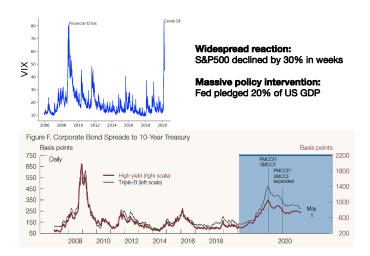
Asset Prices and Aggregate Demand in a "Covid-19" Shock: A Model of Endogenous Risk Intolerance and LSAPs

Ricardo J. Caballero MIT Alp Simsek
MIT (visiting Booth)

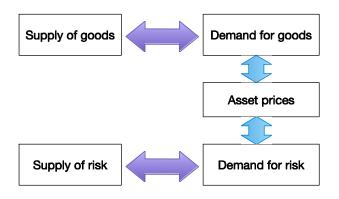
January 2021

A non-financial shock almost turns into a Financial Crisis...



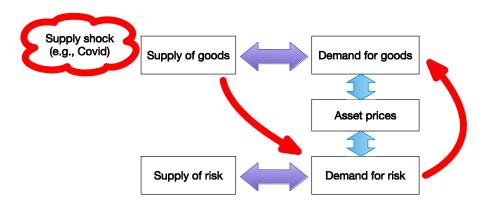
Paper: (i) Endogenous risk intolerance and demand (ii) LSAPs

How to absorb goods and risks? Problems are linked

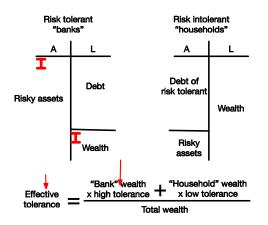


Heterogeneity: Risk tolerant and intolerant investors (Intermediary asset pricing. Empirically important)

Main results: Financial amplification of the "Covid" shock



Key mechanism: "Bank" losses reduce risk tolerance



- With constrained interest rate, downward spirals.
- "LSAPs": The consolidated government absorbs some of the risk
 - Powerful because they reverse the downward spirals

Caballero and Simsek () Demand Amplification January 2021 5 / 12

Summary of the model

- ullet Single factor, capital. Potential output z_t . Actual output y_t
- Periods $t \ge 1$: No uncertainty, $y_t = z_t$, and balanced growth
- ullet Period 0: Aggregate risk. Productivity growth $LN\left(g-rac{\sigma^2}{2},\sigma
 ight)$
 - ullet Shocks to $z_0 \leq 1$. Output y_0 demand-determined (sticky prices)
- Market portfolio with (ex-dividend) price z_0P_0
- Two agents b,h with EIS=1, $\tau^b > \tau^h$. Initial leverage $l \in (0,1)$
- ullet Central bank: $r_0^f = \max\left(0, r_0^{f*}\right)$ where r_0^{f*} replicates $y_0 = z_0$

The model has three key equations

Output-asset price relation (wealth effects+):

$$y_0 = c_0 \simeq \rho z_0 P_0$$

- Efficient asset price per supply is $P^*=1/\rho$. Define $p_0\equiv \frac{P_0}{P^*}$
- Risk balance condition (supply of risk = demand):

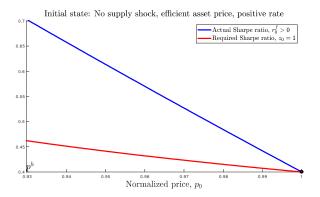
$$\sigma \simeq \tau_0 \frac{\rho + g - \log(p_0) - r_0^f}{\sigma}$$

• Risk tolerance-asset price relation. Increasing:

$$\tau_0(z_0 p_0) = \tau^h + \underbrace{\left(1 - \frac{I}{z_0 p_0}\right) \kappa}_{\text{banks' wealth share}} \left(\tau^b - \tau^h\right)$$

