Disentangling the effects of multidimensional monetary policy on inflation and inflation expectations in the euro area

Catalina Martínez Hernández

1 Freie Universität Berlin
2 DIW Berlin

ASSA Meeting 2021
3-5 January 2021
What is the effectiveness of the ECB’s monetary policy toolkit for achieving price stability and anchoring inflation expectations?
Inflation and inflation expectations in the euro area

[Graph showing trends in inflation and inflation expectations from 2012 to 2020]
Inflation and inflation expectations in the euro area

- Inflation and expectations lower than close but below 2% target
Inflation and inflation expectations in the euro area
What is the effectiveness of each tool to influence inflation and expectations?
This paper

- Novel high-frequency identification of shocks related to conventional, unconventional (forward guidance, LTRO, QE) and communication tools
- Assess the effectiveness of several tools for increasing inflation and for anchoring inflation expectations
- Forecaster’s vs consumer’s short-term inflation expectations
Re-anchored inflation expectations channel: Long-term inflation expectations of professional forecasters increase in response to forward guidance and QE.

Inflation increases and remains significantly high for over one year after a forward guidance shock.

ECB’s information effect: Inflation, interest rate, and expectations decrease.

Short-term inflation expectations of consumers and forecasters react in opposite directions to QE shocks.
Macroeconomic effects of UMP shocks:

- Single UMP shock, Corsetti, Duarte, and Mann (2018), Hachula, Piffer, and Rieth (2019),

- Normally UMP tools announced in the same time window
High-frequency identification of monetary policy shocks, Gürkaynak, Sack, and Swanson (2005), Nakamura and Steinsson (2018), Rogers, Scotti, and Wright (2018), Swanson (2019), Altavilla et al. (2019), among many others

- Different types of shocks with respect to the yield curve term structure
- Multidimensional monetary policy: Target, path, balance sheet
Outline

- A VAR for the Euro Area Economy
- Identification Strategy
- Estimation details & Results
- Policy implications and conclusions
Outline

☐ A VAR for the Euro Area Economy

☐ Identification Strategy

☐ Estimation details & Results

☐ Policy implications and conclusions
A VAR for the euro area economy

- Model macro and financial variables through VAR:

\[y_t = c + A_1 y_{t-1} + \cdots + A_p y_{t-p} + u_t, \quad u_t \sim \mathcal{N}(0, \Sigma) \quad (1) \]

- \(y_t \) is a \(N \times 1 \) vector of data, \(A_i \) are matrices of parameters for \(i = 1, \cdots, p \), and \(u_t \) are the reduced-form errors

- Large Bayesian VAR à la Giannone, Lenza, and Primiceri (2015), Details

- Bridge between structural and reduced-form VAR

\[u_t = H \varepsilon_t \quad (2) \]

- \(H \) is the impact matrix, \(\Sigma = HH' \)
How to identify the monetary policy shocks?

- **Heteroskedasticity,** Wright (2012)

- **Use of extraneous data:**
 - **Proxy VAR,** Stock and Watson (2012, 2018), Mertens and Ravn (2013)
 - **Internal instrument approach,** Noh (2017), Paul (2019), Plagborg-Møller and Wolf (Forthcoming)
How to identify the monetary policy shocks?

- **Heteroskedasticity**, Wright (2012)

- **Use of extraneous data:**
 - **This paper**: Internal instrument approach, Noh (2017), Paul (2019), Plagborg-Møller and Wolf (Forthcoming)
 - Augment endogenous variables with Proxies + Choleski decomposition
How to identify the monetary policy shocks?

