Can the Covid Bailouts Save the Economy?

Vadim Elenev JHU Carey Tim Landvoigt Wharton, NBER, and CEPR Stijn Van Nieuwerburgh Columbia GSB, NBER, and CEPR

AFA Annual Conference - January 4, 2021

Motivation

- Coronavirus pandemic shuts down large parts of economy
- Many businesses bound to fail without government assistance
 - ▶ Unable to pay wages, fixed costs (e.g., rent), and service debts
 - ▶ Liquidity cushion quickly exhausted, especially for small firms
- Danger that corporate default wave breaks financial system
 - ▶ "Doom loop" of corporate defaults, intermediary failures
 - ▶ Once banks/insurers fail, get spillovers to other credit markets
- Large government interventions to support businesses
 - ▶ Direct lending to firms: PPP, MSLP, CCF
 - ▶ How effective are these policies?
 - ▶ What are the long-term fiscal costs?

This Paper

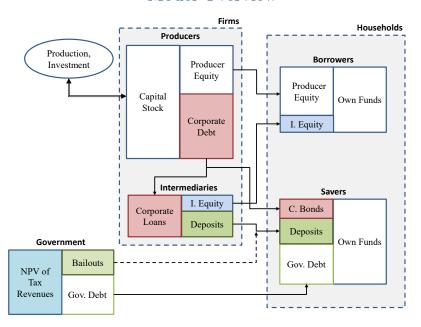
- Quantify effectiveness of lending programs relative to "do-nothing" counterfactual
 - ▶ Based on macro model with firms, intermediaries, & government (Elenev, Landvoigt, & Van Nieuwerburgh 2020, ELVN)
 - ▶ Map government programs to model one-by-one, & combined
 - ▶ Analyze macro, financial, & fiscal impact of policies after Covid-shock

This Paper

- Quantify effectiveness of lending programs relative to "do-nothing" counterfactual
 - ▶ Based on macro model with firms, intermediaries, & government (Elenev, Landvoigt, & Van Nieuwerburgh 2020, ELVN)
 - ▶ Map government programs to model one-by-one, & combined
 - ▶ Analyze macro, financial, & fiscal impact of policies after Covid-shock
- Programs soften contraction by mitigating 40% of corp defaults
 - \triangleright 1/3 smaller drop in GDP and consumption along recovery path
 - ▶ 50% smaller decline in investment
 - ▶ Absent programs, half of intermediaries would fail
 - ▶ Same rise in government debt with & without lending programs: money spent on bailouts instead of lending program

This Paper

- Quantify effectiveness of lending programs relative to "do-nothing" counterfactual
 - ▶ Based on macro model with firms, intermediaries, & government (Elenev, Landvoigt, & Van Nieuwerburgh 2020, ELVN)
 - ▶ Map government programs to model one-by-one, & combined
 - $\blacktriangleright\,$ Analyze macro, financial, & fiscal impact of policies after Covid-shock
- Programs soften contraction by mitigating 40% of corp defaults
 - \triangleright 1/3 smaller drop in GDP and consumption along recovery path
 - ▶ 50% smaller decline in investment
 - ▶ Absent programs, half of intermediaries would fail
 - ▶ Same rise in government debt with & without lending programs: money spent on bailouts instead of lending program
- Guaranteed, forgivable loans such as PPP most effective
 - ▶ Corp. debt secondary market interventions have small positive effect
 - ▶ Better targeting of programs could greatly reduce fiscal cost


- Paycheck Protection Program (PPP): \$671 billion (3.1% of 2019 GDP)
 - ▶ Two-year loans with 1% interest
 - ▶ Up to 100% of principal forgiven (if used for payroll)
 - Banks originate, Fed provides terms financing, Treasury guarantees losses

- Paycheck Protection Program (PPP): \$671 billion (3.1% of 2019 GDP)
- Main Street Lending Program (MSLP): \$600 billion (2.8% of 2019 GDP)
 - ▶ Consists of different facilities aimed at larger firms
 - ▶ Banks originate, retain 5-15% share (85-95% guaranteed)
 - ▶ LIBOR + 3% interest rate
 - $\blacktriangleright\,$ No principal for giveness

- Paycheck Protection Program (PPP): \$671 billion (3.1% of 2019 GDP)
- Main Street Lending Program (MSLP): \$600 billion (2.8% of 2019 GDP)
- Corporate Credit Facilities: \$850 billion (3.9% of 2019 GDP)
 - ▶ Consists of different facilities aimed at the largest firms
 - ▶ Mainly purchases of investment-grade corporate bonds in primary and secondary markets
 - ▶ Market interest rates

