The Cost of Information

Luciano Pomatto Philipp Strack Omer Tamuz

Caltech and °Yale

Information as a Commodity

Much of contemporary economic theory is built on the idea that information is scarce and valuable.

"In a world of uncertainty it was no great leap to realize that information is valuable in an economic sense. Nevertheless, it has proved difficult to frame a general theory of information as an economic commodity..." —Arrow (1984)

Key questions studied in the literature:

- How to represent information?
- How to measure its value?
- How to model its cost?

Information as a Commodity

Much of contemporary economic theory is built on the idea that information is scarce and valuable.

"In a world of uncertainty it was no great leap to realize that information is valuable in an economic sense. Nevertheless, it has proved difficult to frame a general theory of information as an economic commodity..." —Arrow (1984)

Key questions studied in the literature:

- How to represent information?
- How to measure its value?
- How to model its cost?

This paper: a model for the cost of generating information.

Following Bohnenblust-Shapley-Sherman (1949) and Blackwell (1951), we represent information as a Blackwell experiment: a signal whose distribution depends on an unknown state.

Following Bohnenblust-Shapley-Sherman (1949) and Blackwell (1951), we represent information as a Blackwell experiment: a signal whose distribution depends on an unknown state.

Formally:

- $\Theta = \{1, ..., n\}$: unknown **state** of the world.
- S: set of possible signal realization.
- An experiment is a collection

$$\mu = (S, (\mu_i)_{i \in \Theta})$$

associating to each $i \in \Theta$ a distribution (probability measure) μ_i defined on S.

Following Bohnenblust-Shapley-Sherman (1949) and Blackwell (1951), we represent information as a Blackwell experiment: a signal whose distribution depends on an unknown state.

Formally:

- $\Theta = \{1, ..., n\}$: unknown **state** of the world.
- S: set of possible signal realization.
- An experiment is a collection

$$\mu = (S, (\mu_i)_{i \in \Theta})$$

associating to each $i \in \Theta$ a distribution (probability measure) μ_i defined on S.

• Example: $\Theta = \{1, 2\}, S = \{R, B\}, \mu_1(R) = \mu_2(B) = 0.6$

Following Bohnenblust-Shapley-Sherman (1949) and Blackwell (1951), we represent information as a Blackwell experiment: a signal whose distribution depends on an unknown state.

Formally:

- $\Theta = \{1, \dots, n\}$: unknown **state** of the world.
- S: set of possible signal realization.
- An experiment is a collection

$$\mu = (S, (\mu_i)_{i \in \Theta})$$

associating to each $i \in \Theta$ a distribution (probability measure) μ_i defined on S.

- Example: $\Theta = \{1, 2\}, S = \{R, B\}, \mu_1(R) = \mu_2(B) = 0.6$
- Example: $\Theta = \{1, 2\}, S = \mathbb{R}, \mu_1 = N(+1, \sigma^2), \mu_2 = N(-1, \sigma^2).$

Approaches to modeling the cost of information

Parametric family of experiments:

...the agent acquires a signal $S \sim N(i, \sigma^2)$ at cost $c(\sigma)$...

- Wald's sequential sampling: there is a single experiment μ . Agent chooses how many independent copies to carry out, pays linear cost.
- A non-parametric information acquisition model where the cost of information is described by a functional over all experiments:

$$C: \mathcal{E} \longrightarrow \mathbb{R}_+$$

Approaches to modeling the cost of information

• Parametric family of experiments:

...the agent acquires a signal $S \sim N(i, \sigma^2)$ at cost $c(\sigma)$...

- Wald's sequential sampling: there is a single experiment μ . Agent chooses how many independent copies to carry out, pays linear cost.
- A non-parametric information acquisition model where the cost of information is described by a functional over all experiments:

$$C: \mathcal{E} \longrightarrow \mathbb{R}_+$$

 Following Sims (2003), most of the literature has taken C to be the mutual information between the signal and state, or equivalently the expected reduction in entropy.