- **Use of extraneous data:**
 - **This paper**: Internal instrument approach, Noh (2017), Paul (2019), Plagborg-Møller and Wolf (Forthcoming)
 - Augment endogenous variables with Proxies + Choleski decomposition

- **How to obtain monetary policy proxies?**
Outline

☑️ A VAR for the Euro Area Economy

☐ Identification Strategy

☐ Estimation details & Results

☐ Policy implications and conclusions
Outline

- A VAR for the Euro Area Economy
- Identification Strategy
- Estimation details & Results
- Policy implications and conclusions
Monetary Policy in the euro area

- ECB’s monetary policy decisions: Press release (13:45 CET), Press conference (14:30-15:30 CET), Monetary Policy Event Window (13:45-15:30 CET)
 - Since 2016 UMP is communicated in the press release window

- Euro Area Monetary Policy Event-Study Data Base (EA-MPD), Altavilla et al. (2019)
 - Target, path and balance sheet components in monetary policy event window
 - January 2002 - February 2020, 199 governing council meetings
 - $Z = 199 \times 34$ matrix of asset and bond surprises from the EA-MPD: OIS, sovereign bond yields, stock market prices indices, exchange rates
A factor model for MP announcements

- The matrix of surprises Z evolves as a factor model:

$$Z = F\Lambda' + \xi, \quad \xi \sim \mathcal{N}(0, R) \quad (3)$$

- Factors, F is $T^* \times r$; loadings, Λ is $34 \times r$ and $T^* = 199$ are dates of governing council meetings,
 - Set $r=4$, 58% of explained variance

- Identification problem: $F^* = FQ$ and $\Lambda^* = \Lambda Q$ observationally equivalent, where Q is a rotation matrix.

- Find a rotation matrix Q with economic meaning.
The restrictions

\[\Lambda^* = \begin{bmatrix}
\text{Target} & \text{Path} & \text{LTRO} & \text{QE} & \text{OIS1M} & \text{OIS3M} & \text{OIS6M} \\
* & 0 & 0 & 0 & \vdots & \vdots & \vdots \\
* & * & * & 0 & \vdots & \vdots & \vdots \\
* & * & * & * & \vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
* & * & * & * & \vdots & \vdots & \vdots \\
\end{bmatrix} \]
The restrictions

\[\Lambda^* = \begin{bmatrix}
 \text{Target} & \text{Path} & \text{LTRO} & \text{QE} \\
 * & 0 & 0 & 0 \\
 * & * & * & 0 \\
 * & * & * & * \\
 \vdots & \vdots & \vdots & \vdots \\
 * & * & * & * \\
\end{bmatrix}
\]

- **Unrestricted Target factor**
- **Target in MP event window,**
 - Cleanse the effects of conventional MP on remaining factors
The restrictions

$\Lambda^* = \begin{bmatrix}
\text{Target} & \text{Path} & \text{LTRO} & \text{QE} \\
* & 0 & 0 & 0 \\
* & * & * & 0 \\
* & * & * & * \\
: & : & : & : \\
: & : & : & : \\
* & * & * & * \\
\end{bmatrix}$

- Forward guidance implemented to influence medium- to long-term horizons
The restrictions

\[\Lambda^* = \begin{bmatrix}
\text{Target} & \text{Path} & \text{LTRO} & \text{QE} \\
* & 0 & 0 & 0 \\
* & * & * & 0 \\
* & * & * & * \\
. & . & . & . \\
. & . & . & . \\
* & * & * & *
\end{bmatrix} \begin{bmatrix}
\text{OIS1M} \\
\text{OIS3M} \\
\text{OIS6M} \\
. \\
. \\
.
\end{bmatrix} \]

- Least percentage of explained variance before the Great Recession, in the spirit of Swanson (2019)
- QE influence long-end of the yield curve
Disentangling between information and forward guidance

- Information factor: observations of path factor such that STOXX50 and OIS-5Y positively commove

- Forward guidance factor: observations of path factor such that STOXX50 and OIS-5Y negatively commove
MP Factors

Target

Information

Forward Guidance

LTRO

QE

Loadings: OIS

Loadings: all variables
Outline

- A VAR for the Euro Area Economy
- Identification Strategy
- Estimation details & Results
- Policy implications and conclusions
Outline

