# Shapes as Product Differentiation:

#### Neural Network Embedding in the Analysis of Font Markets

Sukjin (Vincent) Han, Eric Schulman, Kristen Grauman & Santhosh Ramakrishnan

Dept. of Economics & Dept. of Computer Science
U. of Bristol & U. of Texas at Austin

January 3, 2021

### Markets for Products with High-Dimensional Attributes

The key attributes in many products considered in economic analyses are unstructured i.e. text/images

#### Examples:

- design: automobiles, houses, furniture, clothing
- creative works: books, musics and movies

# Markets for Products with High-Dimensional Attributes

The key attributes in many products considered in economic analyses are unstructured i.e. text/images

#### Examples:

- design: automobiles, houses, furniture, clothing
- creative works: books, musics and movies

More generally, products are often presented to consumers in visual/textual forms (along with structured attributes)

- packages in supermarket
- catalogs in e-commerce (e.g., Amazon, Airbnb, Yelp)

### Markets for Products with High-Dimensional Attributes

The key attributes in many products considered in economic analyses are unstructured i.e. text/images

#### Examples:

- design: automobiles, houses, furniture, clothing
- creative works: books, musics and movies

More generally, products are often presented to consumers in visual/textual forms (along with structured attributes)

- packages in supermarket
- catalogs in e-commerce (e.g., Amazon, Airbnb, Yelp)

Important decision factors for consumers and decision variables for producers

#### Traditional Economic Models

#### Economic models with product attributes

- Discrete-choice models (McFadden (1973), Berry, Levinsohn & Pakes (1995))
- ► Hedonic models (Rosen (1974), Bajari & Benkard (2005))

#### These models include

- low-dim observed attributes and
- scalar unobserved attributes

#### Traditional Economic Models

#### Economic models with product attributes

- Discrete-choice models (McFadden (1973), Berry, Levinsohn & Pakes (1995))
- ► Hedonic models (Rosen (1974), Bajari & Benkard (2005))

#### These models include

- low-dim observed attributesand
- scalar unobserved attributes

Q: text/images as scalar unobservable vs. high-dim observables?

may depend on policy questions

#### Possible Policy Questions

...that can be answered by considering high-dim, unstructured attributes:

- mergers and product variety
- policies that protects the originality of artistic features
- evolution of style (e.g., fashion trend)

#### Possible Policy Questions

...that can be answered by considering high-dim, unstructured attributes:

- mergers and product variety
- policies that protects the originality of artistic features
- evolution of style (e.g., fashion trend)

Considers unstructured attributes in particular design product: fonts

Considers unstructured attributes in particular design product: fonts

Why font market?

1. unstructed visual info on shape helps predict functionality and value of the product (unlike fine art products)

Considers unstructured attributes in particular design product: fonts

Why font market?

- 1. unstructed visual info on shape helps predict functionality and value of the product (unlike fine art products)
- 2. font shapes are relatively simple among visually-differentiated products
  - typefaces are 2-dim, monochrome, a fixed number of characters and mostly describe the product

Considers unstructured attributes in particular design product: fonts

#### Why font market?

- 1. unstructed visual info on shape helps predict functionality and value of the product (unlike fine art products)
- font shapes are relatively simple among visually-differentiated products
  - typefaces are 2-dim, monochrome, a fixed number of characters and mostly describe the product
- 3. fonts market is typically large (unlike fine art markets)
  - frequent production and transactions
  - e.g., the online marketplace we consider has over 28,000 fonts and 2,400,000 transactions (past six years)

Considers unstructured attributes in particular design product: fonts

#### Why font market?

- 1. unstructed visual info on shape helps predict functionality and value of the product (unlike fine art products)
- font shapes are relatively simple among visually-differentiated products
  - typefaces are 2-dim, monochrome, a fixed number of characters and mostly describe the product
- 3. fonts market is typically large (unlike fine art markets)
  - frequent production and transactions
  - e.g., the online marketplace we consider has over 28,000 fonts and 2,400,000 transactions (past six years)
- 4. fonts are an illustrative example of the market for other design attributes



We represent font shapes as low-dim number of attributes (like a product space) by neural network embedding

We represent font shapes as low-dim number of attributes (like a product space) by neural network embedding

Specifically, we adapt a state-of-the-art method in deep convolutional neural network