- Paycheck Protection Program (PPP): \$671 billion (3.1% of 2019 GDP)
- Main Street Lending Program (MSLP): \$600 billion (2.8% of 2019 GDP)
- Corporate Credit Facilities: \$850 billion (3.9% of 2019 GDP)
- Model is well-suited laboratory to evaluate these interventions

Model Overview

The Covid Shock

- Exogenous aggregate state variables
 - ightharpoonup Persistent TFP Z_t
 - ▶ Persistent dispersion of idiosyncr. productivity (uncertainty) $\sigma_{\omega,t}$
 - ▶ In ELVN, transition to low TFP + high uncertainty regime generates deep recessions by setting off double financial accelerator

The Covid Shock

- Exogenous aggregate state variables
 - ightharpoonup Persistent TFP Z_t
 - ▶ Persistent dispersion of idiosyncr. productivity (uncertainty) $\sigma_{\omega,t}$
 - ▶ In ELVN, transition to low TFP + high uncertainty regime generates deep recessions by setting off double financial accelerator
- Covid crisis: transition to high $\sigma_{\omega,t}$ regime + "MIT shock"
 - **1** Uncertainty shock from $\sigma_{\omega,L}$ to $\sigma_{\omega,H}$
 - 2 Unexpectedly high uncertainty $\sigma_{\omega,covid} > \sigma_{\omega,H}$
 - 3 Average firm productivity $\mu_{\omega,covid} \downarrow 5\%$
 - 4 Labor supply $\downarrow 5\%$
 - **6** New normal: $(\mu_{\omega,covid}, \sigma_{\omega,covid}, \text{low labor supply})$ occurs with $p_{covid} = 1\%$. Once pandemic hits, expected to last 2 years.

The Covid Shock

- Exogenous aggregate state variables
 - \triangleright Persistent TFP Z_t
 - ▶ Persistent dispersion of idiosyncr. productivity (uncertainty) $\sigma_{\omega,t}$
 - ▶ In ELVN, transition to low TFP + high uncertainty regime generates deep recessions by setting off double financial accelerator
- Covid crisis: transition to high $\sigma_{\omega,t}$ regime + "MIT shock"
 - **1** Uncertainty shock from $\sigma_{\omega,L}$ to $\sigma_{\omega,H}$
 - 2 Unexpectedly high uncertainty $\sigma_{\omega,covid} > \sigma_{\omega,H}$
 - 3 Average firm productivity $\mu_{\omega,covid} \downarrow 5\%$
 - 4 Labor supply $\downarrow 5\%$
 - **6** New normal: $(\mu_{\omega,covid}, \sigma_{\omega,covid}, \text{low labor supply})$ occurs with $p_{covid} = 1\%$. Once pandemic hits, expected to last 2 years.
- Why this combination?
 - ▶ Low productivity & labor supply: economic shutdowns
 - ▶ Additional dispersion: some firms benefit (grocery, tech, pharma), others suffer (airlines, hotels, retail) relative to the *average* decline (Bloom et al. 2020)

- Timing of producer problem within period
 - 1 TFP shock. Firms choose labor input and pay fixed costs.
 - 2 Idiosyncratic shocks, production. Liquidity default.
 - 3 Failed producers replaced. Dividend, capital, equity & debt decisions.

- Timing of producer problem within period
 - 1 TFP shock. Firms choose labor input and pay fixed costs.
 - 2 Idiosyncratic shocks, production. Liquidity default.
 - 3 Failed producers replaced. Dividend, capital, equity & debt decisions.
- Flow profit at stage 2 pre-tax

$$\pi_t(\omega_t) = \omega_t Z_t k_t^{1-\alpha} l_t^{\alpha} - \underbrace{\sum_j w_t^j l_t^j}_{\text{wage bill}} - \underbrace{a_t}_{\text{debt serv}} - \underbrace{\varsigma k_t}_{\text{fixed cost}}$$

 \Rightarrow threshold ω_t^* s.t. $\pi_t(\omega_t^*) = 0$

$$\omega_t^* = \frac{\sum_j w_t^j l_t^j + a_t + \varsigma k_t}{Z_t k_t^{1-\alpha} l_t^{\alpha}}$$