- A VAR for the Euro Area Economy
- Identification Strategy
- Estimation details & Results
- Policy implications and conclusions
Data

- 20 monthly macroeconomic and financial variables
 - Output, Inflation, exchange rate, interest rates, stock market, spreads...
 - Short-term expectations: Consumers (European Commission) and forecasters (Eurozone Barometer)
 - Long-term expectations: Survey of Professional Forecasters (ECB)

- Year-over-Year transformations when applicable
Estimation details

- Model with $p = 3$ lags, ▶ ACF & PACF
- 50,000 draws, burn-in-sample = 25,000, ▶ Geweke test
- Shocks normalisation:
 - Target: 25 basis points decrease in EURIBOR 1M
 - Information: 15 basis points decrease in 2Y yield
 - FG: 15 basis points decrease in 2Y yield
 - LTRO: 10 basis points decrease in spread between 10Y Italian and German sovereign bond yields
 - QE: 10 basis points decrease in 10Y yield
Have UMP been effective in increasing inflation?
The re-anchoring transmission channel

![Graphs showing the re-anchoring transmission channel for different economic indicators such as Target, Information, FG, LTRO, and QE over time.]
The re-anchoring transmission channel
Conclusions & policy implications

- Re-anchored inflation expectations after QE and forward guidance

- Consumers and forecasters have opposite reaction to QE
 - Possible misinterpretation of MP decisions
 - Tailor-made communication strategies for several agents in the economy

- Power of inflation expectations for monetary policy transmission
 - Inflation expectations as a policy tool, Coibion et al. (2020)
Thank you!

Catalina Martínez-Hernández

cmartinezhernandez24@gmail.com
https://sites.google.com/view/catalina-martinez-hernandez
You can access the latest version of the paper here
References

References (cont.)

GEWEKE, J. (1992): “Evaluating the Accuracy of Sampling-Based Approaches to the Calculation of Posterior Moments,” in *Bayesian Statistics*.

References (cont.)

NOH, E. (2017): “Impulse-response analysis with proxy variables,” *Available at SSRN 3070401*.

PLAGBORG-MØLLER, M., AND C. K. WOLF (Forthcoming): “Local projections and VARs estimate the same impulse responses,” *Econometrica*.

The priors

\[\Sigma \sim iW(\Psi, d) \]
\[\text{vec}(A) | \Sigma \sim \mathcal{N}(a, \Sigma \otimes \Omega) \]

▶ Minnesota, sum-of-coefficients and single-unit-root,

\[A := \mathbb{E}[(A_\ell)_{i,j} | \Sigma] = \begin{cases} \delta_i, & i = j \quad \& \quad \ell = 1 \\ 0, & \text{otherwise} \end{cases} \quad (4) \]

\[V_a := \text{cov} ((A_\ell)_{i,j}, (A_k)_{r,s} | \Sigma) = \begin{cases} \frac{\theta_1^2}{\ell \theta_2} \psi_j/(d-N-1), & j = s \quad \& \quad \ell = k \\ 0, & \text{otherwise} \end{cases} \quad (5) \]
The large Bayesian VAR

- Maximise of Marginal Data Density, closed-form solution
 - MDD: Function of the hyperparameters (θ) of the prior
 - Optimal shrinkage degree

- Uncertainty about hyperparameters: Hierarchical model
 - Gamma priors for hyperparameters
 - Draws through a Metropolis-Hastings algorithm

- Sample large BVAR parameters $\alpha = \text{vec}(\tilde{A})$ and $\tilde{\Sigma}$

$$
\alpha | \theta, \Sigma, \tilde{Y} \sim \mathcal{N}(\tilde{\alpha}, \tilde{V}_\alpha) \tag{6}
$$

$$
\Sigma | \theta, \tilde{Y} \sim \text{iW} \left(\tilde{\Psi}, \tilde{T} - p + d\right) \tag{7}
$$
The EA-MPD

