incentive-compatible critical values

Adam McCloskey (Colorado)

Pascal Michaillat (Brown)

January 5, 2021

HYPOTHESIS TESTING: A TOOL FOR SCIENTIFIC RESEARCH

- to assess the validity of existing paradigms & models
 - null hypothesis = existing paradigm/model is realistic
 - rejecting the null = identifying an anomaly
- to assess the effectiveness of new treatments & policies
 - null hypothesis = new treatment/policy is ineffective
 - rejecting the null = discovering an effective treatment/policy
- key parameter: significance level lpha (often 5%)
 - need to enforce size of test (type I error rate) $\leq \alpha$
 - otherwise rejections are uninformative

RESEARCHERS' INCENTIVES

- · researchers have incentives to publish
 - academic job & salary
 - tenure & promotion
 - grants
- journals prefer to publish rejections of H_0
 - preference for "significant results"
 - possible reason: new anomalies/discoveries are important to scientific progress
- \rightsquigarrow researchers have incentives to search until they reject H_0

RESEARCH INCENTIVES INDUCE OVER-REJECTIONS

- classical assumption: t-statistic drawn from random sample
- in reality: scientists search for & report t-statistic rejecting $H_0: \beta = \beta_0$
 - form *t*-statistics from multiple data sets & specifications:

$$X_i = \frac{\hat{\beta}_i - \beta_0}{\operatorname{se}(\hat{\beta}_i)}$$

- then report $\max_i |X_i|$
- but under H_0 : max_i $|X_i| \sim \max_i |\mathcal{N}_i(0,1)| > |\mathcal{N}(0,1)|$
- \rightsquigarrow given research incentives: test size using classical CV $> \alpha$

INCENTIVE-COMPATIBLE CRITICAL VALUES (ICCVS)

- ensure test size $\leq \alpha$ while respecting researchers' incentives
- need to solve fixed-point problem:

$$CV = 1 - \alpha$$
 quantile of G

- G: distribution of reported test statistics under H_0
- CV \rightsquigarrow research payoffs \rightsquigarrow researchers' behavior \rightsquigarrow G
- challenge: need to model researchers' behavior to obtain G
 - $G<\Phi$ as soon as there is "p-hacking"

EXISTING METHODS TO CONTROL SIZE

- multiple testing & sequential analysis corrections (Howard et al, 2019)
 - \rightarrow requires number *n* of conducted studies to be known
- debiased meta-analyses (Stanley 2005, Andrews & Kasy 2019)
 - need to wait until many studies are conducted
- \rightsquigarrow both methods fail to account for CV \rightsquigarrow n and G
 - pre-analysis plans (as in medical RCTs, Journal of Dev Econ)
 - prevent exploratory analysis
 - difficult to implement with observational data

RESEARCHER'S BEHAVIOR UNDER CV Z

- forms a sequence of latent t-statistics $X_i = (\hat{\beta}_i \beta_0)/\text{se}(\hat{\beta}_i)$
- decides whether to conduct nth study based on
 - expected reward v from exceeding z
 - cost c(n) of conducting n^{th} study
 - researcher's beliefs \mathbb{P}_n after n-1 studies
 - results of previous studies
- researcher conducts n^{th} study iff $|X_{n-1}| < z$ and
 - expected benefits > cost
 - $v \times \mathbb{P}_n(|X_n| > z \mid X_{n-1}, X_{n-2}, \dots, X_1) \ge c(n)$

DEFINITION OF ICCV

- "IC": researchers behave optimally, so
 - reported test statistics $\leq \max\{|X_1|, |X_2|, \dots, |X_{N(z)}|\}$
 - N(z) = maximum # of profitable studies n such that $|X_{n-1}| < z$ and

$$v \times \mathbb{P}_n(|X_n| > z \mid X_{n-1}, X_{n-2}, \dots, X_1) \ge c(n)$$

- "CV": nominal level = α , so need z to satisfy
 - $-P_{H_0}(\max\{|X_1|,|X_2|,\ldots,|X_{N(z)}|\}>z)\leq \alpha$

COMPUTING ICCV z*

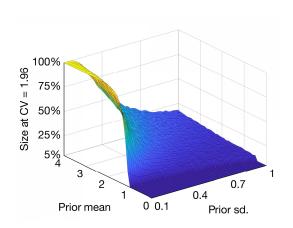
- two-step computation:
 - 1. determine maximum # of profitable studies $z \mapsto N(z)$
 - 2. given $X_i \sim \mathcal{N}(0,1)$ under H_0 , find smallest z^* such that

$$P_{H_0}\big(\max \big\{|X_1|,|X_2|,\dots,|X_{N(z^*)}|\big\}>z^*\big)\leq lpha$$