This paper

- We propose an axiomatic approach: state axioms that describe properties of the cost function, and explore their implications.
- We study axioms that capture constant marginal costs.
- · Leads to testably different predictions from mutual information cost.

Literature

- Measures of Informativeness and the Value of Information: Kullback and Leibler (1951), Marschak (1959), Arrow (1971), Moscarini and Smith (2001, 2002), Cabrales, Gossner, Serrano (2017), Frankel and Kamenica (2018).
- Rational Inattention: Sims (2003, 2010), Caplin and Dean (2013, 2015) Caplin (2016), Mackowiak, Matejka, and Wiederholt (2018), etc.
- Information Theory: Survey by Csiszar (2008).
- Decision Theory and Revealed Preferences: Caplin and Dean (2015), Caplin Deah Leahy (2016), Oliveira et. al (2017), Denti (2018), Mensch (2018).
- Alternatives to Mutual Information Cost: Hebert and Woodford (2017), Morris and Strack (2018).

Model

- $\Theta = \{1, ..., n\}$: unknown **state** of the world.
- An **experiment** is a measurable space (S, Σ) and a collection of mutually absolutely continuous probability measures

$$\mu = (S, (\mu_i)_{i \in \Theta})$$

- $\ell_{ij}(s) = \log \frac{\mathrm{d}\mu_i}{\mathrm{d}\mu_j}(s)$ log-likelihood ratio
- ullet ${\cal E}$: class of experiments s.t. all moments of ℓ_{ij} are finite.
- $C: \mathcal{E} \longrightarrow \mathbb{R}_+ : \mathbf{cost} \mathbf{ function}.$

Characterization

Axiom 1 If μ dominates ν in the Blackwell order, then $C(\mu) \geq C(\nu)$.

Characterization

Axiom 1 If μ dominates ν in the Blackwell order, then $C(\mu) \geq C(\nu)$.

- If μ dominates ν in the Blackwell order then μ "contains more information about the state".
- ullet u can be generated from μ by adding noise (Blackwell's Theorem).
- "Free disposal".
- There are many physical ways to generate a particular experiment μ . $C(\mu)$ is the cost of the cheapest one.

Axiom 2: Independent Experiments

Performing two independent experiments

$$\mu = (S, (\mu_i)_{i \in \Theta})$$
 and $\nu = (T, (\nu_i)_{i \in \Theta})$

is represented as acquiring information by means of the single experiment

$$\mu \otimes \nu = (S \times T, (\mu_i \times \nu_i)_{i \in \Theta})$$

Conditional on the state, the observations are independent.

• E.g. Drawing independent samples from two populations.

Axiom 2: Independent Experiments

Additivity with respect to independent experiments:

Axiom 2
$$C(\mu \otimes \nu) = C(\mu) + C(\nu)$$

Axiom 2: Independent Experiments

Additivity with respect to independent experiments:

Axiom 2
$$C(\mu \otimes \nu) = C(\mu) + C(\nu)$$

- Constant marginal cost.
- The cost of surveying 2n people is twice the cost of surveying n.
- Non-parametric generalization of Wald's sequential sampling model.
- Natural baseline assumption to study.
- Under mutual information $C(\mu \otimes \nu) < C(\mu) + C(\nu)$.

Axiom 3: Diluted Experiments

We study experiments that generate information with probability $\alpha.$

Fix $\mu = (S, (\mu_i))$. In the diluted experiment $\alpha \cdot \mu$:

- with probability α , μ is performed
- with probability 1α , an uninformative signal $o \notin S$ is observed.

We posit that the cost of such an experiment is linear in the probability of success α .

