Accommodation or Obfuscation? Product Innovation in the Variable Annuities Market

Xiaochen Jing and Daniel Bauer

University of Wisconsin - Madison

January 3-5, 2020

- Separate account life insurance contracts linked to a list of financial instruments with tax advantage
- 2 trillion USD in net assets (25% of US insurance industry's total assets)
- Equipped with optional features
 - Guaranteed Living Benefits (GLBs)
 - Guaranteed Minimum Death Benefits (GMDBs)
- 75% of all new VAs include GLBs
- Product landscape has changed dramatically over the past 25 years
 - ► Early: Various forms of GMDBs
 - Recent: Guaranteed Lifetime Withdrawal Benefits (GLWBs)

- Plenty of product variation in the VA market
 - "Radical": GMDB, GMAB, GMIB, GMWB, GLWB
 - "Incremental": Surrender Charge Schedule, Free Withdrawals, Step-Up Provisions, Impact of Withdrawals, etc.
 - Beneficial to consumers with specific needs

- VAs are complex products
 - Multi-dimensional payoff functions
 - On-going decision making throughout the contract period
 - Consumers may not be sophisticated to choose optimally

Classic View on Product Innovation

Market Incompleteness
 (Allen and Gale, 1994; Duffie and Rahi, 1995)

- Potential "dark side" of Product Innovation: Obfuscation
 - Strategic pricing of complexity
 (Gabaix and Laibson, 2006; Carlin, 2009)
 - Empirical Studies from Retail Structured Products (Henderson and Pearson, 2011; Célérier and Vallée, 2017)

Classic View on Product Innovation

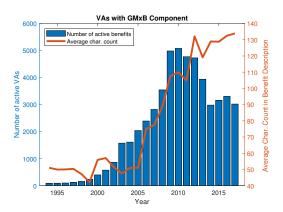
Market Incompleteness
 (Allen and Gale, 1994; Duffie and Rahi, 1995)

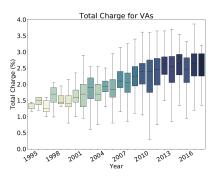
Potential "dark side" of Product Innovation: Obfuscation

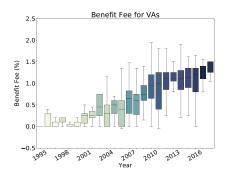
- Strategic pricing of complexity (Gabaix and Laibson, 2006; Carlin, 2009)
- Empirical Studies from Retail Structured Products
 (Henderson and Pearson, 2011; Célérier and Vallée, 2017)

- What drives product innovation in the Variable Annuities market?
- THEORY: A stylized model on product price and complexity
 - Allowing both "virtuous" and "obfuscating" product innovation
- EMPIRICAL: Observations in line with theoretical model
 - Complexity of products in new categories increases for years and stagnates thereafter
 - ► Fees increase in product complexity
 - Substantial markup for categorical innovations
- Co-existence of "virtuous" and "obfuscating" product innovation bridging views advertised in literature
 - Mixed nature poses difficulties in view of consumers and policy

- What drives product innovation in the Variable Annuities market?
- THEORY: A stylized model on product price and complexity
 - Allowing both "virtuous" and "obfuscating" product innovation
- EMPIRICAL: Observations in line with theoretical model
 - Complexity of products in new categories increases for years and stagnates thereafter
 - ► Fees increase in product complexity
 - Substantial markup for categorical innovations
- Co-existence of "virtuous" and "obfuscating" product innovation bridging views advertised in literature
 - Mixed nature poses difficulties in view of consumers and policy