- Timing of producer problem within period
 - 1 TFP shock. Firms choose labor input and pay fixed costs.
 - 2 Idiosyncratic shocks, production. Liquidity default.
 - 3 Failed producers replaced. Dividend, capital, equity & debt decisions.
- Flow profit at stage 2 pre-tax

$$\pi_t(\omega_t) = \omega_t Z_t k_t^{1-\alpha} l_t^{\alpha} - \sum_{j} w_t^j l_t^j - \underbrace{a_t}_{\text{debt serv}} - \underbrace{\varsigma k_t}_{\text{fixed cost}}$$

- \Rightarrow threshold ω_t^* s.t. $\pi_t(\omega_t^*) = 0$
- Bridge loans: banks extend loan prop. to wage bill at stage 2
 - ▶ Needs to be repaid with interest at stage 3, junior to old debt a_t

$$\omega_t^* = \frac{\sum_j w_t^j l_t^j + a_t + \varsigma k_t}{Z_t k_t^{1-\alpha} l_t^{\alpha}}$$

- Timing of producer problem within period
 - 1 TFP shock. Firms choose labor input and pay fixed costs.
 - 2 Idiosyncratic shocks, production. Liquidity default.
 - 3 Failed producers replaced. Dividend, capital, equity & debt decisions.
- Flow profit at stage 2 pre-tax

$$\pi_t(\omega_t) = \omega_t Z_t k_t^{1-\alpha} l_t^{\alpha} - \sum_{j} w_t^j l_t^j - \underbrace{a_t}_{\text{debt serv}} - \underbrace{\varsigma k_t}_{\text{fixed cost}}$$

- \Rightarrow threshold ω_t^* s.t. $\pi_t(\omega_t^*) = 0$
- Bridge loans: banks extend loan prop. to wage bill at stage 2
 - ▶ Needs to be repaid with interest at stage 3, junior to old debt a_t
 - ▶ New default threshold $\hat{\omega}_t^* < \omega_t^*$

$$\hat{\omega}_{t}^{*} = \frac{(1 - \bar{A}) \sum_{j} w_{t}^{j} l_{t}^{j} + a_{t} + \varsigma k_{t}}{Z_{t} k_{t}^{1 - \alpha} l_{t}^{\alpha}}$$

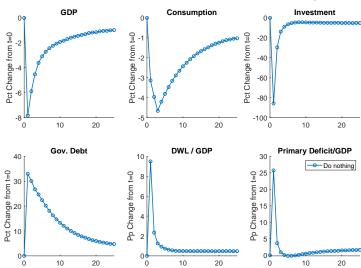
Lending Programs in the Model

- As in real-world programs, model bridge loans feature
 - ▶ government guarantees of losses for banks $I_g \in [0, 1]$
 - ▶ debt forgiveness for firm borrowers $I_f \in [0, 1]$
 - ▶ Both policies can be partial and interact

Lending Programs in the Model

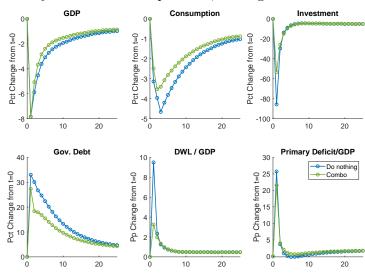
- As in real-world programs, model bridge loans feature
 - ▶ government guarantees of losses for banks $I_g \in [0, 1]$
 - ▶ debt forgiveness for firm borrowers $I_f \in [0, 1]$
 - ▶ Both policies can be partial and interact
- Policies in model simulation
 - **1** PPP: 3.1% of GDP, 1% interest, $I_g = 1$, $I_f = 1$
 - **2** MSLP: 2.8% of GDP, 3% interest, $I_g = .95$, $I_f = 0$
 - 3 CCF: government purchases of corporate bonds, 3.9% of GDP
 - 4 Combo program: PPP, MSLP, CCF simultaneously

Lending Programs in the Model

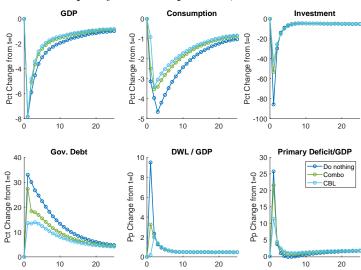

- As in real-world programs, model bridge loans feature
 - ▶ government guarantees of losses for banks $I_g \in [0, 1]$
 - ▶ debt forgiveness for firm borrowers $I_f \in [0, 1]$
 - ▶ Both policies can be partial and interact
- Policies in model simulation
 - **1** PPP: 3.1% of GDP, 1% interest, $I_g = 1$, $I_f = 1$
 - **2** MSLP: 2.8% of GDP, 3% interest, $I_q = .95$, $I_f = 0$
 - 3 CCF: government purchases of corporate bonds, 3.9% of GDP
 - 4 Combo program: PPP, MSLP, CCF simultaneously
- Also consider a Conditional Bridge Loan (CBL) program
 - ▶ Conditions both
 - extensive (who receives loan?) and
 - intensive (how much?)