- the network directly learns the embedding,
- i.e., a mapping from font images to a compact Euclidean space
- ▶ The embeddings can be thought of as a product space

We represent font shapes as low-dim number of attributes (like a product space) by neural network embedding

Specifically, we adapt a state-of-the-art method in deep convolutional neural network

- the network directly learns the embedding,
- i.e., a mapping from font images to a compact Euclidean space
- ► The embeddings can be thought of as a product space

#### Post-dim-reduction verification

- ► Using tags (i.e., descriptive phrases) assigned to each font by font designers and consumers
- ► High degree of mutual information between tags and image embeddings



#### Why convolutional neural network (CNN)?

- for visual/textual data considered in this project, NN outperforms (by large margin) other machine learning methods (e.g., LASSO, random forest)
- esp. CNN is known to be appropriate to capture the "spatial" dependence, e.g., of pixels or musical notes

#### Why convolutional neural network (CNN)?

- for visual/textual data considered in this project, NN outperforms (by large margin) other machine learning methods (e.g., LASSO, random forest)
- esp. CNN is known to be appropriate to capture the "spatial" dependence, e.g., of pixels or musical notes

#### Drawback of NN: interpretability

Still, distance between the embeddings has a clear interpretation of visual similarity and can help answer policy questions

# Economic Analyses Using Embedding

#### We conduct two analyses:

- 1. a simple trend analysis of font style
- 2. a causal analysis of merger effects on product differentiation using synthetic control method

# Economic Analyses Using Embedding

#### We conduct two analyses:

- 1. a simple trend analysis of font style
- 2. a causal analysis of merger effects on product differentiation using synthetic control method

Can think about product differentiation as the outcome of Hotelling-type of spatial competition

- 1. Use of embeddings to analyze markets with text/visual data
  - ► Hoberg & Phillips (2016), Gross (2016), Glaeser et al. (2018), Kozlowski et al. (2019), Gentzkow et al. (2019)

- 1. Use of embeddings to analyze markets with text/visual data
  - ► Hoberg & Phillips (2016), Gross (2016), Glaeser et al. (2018), Kozlowski et al. (2019), Gentzkow et al. (2019)
- 2. Mergers and product differentiation
  - ▶ Berry & Waldfogel (2001), Sweeting (2013)
  - unlike them, we focus on unstructured attributes and follow program evaluation approach

- 1. Use of embeddings to analyze markets with text/visual data
  - ► Hoberg & Phillips (2016), Gross (2016), Glaeser et al. (2018), Kozlowski et al. (2019), Gentzkow et al. (2019)
- 2. Mergers and product differentiation
  - ▶ Berry & Waldfogel (2001), Sweeting (2013)
  - unlike them, we focus on unstructured attributes and follow program evaluation approach
- 3. Visual attributes as endogenous decision
  - ► Gillen et al. (2015), Chernozhukov et al. (2017)

- 1. Use of embeddings to analyze markets with text/visual data
  - ► Hoberg & Phillips (2016), Gross (2016), Glaeser et al. (2018), Kozlowski et al. (2019), Gentzkow et al. (2019)
- 2. Mergers and product differentiation
  - ▶ Berry & Waldfogel (2001), Sweeting (2013)
  - unlike them, we focus on unstructured attributes and follow program evaluation approach
- 3. Visual attributes as endogenous decision
  - ► Gillen et al. (2015), Chernozhukov et al. (2017)
- 4. Predictive/trend analysis of design product and visual attributes
  - ► Font: O'Donovan et al. (2014), Campbell & Kautz (2014)
  - Cloths, furniture and cars: Al-Halah et al. (2017), Mall et al. (2019), Yu & Grauman (2019), Burnap et al. (2016) and Dosovitskiy et al. (2016)

- 1. Use of embeddings to analyze markets with text/visual data
  - ► Hoberg & Phillips (2016), Gross (2016), Glaeser et al. (2018), Kozlowski et al. (2019), Gentzkow et al. (2019)
- 2. Mergers and product differentiation
  - ▶ Berry & Waldfogel (2001), Sweeting (2013)
  - unlike them, we focus on unstructured attributes and follow program evaluation approach
- 3. Visual attributes as endogenous decision
  - ► Gillen et al. (2015), Chernozhukov et al. (2017)
- 4. Predictive/trend analysis of design product and visual attributes
  - ► Font: O'Donovan et al. (2014), Campbell & Kautz (2014)
  - Cloths, furniture and cars: Al-Halah et al. (2017), Mall et al. (2019), Yu & Grauman (2019), Burnap et al. (2016) and Dosovitskiy et al. (2016)