- The Euro Area Monetary Policy Event-Study Data Base (EA-MPD), Altavilla et al. (2019)
 - Surprises of Overnight index swaps (OIS), Government Bond Yields, Stock Market indices, Exchange Rates.
 - Difference between median quote 10 mins before and 10 mins after a window
 - Surprises for three windows: Press release, press conference and monetary policy event
Scree plot
Target factors
Finding a rotation matrix

- Principal components as initial estimator
- \mathcal{F}^* last two factors from $F^* = FQ$, related to LTRO and QE
- I minimise the following problem for the pre-crisis period: Jan 2002 - August 2008:

$$Q^* = \arg \min \frac{1}{T^*} \text{trace}(\mathcal{F}^* \mathcal{F}^*)$$

s.t.

$$Q'Q = I_r$$

$$\Lambda_{OIS1M,\bullet}Q_{\bullet,2} = 0, \quad \Lambda_{OIS1M,\bullet}Q_{\bullet,3} = 0 \quad \Lambda_{OIS1M,\bullet}Q_{\bullet,4} = 0$$

$$\Lambda_{OIS3M,\bullet}Q_{\bullet,5} = 0$$

- where $Q_{\bullet,i}$ and $Q_{i,\bullet}$ correspond to the i-th column of Q
Orthogonalised Factors and Loadings

- Orthogonal Factors: \(\tilde{F}_{k,t}, \ k = \{\text{information, forward guidance, LTRO, QE}\} \)

\[
F_{k,t} = \beta_k F_{t}^{\text{Target}} + \sum_{j=1}^{k-1} \gamma_j \tilde{F}_{j,t} + e_{k,t}, \quad e_{k,t} \sim \mathcal{N}(0, \sigma_k^2), \tag{8}
\]

- \(\tilde{F}_{k,t} = F_{k,t} - \hat{\beta}_k F_{t}^{\text{Target}} - \sum_{j=1}^{k-1} \gamma_j \tilde{F}_{j,t} \).

- Orthogonal Loadings, for \(i = 1, \cdots, 34 \)

\[
Z_{i,t} = \tilde{\Lambda}_i \tilde{F}_t + \nu_{i,t}, \quad \nu_{i,t} \sim \mathcal{N}(0, \omega_i^2), \tag{9}
\]
Factor loadings and the OIS term structure
Factor loadings: Full data set

| Target Information FG LTRO QE |
|-----------------------------|----------------|----------------|----------------|----------------|
| OIS1M | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| OIS3M | 0.92 | 0.43 | 0.12 | 0.34 | 0.00 |
| OIS6M | 0.89 | 0.63 | 0.44 | 0.49 | 0.15 |
| OIS1Y | 0.79 | 0.80 | 0.80 | 0.58 | 0.19 |
| OIS2Y | 0.62 | 0.95 | 0.92 | 0.68 | 0.29 |
| OIS3Y | 0.49 | 0.97 | 0.85 | 0.79 | 0.42 |
| OIS4Y | 0.43 | 1.00 | 1.00 | 0.85 | 0.49 |
| OIS5Y | 0.36 | 1.02 | 0.96 | 0.92 | 0.58 |
| OIS6Y | 0.30 | 1.02 | 0.96 | 1.00 | 0.68 |
| OIS7Y | 0.23 | 1.01 | 0.92 | 1.09 | 0.79 |
| OIS8Y | 0.17 | 1.00 | 0.88 | 1.15 | 0.87 |
| OIS9Y | 0.12 | 0.97 | 0.83 | 1.21 | 0.95 |
| OIS10Y | 0.08 | 0.96 | 0.86 | 1.24 | 0.95 |
| OIS20Y | -0.02 | 0.78 | 0.69 | 1.38 | 1.00 |
Factor loadings: Full data set