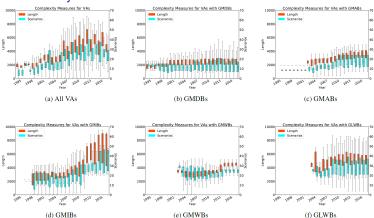

- What drives product innovation in the Variable Annuities market?
- THEORY: A stylized model on product price and complexity
 - Allowing both "virtuous" and "obfuscating" product innovation
- EMPIRICAL: Observations in line with theoretical model
 - Complexity of products in new categories increases for years and stagnates thereafter
 - ► Fees increase in product complexity
 - Substantial markup for categorical innovations
- ⇒ Co-existence of "virtuous" and "obfuscating" product innovation bridging views advertised in literature
 - Mixed nature poses difficulties in view of consumers and policy


- What drives product innovation in the Variable Annuities market?
- THEORY: A stylized model on product price and complexity
 - Allowing both "virtuous" and "obfuscating" product innovation
- EMPIRICAL: Observations in line with theoretical model
 - Complexity of products in new categories increases for years and stagnates thereafter
 - ► Fees increase in product complexity
 - Substantial markup for categorical innovations
- ⇒ Co-existence of "virtuous" and "obfuscating" product innovation bridging views advertised in literature
 - Mixed nature poses difficulties in view of consumers and policy

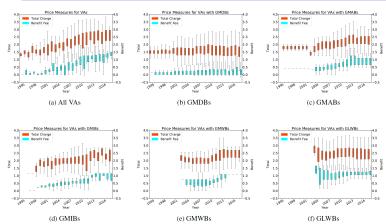

- VA prospectus: Typically several hundred-page long documents with detailed description
- Our source: Morningstar Annuity Intelligence
 - 2,302 plain VA contracts and 22,623 VA + benefit combinations
 - Starting from 1994
 - Numerical values on fees and benefits
 - Textual description on add-ons and conditions
- Key contract variables
 - Complexity: description length, number of scenarios
 - Price: total contract fee

Frequent innovation and increasing complexity

(a) Total Fees of Variable Annuities


(b) Benefit Charges of Variable Annuities

- Increasing VA fees and benefit charges
- Recent findings in retail structured products (Célérier & Vallée, 2017)
- Is innovation in VA market also driven by obfuscation and shrouding?


Why may consumers purchase VA with add-on benefits?

- Tax advantage
 - Just purchase basic VA without costly guarantees
- Pressure by salesperson
 - "Life insurance is sold, not bought"
 - Limited learning by consumers
- VA plus GMBs are insurance products
 - Provide protection against bundled risks that are difficult to obtain otherwise
 - ▶ VAs are held by high net worth individuals (Brown & Poterba, 2006)

Analysis at the benefit level

- "Increasing-stagnating" trends within benefit groups
- Increasing complexity in general: an aggregation of benefit trends?

- Increasing trends in aggregate and sub-markets
- Expensive early innovation
- Virtuous and obfuscating innovation

An Extension to Carlin (2009)

Proposition 1: "Virtuous" Innovation

Successful innovator chooses monopolistic price, lowest complexity, and attracts all type II sophisticated consumers in equilibrium.

Proposition 2: "Obfuscating" Innovation

- Unsuccessful innovators face trade-off between attracting type I sophisticated consumers with low price and profiting from unsophisticated consumers with high price.
- Higher competition leads to higher levels of complexity.

Empirical Predictions

- "Virtuous" Innovation: early innovation of new benefit types
 - High price
 - Low complexity

- "Obfuscating" Innovation: follow-up innovation within existing types
 - ► High complexity associates with high price
 - ► High complexity when facing competition

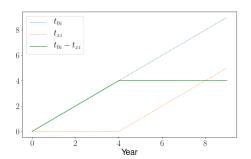
Complexity_i =
$$\beta_0^C$$
 + Co. Fixed Effect_i^C + β_{type}^C Benefit Type_i + $\beta_X^C X_i + \varepsilon_i$

- Complexity_i: description length or number of scenarios
- Benefit Type_i: generic categories (GMxBs)
- X_i: feature set