#### Roadmap

- I. Online marketplace for fonts
- II. Construction of embedding and product space
- III. Economic analyses
- IV. Conclusions

I. Online Marketplace for Fonts

# Background: Online Marketplace for Fonts

We consider the world's largest online market place "MyFonts.com" that sell around 28,000 different fonts

- owned by Monotype, sells fonts designed by Monotype
- fonts from third parties foundries

Font are sold as software

- fonts deliver typefaces
- sold as licenses are protected by the End User License Agreement (EULA)

In this market, consumers are typically other designers who use fonts as intermediate goods to produce...

- prints (posters, pamphlets, cards)—desktop license
- webpages—web license



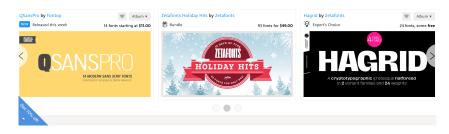
#### Background: Online Marketplace for Fonts

#### Main page in MyFonts.com



#### $\label{prop:prop:signal} \mbox{MyFonts offers the largest selection of professional fonts for any project.}$

Over 130,000 available fonts, and counting.



### Background: Online Marketplace for Fonts

Individual fonts are called styles, groups of styles are called families; Example of a font family page in MyFonts.com

| Gilroy Light Italic Gilroy Light Italic     | from <b>\$25.00</b> | Buying Choices |
|---------------------------------------------|---------------------|----------------|
| Gilroy Regular<br>Gilroy Regular            | from <b>\$25.00</b> | Buying Choices |
| Gilroy Regular Italic Gilroy Regular Italic | from <b>\$25.00</b> | Buying Choices |
| Gilroy Medium Gilroy Medium                 | from <b>\$25.00</b> | Buying Choices |
| Gilroy Medium Italic Gilroy Medium Italic   | from <b>\$25.00</b> | Buying Choices |
| Gilroy Semi Bold Gilroy Semi Bold           | from <b>\$25.00</b> | Buying Choices |

# Data from the Marketplace

#### Sample between 2000-2017

- ▶ number of fonts: 28,659
- number of orders (every minute): 2,446,604

#### Product attributes

- Unstructured
  - images of typefaces
  - tags (descriptive words assigned by producers or consumers)
- Structured
  - price, foundry/designer info, date introduced
  - license type (desktop, web, apps, ePub, digital ads)
  - number of languages/glyphs supported

#### Visual Attributes

Fonts are displayed on the webpage using pangrams

 effectively capture important design elements (spacing, deep-height, up-height, ligature)

Format of pangram images: bitmap (200  $\times$  1000 pixels)

We use (crops of) pangrams as direct inputs in CNN

- ► The neural network is designed to classify font styles
- Crops create multiple instances of the same style

# Examples of Pangram Images

Quick zephyrs blow, vexing daft Jim.

Quick rephyre blow, vexing daft Jim.

Quick zephyrs blow, vexing daft Jim.

II. Construction of Embedding and Product Space

# Construction of Embedding

We employ a method where the network directly learns a mapping from pangram images to a compact Euclidean space

- this mapping is called embedding
- we map each pangram to 128-dim embedding
- $ightharpoonup L^2$  distance corresponds to measure of similarity of font shape

Developed by Schroff et al. (2015) for face recognition

- classification by thresholding distance between embeddings
- perform substantially better than earlier classification network

# Construction of Embedding

We employ a method where the network directly learns a mapping from pangram images to a compact Euclidean space

- this mapping is called embedding
- we map each pangram to 128-dim embedding
- $ightharpoonup L^2$  distance corresponds to measure of similarity of font shape

Developed by Schroff et al. (2015) for face recognition

- classification by thresholding distance between embeddings
- perform substantially better than earlier classification network

We adapt their approach for our purpose

- not interested in classification of font identity
- but embedding and resulting product space is our interest



### Triplet Loss

Triplet (Weinberger et al. (2006), Wang et al. (2014))