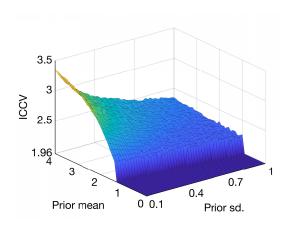
- research cost $\uparrow \Rightarrow N(z) \downarrow \Rightarrow ICCV \downarrow$
 - costly research
- research reward $\uparrow \Rightarrow N(z) \uparrow \Rightarrow ICCV \uparrow$
 - "important" question / non-risky research

IN BASIC CASE: IMPOSSIBLE TO LEARN FROM TESTS

- iid studies: $X_i | \beta \stackrel{iid}{\sim} \mathcal{N}(\theta, 1)$ where $\theta = \frac{\beta \beta_0}{\operatorname{sd}(\hat{\beta})}$
- no learning: researcher's subjective distribution ${\Bbb P}$ does not depend on previous studies' outcomes
- constant study cost: c(n) = c
- \leadsto continuation condition $v \times \mathbb{P}(|X_n| > z) \ge c$ is same at every step
- if there is any research, researcher continues to conduct studies until rejection and size = 100%

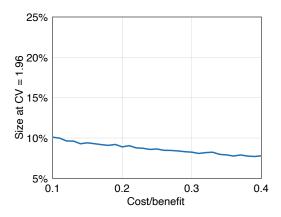

EXISTENCE OF ICCV

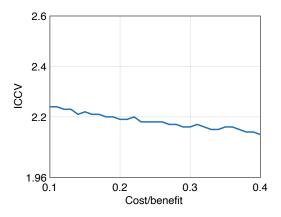
- impossibility result ⇒ ICCV does not exist
- · impossibility result is broken, and ICCV is well defined, if
 - 1. researchers learn about $oldsymbol{eta}$ as they conduct studies
 - 2. there is correlation in t-statistics across studies
 - 3. study cost c(n) is increasing in n
- we provide methods to calculate ICCV in various settings
- we calibrate costs, benefits and subjective beliefs based upon existing literature in a lab experiment setting


ICCV WITH RESEARCHER LEARNING

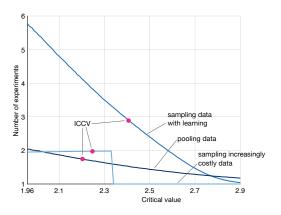
- \circ researcher Bayesian updates beliefs about true value of $oldsymbol{eta}$
- \mathbb{P}_n depends upon outcomes of previous studies
- \longrightarrow continuation condition $v \times \mathbb{P}_n(|X_n| > z) \ge c$ depends upon outcome of previous studies via researcher's beliefs \mathbb{P}_n
- researcher eventually stops conducting studies without rejecting with probability > 0 if CV is large enough
 - ICCV exists

MONTE CARLO: RESEARCHER LEARNING


MONTE CARLO: RESEARCHER LEARNING


ICCV WITH DATA POOLING

- studies are correlated according to simple data pooling
 - $-i^{th}$ study's estimate of β is $\hat{\beta}_i = \frac{1}{iT} \sum_{j=1}^{iT} Y_j$
- continuation condition $v \times \mathbb{P}(|X_n| > z \mid X_{n-1}, X_{n-2}, \dots, X_1) \ge c$ depends upon outcomes of previous studies due to dependence across studies
- researcher eventually stops conducting studies without rejecting with probability > 0 if CV is large enough (ICCV exists)


MONTE CARLO: DATA POOLING

MONTE CARLO: DATA POOLING

AVERAGE # OF STUDIES FOR DIFFERENT CVS

GENERAL CASE

allow dependence and different means across latent t-statistics:

$$X_i | \theta_i \sim \mathcal{N}(\theta_i, 1)$$
 and $cov(X_i, X_j) = \omega_{i,j}$

- different θ_i 's allows for
 - misspecification
 - studies of varying precision
- ω_{ij} 's known to researcher: large sample approximation with consistently estimable covariances between estimators
- examples: sampling/pooling datasets of different sizes, running different regression/model specifications

CONCLUSION

- if researchers report function of latent studies $f(X_1,\ldots,X_n)<\max\{X_1,\ldots,X_n\}$, ICCVs control size but are "conservative"
- flexible framework allows editor to choose directions of robustness
- given researcher behavior, ICCVs relatively insensitive to inputs
 - conservative rule-of-thumb setting CV equal to 3 controls size
 across wide range of researcher behavior and inputs
 - extrapolation to settings we did not study?

WORK IN PROGRESS

- current version of paper does not incorporate "continuation value" in researcher's continuation decision
 - even if expected marginal benefit of next study does not exceed cost, there could be value in continuing due to allowing for rejection in future studies
- currently working on optimal stopping version of the problem to incorporate this