Axiom 3: Diluted Experiments

Linearity in the probability of success for diluted experiments:

Axiom 3
$$C(\alpha \cdot \mu) = \alpha C(\mu)$$

Axiom 3: Diluted Experiments

Linearity in the probability of success for diluted experiments:

Axiom 3
$$C(\alpha \cdot \mu) = \alpha C(\mu)$$

- Constant marginal cost.
- ≤: randomization is free.
- ≥: cost of repeating is linear.
- Also holds under mutual information cost, and furthermore under any posterior separable cost.

Axiom 4: Continuity

We define increasingly fine topologies d_N on the set of experiments.

Axiom 4 For some $N \ge 1$, C is uniformly continuous with respect to d_N .

Axiom 4: Continuity

We define increasingly fine topologies d_N on the set of experiments.

Axiom 4 For some $N \ge 1$, C is uniformly continuous with respect to d_N .

- P_i^{μ} : distribution of LLRs conditional on state i.
- **Moments:** For every $\alpha \in \mathbb{N}^n$

$$\mathcal{M}_{i}^{\mu}(\alpha) = \int \ell_{1i}^{\alpha_{1}} \cdots \ell_{ni}^{\alpha_{n}} d\mu_{i}$$

Distance over experiments:

$$\frac{d_{N}(\mu, \nu)}{d_{N}(\mu, \nu)} = \max_{i \in \Theta} d_{tv}(P_{i}^{\mu}, P_{i}^{\nu}) + \max_{i \in \Theta} \max_{\alpha \in \{0, \dots, N\}^{n}} \left| M_{i}^{\mu}(\alpha) - M_{i}^{\nu}(\alpha) \right|$$

- Closeness in total-variation and similar LLRs moments.
- Redundant axiom when $|\Theta| = 2$.

Characterization

Theorem

C satisfies Axioms 1-4 if and only if there exist unique (β_{ij}) in \mathbb{R}_+ s.t.

$$C(\mu) = \sum_{i,j \in \Theta} \beta_{ij} \int_{S} \log \frac{\mathrm{d}\mu_{i}}{\mathrm{d}\mu_{j}}(s) \, \mathrm{d}\mu_{i}(s).$$

Model: LLR cost

$$C(\mu) = \sum_{i,j \in \Theta} \beta_{ij} \underbrace{\int \log \frac{\mathrm{d}\mu_i}{\mathrm{d}\mu_j}(s) \, \mathrm{d}\mu_i(s)}_{\mathsf{KL-divergence} \ D(\mu_i \| \mu_j)}$$

- LLR Cost.
- $\beta_{ij} \ge 0$: one parameter for each ordered pair (i,j) of distinct states.
- $D(\mu_i \| \mu_j)$.
 - 1 Kullback-Leibler (KL) divergence.
 - 2 Expected LLR between i and j conditional on i.
 - 3 Proposed as measure of informativeness by Kullback and Leibler (1951).
- The higher β_{ij} the more costly it is to distinguish between i and j.

Bayesian Representation

Consider a Bayesian with prior q who observes an experiment μ . Denote the distribution of her posterior by π_{μ} .

Theorem

$$C(\mu) = \int_{\Delta(\Theta)} F(p) - F(q) \, \mathrm{d} \pi_{\mu}(p)$$

where

$$F(p) = \sum_{i,j \in \Theta} \gamma_{ij} p_i \log \frac{p_i}{p_j} \qquad \gamma_{ij} = \beta_{ij}/q_i$$

Example

Perception Tasks

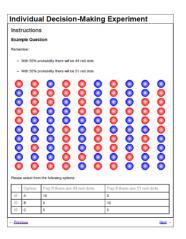


Figure: Experiment by Dean and Neligh (2017)

- A DM sees red and blue dots on a screen.
- The state is the number of blue dots $i \in \{1, ..., 99\}$. Prior is uniform.
- The DM must bet on red or blue.