<table>
<thead>
<tr>
<th>Gov. bond yields</th>
<th>Target</th>
<th>Information</th>
<th>FG</th>
<th>LTRO</th>
<th>QE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE3M</td>
<td>0.64</td>
<td>-0.03</td>
<td>-0.01</td>
<td>-0.12</td>
<td>0.05</td>
</tr>
<tr>
<td>DE6M</td>
<td>0.70</td>
<td>0.41</td>
<td>0.31</td>
<td>0.32</td>
<td>0.13</td>
</tr>
<tr>
<td>DE1Y</td>
<td>0.74</td>
<td>0.67</td>
<td>0.77</td>
<td>0.57</td>
<td>0.19</td>
</tr>
<tr>
<td>DE2Y</td>
<td>0.51</td>
<td>0.88</td>
<td>1.01</td>
<td>0.72</td>
<td>0.34</td>
</tr>
<tr>
<td>DE5Y</td>
<td>0.28</td>
<td>0.96</td>
<td>0.93</td>
<td>1.00</td>
<td>0.60</td>
</tr>
<tr>
<td>DE10Y</td>
<td>0.02</td>
<td>0.87</td>
<td>0.73</td>
<td>1.29</td>
<td>1.16</td>
</tr>
<tr>
<td>FR2Y</td>
<td>0.52</td>
<td>0.86</td>
<td>0.92</td>
<td>0.65</td>
<td>0.38</td>
</tr>
<tr>
<td>FR5Y</td>
<td>0.37</td>
<td>0.91</td>
<td>0.89</td>
<td>0.58</td>
<td>0.79</td>
</tr>
<tr>
<td>FR10Y</td>
<td>0.12</td>
<td>0.83</td>
<td>0.67</td>
<td>0.57</td>
<td>1.41</td>
</tr>
<tr>
<td>IT2Y</td>
<td>0.31</td>
<td>0.62</td>
<td>0.92</td>
<td>-0.96</td>
<td>0.84</td>
</tr>
<tr>
<td>IT5Y</td>
<td>0.25</td>
<td>0.57</td>
<td>0.82</td>
<td>-1.16</td>
<td>1.07</td>
</tr>
<tr>
<td>IT10Y</td>
<td>0.13</td>
<td>0.45</td>
<td>0.49</td>
<td>-1.16</td>
<td>1.40</td>
</tr>
<tr>
<td>ES2Y</td>
<td>0.39</td>
<td>0.73</td>
<td>1.06</td>
<td>-0.43</td>
<td>0.57</td>
</tr>
<tr>
<td>ES5Y</td>
<td>0.26</td>
<td>0.77</td>
<td>0.94</td>
<td>-0.80</td>
<td>0.96</td>
</tr>
<tr>
<td>ES10Y</td>
<td>0.21</td>
<td>0.58</td>
<td>0.64</td>
<td>-0.95</td>
<td>1.30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stock Market</th>
<th>Target</th>
<th>Information</th>
<th>FG</th>
<th>LTRO</th>
<th>QE</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOXX50</td>
<td>-0.35</td>
<td>0.58</td>
<td>-0.09</td>
<td>0.98</td>
<td>-1.18</td>
</tr>
<tr>
<td>SX7E</td>
<td>-0.18</td>
<td>0.35</td>
<td>-0.11</td>
<td>1.53</td>
<td>-0.71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exchange rates</th>
<th>Target</th>
<th>Information</th>
<th>FG</th>
<th>LTRO</th>
<th>QE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EURUSD</td>
<td>0.16</td>
<td>-0.24</td>
<td>-0.26</td>
<td>1.22</td>
<td>0.95</td>
</tr>
<tr>
<td>EURGBP</td>
<td>0.21</td>
<td>-0.09</td>
<td>-0.31</td>
<td>1.14</td>
<td>0.93</td>
</tr>
<tr>
<td>EURJPY</td>
<td>0.18</td>
<td>0.05</td>
<td>-0.22</td>
<td>1.29</td>
<td>1.01</td>
</tr>
</tbody>
</table>
Autocorrelation and Partial autocorrelation functions
Convergence test

>p-values from the χ^2-test of Geweke (1992)