▶ triplet *i*: anchor  $x_i^a$ , positive  $x_i^p$ , negative  $x_i^n$ 

$$||f(x_i^a) - f(x_i^p)||_2^2 + \alpha \le ||f(x_i^a) - f(x_i^n)||_2^2$$
 (1)

 $\forall (x_i^a, x_i^p, x_i^n) \in T$ , where  $\alpha$  is an enforced margin

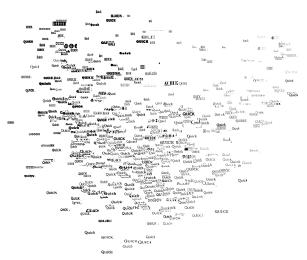
Triplet-based loss function that is minimized is

$$L = \sum_{i}^{N} [||f(x_{i}^{a}) - f(x_{i}^{p})||_{2}^{2} - ||f(x_{i}^{a}) - f(x_{i}^{n})||_{2}^{2} + \alpha]_{+}$$



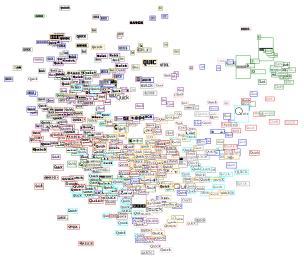
### Constructed Product Space

- 128-dim product space, projected in 2-dim for visualization
  - each point corresponds to embedding of each font family



### Constructed Product Space

- 128-dim product space, projected in 2-dim for visualization
  - each point corresponds to embedding of each font family



### Internal Evaluation

Test (validation) set: positive (same) and negative (different) pairs

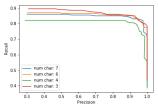
from the embedding, obtain true accepts and false accepts

#### Statistics:

- ► Accuracy (TP+TN)/(P+N):  $0.8925 \pm 0.01083$
- Validation rate (true acceptance rate TP/(TP+FN)) and false acceptance rate FP/(TN+FP):

$$V\!AL = 0.09375 \pm 0.01875$$
 at  $F\!AR = 0.0$ 

► Precision TP/(TP+FP) and recall TP/(TP+FN) curve



# External Verification Using Word Embedding

Want to verify that visual attributes captured in the resulting embedding are relevant to economic agents' perception

# External Verification Using Word Embedding

Want to verify that visual attributes captured in the resulting embedding are relevant to economic agents' perception

Measure correlation with "perceived" attributes

- tags assigned to each font family by font designers and consumers
- ▶ also high-dim: nearly 30,000 different words in the tags
  - e.g., curly, flowing, geometric, organic, decorative, contrast
- apply standard word embedding "Word2vec" (2-layer NN)

Compare k-mean clusterings (with 60 clusters) from shape embeddings and word embeddings

measure how well they match using mutual information



### Mutual Information

How well these two sets of clusters match?

Normalized mutual information (NMI):

$$NMI(F, W) = \frac{I(F, W)}{[H(F) + H(W)]/2}$$

where  $H(\cdot)$  is entropy and I(F, W) = H(F) - H(F|W) is mutual info between F and W

- ▶ how much informative *W* is in determining *F*
- $\blacktriangleright$  value between 0 and 1 (0 being W contains no info for F)

### Mutual Information

How well these two sets of clusters match?

Normalized mutual information (NMI):

$$NMI(F, W) = \frac{I(F, W)}{[H(F) + H(W)]/2}$$

where  $H(\cdot)$  is entropy and I(F, W) = H(F) - H(F|W) is mutual info between F and W

- ▶ how much informative *W* is in determining *F*
- $\blacktriangleright$  value between 0 and 1 (0 being W contains no info for F)

We obtain NMI(F, W) = 0.484, which is quite promising

cf. NMI between industry-defined product category and W
 = 0.261



III. Economic Analyses

# 1. Trend Analysis

As a reduced-form analysis, using shape embeddings, we analyze the supply- and demand-side trends in font style

### Supply-side

▶ there are constant entry of new products in the marketplace

#### Demand-side

there are on average more than 1,000 fonts (stably) sold per day

# Trends in Font Style: Summary of Findings

- 1. Fonts become more innovative over time
- 2. Different preference over shapes, depending on license type
  - more conservative shapes for web license (e.g., webpages)
  - more adventurous shapes for desktop license (e.g., printed materials)

# 2. Effect of Merger on Product Differentiation

How did product differentiation change after the merger between FontFont and Monotype in July 2014?