- Early Inception
 - Less complex

- Linear time trend
 - Increasing

Benefit dummies


- Benefit-specific time trends
 - Insignificant aggregate trend

	(1)	(2)
Early 5%	-0.322***	-0.3649***
	(0.112)	(0.107)
InterestRate	-0.002	-0.0347**
	(0.018)	(0.017)
Year	0.0377***	0.0113
	(800.0)	(0.009)
GMAB	0.2092*	-0.4198
	(0.107)	(0.364)
GMIB	1.2681***	-1.3976***
	(0.087)	(0.249)
GMWB	0.3612***	-0.4993
	(0.112)	(0.456)
GLWB	1.8037***	2.6678***
	(0.06)	(0.238)
GMAB × Year		0.0424*
		(0.025)
GMIB × Year		0.2026***
		(0.018)
$GMWB \times Year$		0.0704*
		(0.037)
GLWB × Year		-0.0481***
		(0.014)
Company FE	Yes	Yes
Observations	1286	1286
Adj. R ²	0.618	0.663

To capture the "increasing - stagnating" trend

$$t_{0i} = \operatorname{Inception}_{i} - \min_{\{type_{i} = type_{i}\}} \operatorname{Inception}_{j}$$

$$t_{xi} = \max\{t_{0i} - x, 0\}$$

- Year 0 & Year X
 - Similar in sizes
 - Opposite in signs
 - "Increasing-stagnating" trend

	(3)	(4)	(5)
Early 5%	-0.2983**	-0.2389*	-0.188
	(0.125)	(0.133)	(0.141)
InterestRate	-0.0044	-0.0082	-0.0061
	(0.019)	(0.018)	(0.018)
Year 0	0.0681	0.0975*	0.0996**
	(0.071)	(0.051)	(0.04)
Year 3	-0.0316		
	(0.073)		
Year 4		-0.0632	
		(0.054)	
Year 5			-0.066
			(0.042)
GMAB	0.5131***	0.527***	0.5456***
	(0.125)	(0.125)	(0.126)
GMIB	1.3406***	1.3357***	1.3324***
	(0.089)	(0.089)	(0.089)
GMWB	0.667***	0.6959***	0.7285***
	(0.132)	(0.135)	(0.138)
GLWB	2.1342***	2.1202***	2.1225***
	(0.082)	(0.082)	(80.0)
Company FE	Yes	Yes	Yes
Observations	1286	1286	1286
Adj. R ²	0.618	0.618	0.619

Benefit Charges of Variable Annuities

- First Inception
 - Expensive early innovation
 - Not mark-up
- Complexity
 - Positive association
- Linear time trend
 - Increasing
- Benefit dummies and benefit-specific time trends

	(3)	(4)
First	0.1455	0.2254*
1 1131	(0.126)	(0.127)
InterestRate	-0.0156°	-0.0167*
miorodi idio	(0.009)	(0.009)
Year	0.0305***	0.0194***
rou.	(0.004)	(0.005)
Length	0.121***	0.1167***
. 5.	(0.02)	(0.022)
# of Scenarios	-0.0006	0.0002
	(0.002)	(0.002)
GMAB	0.2539***	-0.4539**
	(0.055)	(0.199)
GMIB	0.2218***	0.0784
	(0.048)	(0.139)
GMWB	0.1634***	-0.3835
	(0.058)	(0.248)
GLWB	0.3921***	-0.0656
	(0.04)	(0.132)
GMAB × Year		0.0501***
		(0.013)
GMIB × Year		0.0103
		(0.01)
GMWB × Year		0.0434**
		(0.02)
GLWB × Year		0.029***
		(0.008)
Company FE	Yes	Yes
Observations	1286	1286
Adj. R ²	0.464	0.474

- Extended Carlin's model for product complexity
 - In equilibrium, "virtuous" and "obfuscating" firm behavior co-exist.

- Empirical findings in Variable Annuity market
 - Aggregate market trend is composed of temporary benefit trends

Repercussions for consumers, firms, and policy makers

Thoughts: what companies are likely to engage in virtuous innovation?

Thank you!