margins of bridge loan program on idiosync. productivity $\omega_{i,t}$

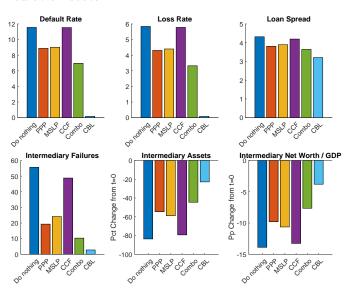
- ▶ Perfect targeting of funds to most distressed firms
- ▶ Theoretically motivated benchmark


Macro Effects of Combined Policies

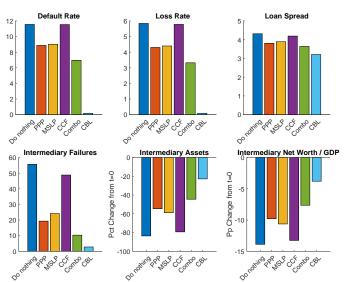
■ Do-nothing: Covid-shock without interventions (counterfactual)

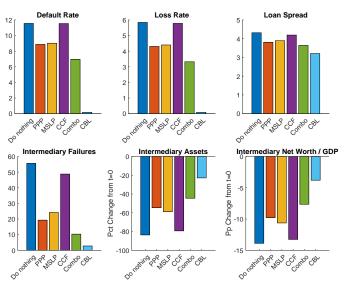

Macro Effects of Combined Policies

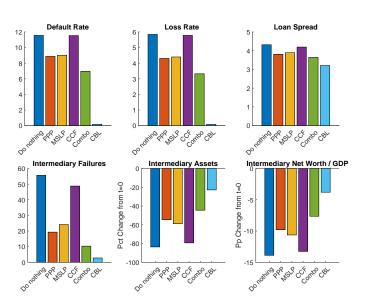
Policy combo: 50% drop in inv., lower gov. debt



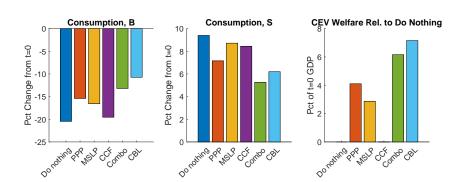
Macro Effects of Combined Policies


■ CBL ideal policy: 40% drop in inv., much smaller cost

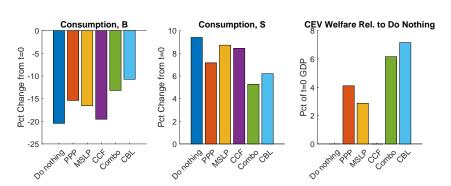

■ PPP and MSLP lower default rate enough to stabilize intermediation sector


■ CCF ineffective at lowering defaults, but price effect lifts intermediary assets

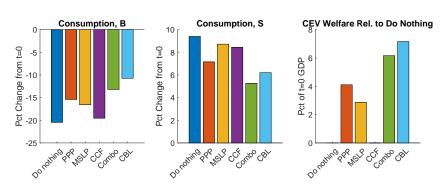
Combo program: 1pp smaller loan spread, 4/5 intermediary failures prevented



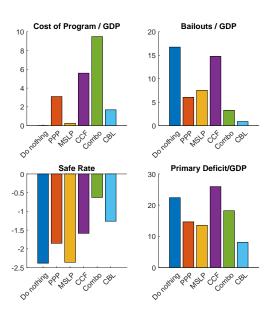
■ Perfectly targeted CBL benchmark prevents (almost) all defaults


Welfare

- Shareholder (B) consumption falls by 20% in "do-nothing"
- Benefit greatly from lending programs


Welfare

- Saver consumption moves inverse to investment
- When fin. system breaks down, savers cannot save \Rightarrow consume instead (IES = 2)



Welfare

- Households willing to pay 6.2% of pre-Covid GDP for government combo program
- Combo program welfare close to CBL despite imperfections