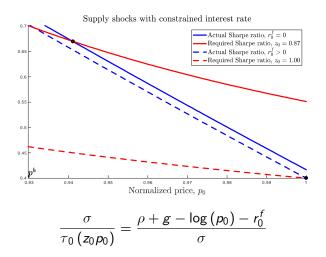
4□ > 4□ > 4 = > 4 = > = 90

Required Sharpe ratio
$$\frac{\sigma}{\tau_0(z_0p_0)} = \frac{\text{Actual Sharpe ratio}}{\rho + g - \log(p_0) - r_0^f}$$



8 / 12

A supply shock can trigger an asset price spiral



- Steeper red-line (high $\frac{\tau^b}{\tau^h}$, high I_0 , low z_0) means greater amplification
- With sufficiently steep red-line, there are

 multiple equilibria

イロト 4回ト 4 ヨト 4 ヨト タ

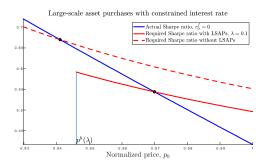
January 2021

9 / 12

Caballero and Simsek () Demand Amplification

LSAPs increase asset prices and mitigate the spiral

Modeling LSAPs: Government buys risky assets (non-Ricardian)



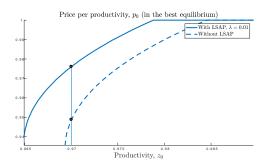
$$\frac{\sigma(1-\lambda)}{\tau_0\left(z_0p_0\right)} = \frac{\rho + g - \log\left(p_0\right) - r_0^f}{\sigma}$$

• Steeper red-line (high $\frac{\tau^b}{\tau^h}$, high I_0 , low z_0): greater marginal impact

With calibrated demand (in)elasticity, effects are large

- Calibration based on the price elasticity of asset demand:
 - Pre-shock elasticity = 1 (Conservative. Gabaix-Koijen $\simeq 0.2$)
 - \bullet Leverage from the Fed's June 2020 stress tests, $I \simeq 0.71$

Risk-tolerance heterogeneity helps match inelasticity in normal times Productivity shocks move prices a lot. LSAPs are powerful



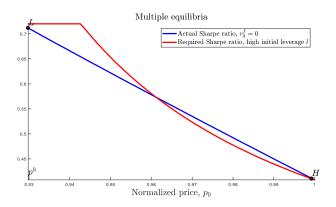
Caballero and Simsek ()

Final remarks: A risk-centric perspective on "Covid-19"

- Asset price spirals and aggregate demand can amplify real shocks when economic agents have heterogeneous risk tolerance
 - As supply (or demand) drops, so do asset prices
 - The "representative investor" becomes less risk tolerant
 - An interest rate cut is the most effective response
 - Without it, asset prices drop further and trigger a downward spiral
 - Corporate debt overhang and insolvencies amplify the spiral
- LSAPs work by reducing the supply of risk market needs to absorb
 - The rationale is to boost aggregate demand via asset prices
- With calibrated asset demand (in)elasticities, effects are large

With high leverage, there are multiple equilibria

✓ back to supply shocks



$$\frac{\sigma}{\tau_0(z_0p_0)} = \frac{\rho + g - \log(p_0) - r_0^f}{\sigma}$$

Large-scale asset purchases (LSAPs)

Government Balance Sheet Before LSAP

 λ units of m

	,	•
	Α	
(clai	e tax revenues ms on future eneration) units of m	Government wealth (spending, transfers to future generation) $\eta^g z_0 P_0$

 η^g units of m

After LSAP

LSAPs (λ) reduce the risk that private sector needs to absorb:

$$\frac{\sigma(1-\lambda)}{\tau_0(z_0p_0)} = \frac{\rho + g - \log(p_0) - r_0^f}{\sigma}$$

