Trade Credit and Markups

Alvaro Garcia-Marin^{*} Santiago Justel^{**} Tim Schmidt-Eisenlohr^{***} * Universidad de los Andes, ^{**} The World Bank, ^{***} Federal Reserve Board

Overview

Document with U.S. Compustat and Chilean micro data that:

- Trade credit use increases in markups
- Markup effect stronger when borrowing costs higher

Rationalize findings in model with

• Positive markups

• Costly financial intermediation (borrowing rate exceeds deposits rate)

Graphical Evidence

Figure 1:Trade Credit Share Increases with Markups: U.S. Evidence

 \Rightarrow Financing cost advantage of trade credit.

Introduction

Trade credit is the most important form of short-term finance for firms. In 2019, U.S. non-financial firms had \$4.5 trillion in trade credit outstanding, equaling 21 percent of U.S. GDP.

Intuition for main mechanism

Trade Credit: Seller borrows production cost C:

$$FC^{TC} = r_b \underbrace{C}_{\text{Production Cost}} \tag{1}$$

Cash in Advance: Buyer borrows revenue $R = \mu C$; seller deposits surplus liquidity $R - C = (\mu - 1)C$:

$$FC^{CIA} = r_b \underbrace{\mu C}_{\text{Revenues}} - r_d \underbrace{(\mu - 1)C}_{\text{Bank Deposit}}$$
(2)

Empirical Specification

First Stage

$$\ln(\mu_{ipt}) = \gamma_1 \ln(TFPQ_{ipt}) + \gamma_2 \ln(L_{it}) + \alpha_i + \alpha_p + \alpha_{jt} + \varepsilon_{ipjt}$$
(4)

Second Stage

$$\rho_{ijpt} = \beta_1 \,\widehat{\ln \mu_{ipt}} + \beta_2 \,\ln(L_{it}) + \delta_i + \delta_p + \delta_{jt} + \epsilon_{ijpt},$$

(5)

Results

Table 1:Baseline Results							
Specification:	OLS	Reduced Form	First Stage	Second Stage			
	(1)	(\mathbf{a})	(\mathbf{a})				

Difference in financing costs:

$$\Delta FC = FC^{CIA} - FC^{TC} = (\mu - 1)(r_b - r_d)C$$
(3)

 \Rightarrow If there is a positive markup and the borrowing rate is above the deposit rate, cash in advance has higher financing costs than trade credit.

Proposition 1: Payment Choice: Domestic Case

Suppose the borrowing rate is above the deposit rate, $r_b > r_d$, and firms charge a positive markup over effective costs ($\mu > 1 + r_b$). Then, firms should always use trade credit.

Proposition 3: Trade Credit and Markups

Suppose $(1 + r_b^*) \tilde{\lambda}^* > (1 + r_d) \tilde{\lambda}$, where $(\tilde{\lambda}, \tilde{\lambda}^*)$ are functions of domestic and foreign contract enforcement. Then:

i) The use of trade credit increases with the markup μ . i) This effect increases with r_b^* and λ^* and decreases with r_d and λ .

	(\bot)	(2)	(3)	(4)
Dependent Variable:	TC Share	TC Share	$\ln(\max up)$	TC Share
$\ln(\text{Markup})$.0204***			.1050***
	(.0047)			(.0291)
$\ln(\mathrm{TFPQ})$.0054***	.0519***	
		(.0015)	(.0038)	
First Stage F-Statistic			232.2	
Firm FE	\checkmark	\checkmark	\checkmark	\checkmark
HS8 FE	\checkmark	\checkmark	\checkmark	\checkmark
Country-Year FE	\checkmark	\checkmark	\checkmark	\checkmark
Observations	93,556	90,727	90,727	90,727
\mathbb{R}^2	.368	.371	.692	.368

Table 2:Interaction Terms

Specification	OLS	OLS	OLS	OLS	2SLS	2SLS	2SLS	2SLS
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
ln(markup)	0215	0298			.539**	.459**		
	(.0311)	(.0318)			(.222)	(.226)		
$\ln(\text{markup}) \times \mathbf{r}_d$	533	485			-2.130	-1.551		
	(2.510)	(2.512)			(17.34)	(17.64)		
$\ln(\text{markup}) \times \mathbf{r}_b^*$.293**	.328***	.308**	.315*	.953*	1.232**	1.136^{**}	1.363**
	(.121)	(.126)	(.135)	(.141)	(.545)	(.562)	(.569)	(.587)
$\ln(\text{markup}) \times \text{Rule of Law}$.0212		.0212		.239*		.209
		(.0151)		(.0164)		(.137)		(.147)
First Stage F-Statistic					21.1	16.5	51.7	26.9
Firm-Year FE	\checkmark	\checkmark			\checkmark	\checkmark		
HS8 FE	\checkmark	\checkmark			\checkmark	\checkmark		
Country-Year FE	\checkmark							
Firm-HS8-Year FE			\checkmark	\checkmark			\checkmark	\checkmark
Observations	93,556	93,556	93,556	93,556	90,727	90,727	90,727	90,727
\mathbb{R}^2	.420	.420	.437	.437	.409	.402	.435	.430

Data

• United States: Compustat, 1965-2016.

- Chile: (i) Customs-level data, containing payment mode information; (ii) Production-level data at the firm-product level from ENIA, 2003-2007.
- Chilean data key for identification: It allows instrumenting markups with physical productivity (TFPQ), and controlling for exhaustive set of fixed effects, including firm-year fixed effects.
- Markups estimation: Follow production-based approach by De Loecker et al (2016), and De Loecker, Eeckout and Unger (2020).

Conclusions

Strong link between trade credit provision and markups
Trade credit allows firms to save on financial intermediation
International trade data useful to shed light on trade credit trade-offs (because enforcement is harder across borders)

Contact Information

Alvaro Garcia-Marin. E-mail: agarciam@uandes.cl