Fiscal Impact by Program

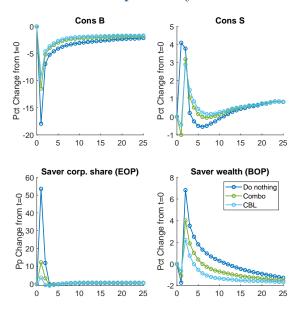
- Do-nothing: 16% for intermed. bailouts (liabilities)
- Combo: 9% of GDP for lending programs, same primary deficit
- Model predicts large safe rate increase from massive government borrowing
 - ► No convenience yield in model
 - ➤ Collapse of financial sector in "Do-nothing" depresses safe rate

Conclusion

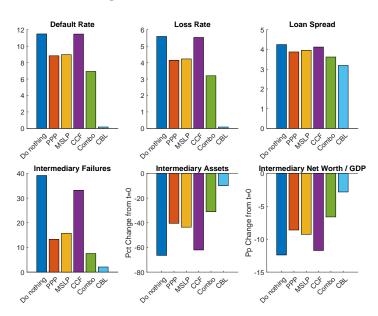
- Quantitative evaluation of government lending programs
 - ▶ Overall, effective at short-circuiting financial sector collapse
 - ► The off-the-charts downturn of the "do-nothing" scenario remains counterfactual
- Tight mapping of real-world programs to model
 - ▶ PPP: fully guaranteed for givable bridge loans
 - $\blacktriangleright\,$ MSLP: partially guaranteed bridge loans
 - \blacktriangleright CCF: mainly secondary bond market purchases
 - ▶ PPP most effective, but synergies with other programs in GE
 - \blacktriangleright More targeted program would have been less than 50% the cost
- Model predicts 15pp rise in primary deficit/GDP
 - ▶ But bailing out financial system would cost at least as much
 - ► Large rise in interest rates ahead?
- Extensions: two sectors, labor market frictions

Intermediary Problem

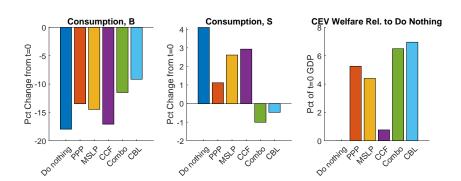
$$\begin{split} \tilde{V}^{I}(N_{t}^{I},\mathcal{S}_{t}) &= \max_{e_{t}^{I},B_{t+1}^{I},A_{t+1}^{I}} \phi_{0}^{I}N_{t}^{I} - e_{t}^{I} + \mathbf{E}_{t} \left[\mathcal{M}_{t,t+1}^{B} \max \left\{ \tilde{V}^{I}(N_{t+1}^{I},\mathcal{S}_{t+1}) + \epsilon_{t+1}^{I}, 0 \right\} \right] \\ \text{subject to:} \\ & (1 - \phi_{0}^{I})N_{t}^{I} + e_{t}^{I} - \Psi^{I}(e_{t}^{I}) \geq q_{t}^{m}A_{t+1}^{I} - (q_{t}^{f} + \tau^{\Pi}r_{t}^{f} - \kappa)B_{t+1}^{I}, \\ & N_{t+1}^{I} = \left[\left(M_{t+1} + (1 - F_{\omega,t+1}(\omega_{t+1}^{*}))(1 - \tau^{\Pi} + \delta q_{t+1}^{m}) \right) A_{t+1}^{I} - B_{t+1}^{I} \right], \\ & q_{t}^{f}B_{t+1}^{I} \geq -\xi q_{t}^{m}A_{t+1}^{I}, \\ & A_{t+1}^{I} \geq 0, \\ & \mathcal{S}_{t+1} = h(\mathcal{S}_{t}). \\ \\ & M_{t} = \frac{F_{\omega,t}(\omega_{t}^{*})}{A_{t}^{P}} \left[(1 - \zeta^{P}) \left(\mathbf{E}_{\omega,t} \left[\omega \, | \, \omega < \omega_{t}^{*} \right] Y_{t} + \left((1 - \delta_{K})p_{t} - \varsigma \right) K_{t} \right) - \sum_{j} w_{t}^{j} \bar{L}^{j} \right] \end{split}$$

