, Active portfolio management (McGraw-Hill, New York), 2nd edition.
- Johansson, Andreas, Riccardo Sabbatucci, and Andrea Tamoni, 2020, Smart beta made smart, available at SSRN 3594064.
- Korajczyk, Robert A., and Ronnie Sadka, 2004, Are momentum profits robust to trading costs?, Journal of Finance 59, 1039–1082.
- Novy-Marx, Robert, and Mihail Velikov, 2016, A taxonomy of anomalies and their trading costs, *Review of Financial Studies* 29, 104–147.
- Pástor, Ľuboš, and Robert F. Stambaugh, 2012, On the size of the active management industry, *Journal of Political Economy* 120, 740–781.
- Pástor, Ľuboš, Robert F. Stambaugh, and Lucian A. Taylor, 2015, Scale and skill in active management, Journal of Financial Economics 116, 23–45.
- Ratcliffe, Ronald, Paolo Miranda, and Andrew Ang, 2017, Capacity of smart beta strategies: A transaction cost perspective, Journal of Index Investing 8, 39–50.
- Torre, Nicolo G., and Mark J. Ferrari, 1997, Market Impact Model Handbook (BARRA Inc, Berkeley).