 $\lambda z_0 P_0$ units of f

A quantification based on demand (in)elasticity

• Let $q_0(p_0) = q_0^b + q_0^h$ denote the asset demand. **Elasticity:**

$$\frac{\partial \log q_0}{\partial \log p_0} = -\frac{1}{r_0 - r_0^f} + \underbrace{\frac{\frac{l}{z_0 p_0}}{\frac{\tau^h / \kappa}{\tau^b - \tau^h} + 1 - \frac{l}{z_0 p_0}}}$$

risk heterogeneity raises the INELASTICITY

Marginal price impact of shocks:

$$\frac{d \log p_0}{d \log z_0} = \frac{\frac{\partial \log q_0}{\partial \log z_0} \text{ (induced flows. same as INELASTICITY)}}{\frac{\partial \log q_0}{-\partial \log p_0} \text{ (elasticity. price change to absorb flows)}}$$

Calibration:

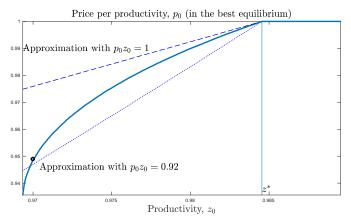
- ullet Pre-shock elasticity = 1 (Conservative. Gabaix-Koijen $\simeq 0.2$)
- ullet Leverage from the Fed's June 2020 stress tests, $I \simeq 0.71$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣 Q @

January 2021

With calibrated demand (in)elasticity, effects are large

Pre-shock approximation:
$$\left. \frac{d \log p_0}{d \log z_0} \right|_{p_0 z_0 = 1} = \frac{1.63}{2.63 - 1.63} = 1.63$$



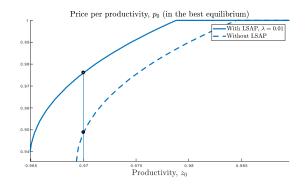
Post-shock approximation:
$$\frac{d \log p_0}{d \log z_0}\Big|_{p_0 z_0 = 0.92} = \frac{2.07}{2.63 - 2.07} \simeq 3.66$$

• Shock increases **effective** leverage $\frac{1}{p_0 z_0} = 0.77 > 1 = 0.71$

Caballero and Simsek () Demand Amplification January 2021 16 / 12

With calibrated elasticity, LSAPs have a large impact

$$\frac{\partial \log p_0}{\partial \lambda} \simeq \left(\frac{\partial \log q_0}{-\partial \log p_0}\right)^{-1} = \left\{\begin{array}{ll} 1 & \text{pre-shock, } I = 0.71\\ \frac{1}{0.56} & \text{post-shock, } \frac{I}{p_0 z_0} = 0.77 \end{array}\right.$$



• LSAPs reduce range of z_0 with unique bad equilibrium ($p^h = 0.6$)

Caballero and Simsek () Demand Amplification January 2021 17 / 12

Debt overhang: Asset prices affect firm insolvencies

- Firm ν manages capital. Initial debt $b(\nu)$ where $\int_{\nu} b(\nu) dF(\nu) = 0$
- Insolvent firms become unproductive. Solvency condition:

$$y_0(\nu)+z_0p_0\geq b(\nu)$$
.

• Fraction of solvent firms is increasing in the asset price:

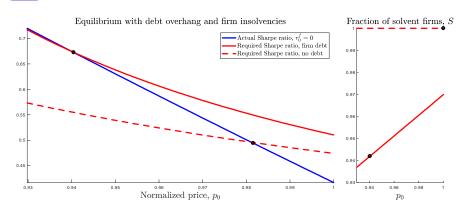
$$\overline{S}(z_0p_0)\equiv F\left(\frac{z_0P_0}{e^{-\rho}}\right).$$

- This leads to a stronger output-asset price relation
- And a stronger risk tolerance-asset price relation

$$\tau_0\left(\overline{S}(z_0p_0)z_0p_0\right).$$

Debt overhang: Amplifies spirals (strengthens LSAPs)

◆ back



$$\frac{\sigma}{\tau_0\left(\overline{S}\left(p_0\right)z_0p_0\right)} = \frac{\rho + g - \log\left(p_0\right) - r_0^f}{\sigma}.$$