Sharing is Caring: Inequality, Transfers and Growth in the National Accounts

Marina Gindelsky (BEA)
1/3/20

The views expressed are those of the author and do not necessarily represent the U.S. Bureau of Economic Analysis or the U.S. Department of Commerce.
• BEA released updated prototype distributions of Personal Income (PI) and Disposable PI (DPI) in the National Income and Product Accounts (NIPA) in December 2020 for 2007-2018
 - **Objective**: Use microdata to distribute macro totals (NIPA) to households
 - PI (& DPI) is most appropriate NA concept for **households**: closest to the measure of economic resources available to households for consumption

• **Methodology**
 - CPS is base dataset with additional (all) public data sources
 - Adj. of “tail” (top incomes) using aggregated tax data from IRS (SOI)
 - Adjust for household size (i.e., “equivalize”): accounts for resource sharing in households (then rank on equivalized income)
• Total PI and DPI grew 22% from 2007-2018
 - Equivalized median DPI grew (12.1%) vs. median PI (10.2%)
 - Top 1% share of PI (DPI) increased 13.2% → 14.4% (11.4% → 12.1%)*

• Growth was unequal throughout distribution
 - 60.3% of growth in PI and 54.9% of growth in DPI went to top 20%*
 (cannot follow individuals over time, but group is relatively sticky in this time period)
 - Share of top quintile of PI went up 2pp while bottom quintile went down 0.2pp (similarly with DPI)

*significant portion of increase due to CPS survey redesign
BEA release highlights relationship between inequality and pre-tax growth in *working paper*
Motivation: Inequality and Growth

• Unequal distribution of growth persists. Why?
 ▪ Hard to predict, may lead to short-run movements in metrics (2008-2011), changes in income reporting (e.g., 2012/2013), or perhaps long-run shifts
 o Structural elements: SBTC (& RBET) increasing labor incomes (Autor et al. (2008, 2020); Goldin & Katz (2007)), assortative mating (Greenwood et al. 2014), concentration of capital at the top (Piketty et al. 2018 (PSZ); Hoffmann et al. 2020)
 ▪ Long-term impact – best seen in extended time series (especially post-1980)
 ▪ Makes it difficult to contextualize and interpret levels and trends

• Changes in composition of income: share of labor income (PSZ 2018) and role of transfers (Larrimore et al. 2020, Meyer & Wu 2018, Hoynes & Patel 2018)
 ▪ Often target for policy intervention (“inclusive growth”)
Motivation: Role of Transfers

• Focus of DINA literature is on levels and growth of top incomes
 o Attention paid to disaggregating top 1%, not bottom of distribution
 o But transfers make up 17.4% of PI in 2018 (up from 15.3% in 2007)
 o Most households receive at least one transfer in BEA exercise

• Transfers reduce poverty (e.g., Social Security, Medicare & Medicaid, Refundable Tax Credits (esp. EITC), SNAP TANF) (Meyer & Wu 2018, Meyer et al. 2015, Hoynes & Patel 2018, PSZ 2018) should affect inequality

• Transfers underreporting: recipiency and amount (Meyer & Mittag 2019)
 o BEA adjusts for this (somewhat) through CBO imputation
 o Scaling to NIPA totals raises amounts

• Key Questions: What impact do transfers have on the DINA (PI & DPI)?
 o Do they raise bottom incomes sufficiently to impact overall inequality?
 o Which ones are most consequential for reduction in inequality?
 o How does aging population affect inequality?
Impact of Transfers: BEA Classification

• Different classification and treatment by different studies
• PI is post-trans and pre-tax
• Transfers in PI (and DPI) include

 o Social Security
 o Unemployment Insurance
 o SSI
 o Veteran’s Benefits
 o Educational Assistance
 o Workers’ Compensation
 o Railroad Retirement
 o Black Lung
 o Medicare

 o Medicaid
 o CHIP
 o Medical Assistance
 o SNAP
 o Refundable Tax Credits
 o WIC
 o Energy Assistance
 o State and Local Assistance: Education, Employment, etc.
Impact of Transfers on PI Distribution (2018)

<table>
<thead>
<tr>
<th>No Transfers</th>
<th>Transfers</th>
</tr>
</thead>
<tbody>
<tr>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>20%</td>
<td>20%</td>
</tr>
<tr>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

- 0-20%: 0.8% 5.4%
- 20-40%: 11.9% 9.1%
- 40-60%: 20.8% 13.2%
- 60-80%: 43.9% 38.4%
- 80-99%: 17.2% 14.4%
- Top 1%: 5.2% 9.1%
Distributional Impact of Transfers Over Time

- For both PI & DPI: share of transfers *increases* over time (esp. for bottom deciles), but income share of lower deciles *decreases*

Share of Transfers in PI by Decile: 2007 & 2018

<table>
<thead>
<tr>
<th>Decile</th>
<th>2007</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-90%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90-100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Share of decile in PI: 2007 & 2018

<table>
<thead>
<tr>
<th>Decile</th>
<th>2007</th>
<th>2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20-30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-40%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-50%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-70%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70-80%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80-90%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90-100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Age Composition

• Transfers significantly reduce inequality, but
 o Redistribution from younger hh in labor force to elderly hh through SS & Medicare (hh with members age 65+ benefit most)