# 2. Effect of Merger on Product Differentiation

How did product differentiation change after the merger between FontFont and Monotype in July 2014?

Two measures of visual differentiation using the embeddings:

- 1. distance from benchmark font Averia:  $D_i \equiv ||f(x_i) f_{averia}||_2$
- 2. "gravity" measure:

$$\widetilde{D}_i \equiv -\sum_{j \neq i} \frac{1}{\left\|f(x_i) - f(x_j)\right\|_2}$$

We take average of  $D_i$  or  $\tilde{D}_i$  of all new fonts created by a foundry in given period

- considering two measures of differentiation provides a robustness check
- "gravity" measure does not depend on the benchmark

## Effect of Merger on Product Differentiation

Want to estimate how FontFont's design decision has changed by the merger

note: even before the merger, FontFont has sold its fonts in MyFonts.com as a third party

## Effect of Merger on Product Differentiation

Want to estimate how FontFont's design decision has changed by the merger

note: even before the merger, FontFont has sold its fonts in MyFonts.com as a third party

#### Challenges:

- only single treated unit (FontFont), multiple untreated (control) units
- difficult to find a single control unit that matches treated unit

# Synthetic Control Method

Synthetic control method addresses these challenges:

▶ Abadie & Gardeazabal (2003), Abadie et al. (2010)

Compare treated unit with a "synthetic control unit"...

= a weighted average of all control units

# Synthetic Control Method

Synthetic control method addresses these challenges:

▶ Abadie & Gardeazabal (2003), Abadie et al. (2010)

Compare treated unit with a "synthetic control unit"...

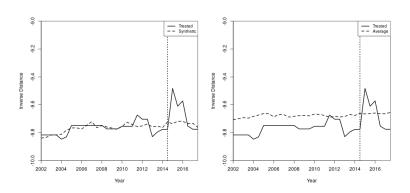
= a weighted average of all control units

Weights W: estimated by minimizing  $\|X_1 - \boldsymbol{X}_0 W\|$ 

- ightharpoonup vector  $X_1$ : treated unit's observed characteristics (including pre-trt outcomes)
- matrix X<sub>0</sub>: control units' characteristics
- we use: embeddings (pre-treatment), glyph count, sales, order count, age

## Treated Unit vs. Synthetic Control

Trends of treated unit vs. synthetic control (left), vs. naive control avg. (right)



### Estimated Treatment Effects

| Years (After Merger)    | 2015/1-2015/2 | 2016/1-2016/2 | 2017/1-2017/2 |
|-------------------------|---------------|---------------|---------------|
| Treatment Effect        | 0.1070        | 0.0576        | -0.019        |
| <i>p</i> -value (block) | 0.0370        | 0.0741        | 1             |
| <i>p</i> -value (all)   | 0.0022        | 0.0522        | 0.9978        |

- p-values are computed based on Chernozhukov et al. (2019)
- also conducted placebo test before the merger

FontFont creates more experimental fonts (i.e., increases product variety), at least temporarily

#### Estimated Treatment Effects

| Years (After Merger)    | 2015/1-2015/2 | 2016/1-2016/2 | 2017/1-2017/2 |
|-------------------------|---------------|---------------|---------------|
| Treatment Effect        | 0.1070        | 0.0576        | -0.019        |
| <i>p</i> -value (block) | 0.0370        | 0.0741        | 1             |
| <i>p</i> -value (all)   | 0.0022        | 0.0522        | 0.9978        |

- $\triangleright$  p-values are computed based on Chernozhukov et al. (2019)
- also conducted placebo test before the merger

FontFont creates more experimental fonts (i.e., increases product variety), at least temporarily

Other tranditional measures of differentiation (e.g. glyph counts, # of new fonts) do *not* capture this merger effect

#### Estimated Treatment Effects

Possible reasons for the significant merger effect:

- 1. increases visual variety to diversify, as merger promotes efficiency
- 2. avoids cannibalization, i.e., competition of their own

### Conclusions

### Summary

Consider simplest design product, fonts, and quantify shapes using deep neural network embedding

The resulting low-dim product space can be a basis for various economic analyses

its distance measures product similarity

Conduct two economic analyses using the embeddings

- trend analysis of font style
- merger analysis with causal interpretation using synthetic control method

Thank You!!