- A DM sees red and blue dots on a screen.
- The state is the number of blue dots $i \in \{1, \dots, 99\}$. Prior is uniform.
- The DM must bet on red or blue.
- Assume she solves the information acquisition problem:

$$\max_{\mu} \int_{\Delta(\Theta)} \left(\max_{a \in A} u_a \cdot p \right) d\pi_{\mu}(p) - C(\mu).$$

- A DM sees red and blue dots on a screen.
- The state is the number of blue dots $i \in \{1, \dots, 99\}$. Prior is uniform.
- The DM must bet on red or blue.
- Assume she solves the information acquisition problem:

$$\max_{\mu} \int_{\Delta(\Theta)} \left(\max_{a \in A} u_a \cdot p \right) d\pi_{\mu}(p) - C(\mu).$$

Compare two predictions:

- 1 *C*: mutual information cost.
- 2 C: LLR cost

- A DM sees red and blue dots on a screen.
- The state is the number of blue dots $i \in \{1, \dots, 99\}$. Prior is uniform.
- The DM must bet on red or blue.
- Assume she solves the information acquisition problem:

$$\max_{\mu} \int_{\Delta(\Theta)} \left(\max_{a \in A} u_a \cdot p \right) d\pi_{\mu}(p) - C(\mu).$$

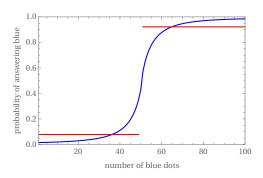
Compare two predictions:

- 1 C: mutual information cost.
- ² C: LLR cost, setting $\beta_{ij} = 1/(i-j)^2$.

Mutual information cost The DM will, in every state i ∈ {0,...,99}, have the same probability of being correct.

LLR cost

The subject will be correct with probability that is higher when the difference between red and blue is higher.



Binary Choice

- There are two states and two actios: $\Theta = A = \{1, 2\}$.
- The DM has a uniform prior over the state.
- If action matches state payoff is v, otherwise 0.

- There are two states and two actios: $\Theta = A = \{1, 2\}$.
- The DM has a uniform prior over the state.
- If action matches state payoff is v, otherwise 0.
- Assume she solves the information acquisition problem:

$$\max_{\mu} \int_{\Delta(\Theta)} \left(\max_{\mathbf{a} \in A} u_{\mathbf{a}} \cdot \mathbf{p} \right) \mathrm{d}\pi_{\mu}(\mathbf{p}) - C(\mu).$$

- There are two states and two actios: $\Theta = A = \{1, 2\}$.
- The DM has a uniform prior over the state.
- If action matches state payoff is v, otherwise 0.
- Assume she solves the information acquisition problem:

$$\max_{\mu} \int_{\Delta(\Theta)} \left(\max_{a \in A} u_a \cdot p \right) d\pi_{\mu}(p) - C(\mu).$$

Compare two predictions:

- 1 *C*: mutual information cost.
- ² C: LLR cost, setting $\beta_{12} = \beta_{21}$.

- Denote $p_m(v)$ the probability of mismatching when the payoff for matching is v.
- Fix cost so that $p_m(\$1) = 20\%$.
- What is $p_m(\$10)$?

- Denote $p_m(v)$ the probability of mismatching when the payoff for matching is v.
- Fix cost so that $p_m(\$1) = 20\%$.
- What is p_m(\$10)?

Compare two predictions:

- 1 Under mutual information cost:
 - 1 $p_m(v) \sim e^{-v}$ for large v.
 - 2 $p_m(10v_0) \approx 0.000001$.
- 2 Under LLR cost
 - 1 $p_m(v) \sim 1/v$ for large v.
 - 2 $p_m(10v_0) \approx 1/60$

Conclusion

- We propose a new cost of information: LLR cost.
 - 1 Allows flexible choice of (almost) any experiment.
 - 2 Based on simple economic assumptions that formalize constant marginal cost.
 - 3 Has simple, tractable form.
 - 4 Yields testable predictions that differ from entropy cost.
- Follow-up questions.
 - 1 Increasing / decreasing marginal costs.
 - 2 Continuum of states.
 - 3 Applications.

Thank you!