• Share of elderly hh increases from 24%-31% from 2007-2018
 o Over ¼ of households in 2018 had both SS & Medicare benefits
 o Significant impact on overall inequality results

[Graph: Share of Households with Age 65+ Members: 2007 & 2018]
Shares of Income with Iterative Trans Add. for elderly households (2018)

GINIs: 0.689 0.522 0.434 0.417 0.416 0.411 0.409

0-20% 20-40% 40-60% 60-80% 80-99% Top 1%

PI-no trans +SS +Medicare +Medicaid +Tax Cred +MT PI

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Shares of Income with Iterative Trans Add. for non-elderly households (2018)

<table>
<thead>
<tr>
<th>GINIs:</th>
<th>0.549</th>
<th>0.536</th>
<th>0.530</th>
<th>0.495</th>
<th>0.487</th>
<th>0.478</th>
<th>0.466</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI-no trans</td>
<td>16.7%</td>
<td>16.5%</td>
<td>16.4%</td>
<td>15.8%</td>
<td>15.6%</td>
<td>15.4%</td>
<td>15.1%</td>
</tr>
<tr>
<td>+SS</td>
<td>40.9%</td>
<td>40.5%</td>
<td>40.3%</td>
<td>38.9%</td>
<td>38.6%</td>
<td>38.2%</td>
<td>37.7%</td>
</tr>
<tr>
<td>+Medicare</td>
<td>20.5%</td>
<td>20.4%</td>
<td>20.3%</td>
<td>19.8%</td>
<td>19.8%</td>
<td>19.7%</td>
<td>19.7%</td>
</tr>
<tr>
<td>+Medicaid</td>
<td>12.9%</td>
<td>12.9%</td>
<td>12.9%</td>
<td>13.0%</td>
<td>13.0%</td>
<td>13.0%</td>
<td>13.2%</td>
</tr>
<tr>
<td>+Tax Cred</td>
<td>7.4%</td>
<td>7.5%</td>
<td>7.7%</td>
<td>8.5%</td>
<td>8.8%</td>
<td>9.0%</td>
<td>9.2%</td>
</tr>
<tr>
<td>+MT</td>
<td>2.2%</td>
<td>2.5%</td>
<td>2.5%</td>
<td>4.0%</td>
<td>4.2%</td>
<td>4.6%</td>
<td>5.1%</td>
</tr>
<tr>
<td>PI</td>
<td>1.6%</td>
<td>10%</td>
<td>20%</td>
<td>30%</td>
<td>40%</td>
<td>50%</td>
<td>60%</td>
</tr>
</tbody>
</table>

GINIs: 0-20% 20-40% 40-60% 60-80% 80-99% Top 1%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Households without Age 65+ members

- What transfers have an impact on hh without age 65+ members?
- Expect: Medicaid, tax credits, and other means-tested transfers
- However, Medicaid has small impact on inequality (but more than tax credits)
- Refundable tax credits and means tested transfers have a minimal impact, likely due to small share of NIPA totals
Comparisons to Published Estimates

• PSZ, A&S, CBO

• Measurement challenges
 o Important differences (good discussion in BEA working paper)
 ▪ Unit of measurement
 ▪ Income concept
 ▪ Source data
 ▪ Allocation strategy
 o Lead to different conclusions in levels & trends
 ▪ Top 1% income shares of PSZ > CBO > BEA > AS
 ▪ Changes in source data (e.g., CPS) can lead to artificially large increases in inequality
Comparisons to Published Estimates

- **PSZ:** Compare post-tax-and-transfer NI distribution to BEA DPI
 - BEA share of top decile is 4pp lower & share of bottom 50% in 3pp higher
 - PSZ include transfers in post-tax income, but don’t consider SS a transfer
 - PSZ include “collective expenditures” (government spending on public goods) as transfers (part of NI) \rightarrow higher share of non-health transfers

- **A&S:** Compare pre-tax/post-transfer top 1% share to BEA PI
 - Similar decrease in top 1% share from add. of transfers, despite level diff
 - In 2017, add. of SS, Cash Transfers, Medicare reduces top 1% share in A&S by 1.4pp (vs. 2pp for BEA)

- **CBO:** Compare “income before taxes & transfers” to modified PI
 - Similar shares of transfers in income, but CBO shares grow more than BEA
 - Lower quintiles gain more from transfers in BEA analysis (scaling to NIPA)

- All show similar fall in inequality from addition of transfers
Conclusions

• Addition of transfers lowers inequality in levels, but redistribution is from younger hh in labor force to elderly hh, through SS & Medicare
 o Not redistribution from higher income hh to lower income hh
 ▪ Expansion of Medicaid has a small mitigating effect on inequality
 ▪ Refundable tax credits and means tested transfers have a minimal impact, likely due to small share of NIPA totals
 o Effect increases as population ages (baby boomer retirement)
 o Same pattern for PI & DPI

• Comparisons to other national estimates show similar effects of transfers on inequality overall, and especially for top shares
 o PI & DPI distributions provide opportunity to evaluate impact of important programs on hh through distribution, linking inequality, transfers, and growth
 o Implications beyond movements in top shares
 o Rising share of transfers in PI (2007-2018) doesn’t lead to ineq. decrease
Extra Slides: DPI Results
Inequality and Growth: BEA Chart 2 (DPI)

BEA release highlights relationship between inequality and post-tax growth in working paper