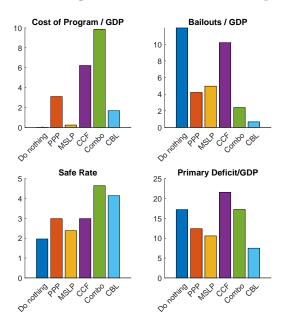

Pre-set Parameters

Par	Description	Value	Source			
Exogenous Shocks						
$\{p_{LL}^{\omega}, p_{HH}^{\omega}\}$	transition prob	0.91, 0.8	Bloom et al. (2012)			
Population and Labor Income Shares						
ℓ^i	pop. shares $\in \{S, B\}$	71.1,28.9%	Population shares SCF 95-13			
γ^i	inc. shares $\in \{S, B\}$	64,36%	Labor inc. shares SCF 95-13			
Corporate Loans and Intermediation						
δ	average life loan pool	0.937	Duration fcn. in App. C.5			
θ	principal fraction	0.582	Duration fcn. in App. C.5			
η^P	% bankr. loss is DWL (producers)	0.2	Bris et al 2006			
η^{I}	% bankr. loss is DWL (banks)	36.2	Bennet & Unal 2015			
$\bar{\zeta}^I$	% Resolution cost failed banks	33.2	Bennet & Unal 2015			
ϕ_0^I	target bank dividend	0.068	Avg bank div			
$\begin{bmatrix} \eta^I \\ \bar{\zeta}^I \\ \phi^I_0 \\ \phi^P_0 \\ \phi^P_1 \end{bmatrix}$	target firm dividend	0.078	Avg nonfin firm div			
ϕ_1^P	firm equity iss. cost	0	Baseline			
Preferences						
$\sigma^B = \sigma^S$	risk aversion B S	1	Log utility			
ν^B	IES B	1	Log utility			
ν^S	IES S	2	Safe rate vol			
Government						
τ^D	interest rate income tax rate	13.2%	tax code; see text			
κ	deposit insurance fee	0.00084	Deposit ins rev/bank assets			
ξ	max. intermediary leverage	0.88	Post-crisis cap req			


Calibrated Parameters

Par	Description	Value	Target	Model		
Exogenous Shocks						
ρ_A	persistence TFP	0.4	AC(1) HP-detr GDP 53-14	0.52		
σ_A	innov. vol. TFP	2.3%	Vol HP-detr GDP 53-14	2.50%		
$\sigma_{\omega,L}$	low uncertainty	0.1	Avg. corporate default rate	1.90%		
$\sigma_{\omega,H}$	high uncertainty	0.18	Avg. IQR firm-level prod	5.00%		
Production						
ψ	marginal adjustment cost	2	Vol. log investment 53-14	8.33%		
α	labor share in prod. fct.	0.71	Labor share of output	66.35%		
δ_K	capital depreciation rate	8.25	Investment-to-output ratio, 53-14	17.71%		
ς	capital fixed cost	0.004	Capital-to-GDP ratio 53-14	215%		
Corporate Loans and Intermediation						
ζ^P	Losses on defaulting loans	0.6	Corporate loan/bond LGD 81-15	48.67%		
Φ	maximum LTV ratio	0.4	FoF non-fin sector leverage 85-14	35.07%		
σ_{ϵ}	cross-sect. dispersion ϵ_t^I	1.9%	FDIC failure rate	0.01%		
ϕ_1^I	bank equity issuance cost	7	Bank net payout rate	6.17%		
φ_0	Saver holdings target	0.0113	M(corp.debt) outside lev fin sector	15.54%		
φ_1	Saver holdings adj cost	0.14	Vol(corp.debt) outside lev fin sector	3.00%		
Preferences						
β^B	time discount factor B	0.94	Corporate net payout rate	6.63%		
β^S	time discount factor S	0.982	Mean risk-free rate 76-14	2.21%		
Government Policy						
G^o	discr. spending	17.2%	BEA discr. spending to GDP 53-14	17.50		
G^T	transfer spending	2.52%	BEA transfer spending to GDP 53-14	3.15%		
τ	labor income tax rate	29.3%	BEA pers. tax rev. to GDP 53-14	18.96%		
τ^{Π}	corporate tax rate	20%	BEA corp. tax rev. to GDP 53-14	3.56%		
b_o	cyclicality discr. spending	-2	Cov(discr. sp./GDP, GDP growth)	-0.91		
b_T	cyclicality transfer spending	-20	Cov(transfer sp./GDP ,GDP growth)	-9.13		
b_{τ}	cyclicality lab. inc. tax	4.5	Cov(tax/GDP,GDP growth)	0.93		


Consumption Dynamics


No Recurring Pandemics: Financial Effects

No Recurring Pandemics: Welfare

No Recurring Pandemics: Fiscal Impact

