This paper

An analysis of capital subsidies to firms from a misallocation viewpoint.

Building blocks

Data

- Information on firm inputs/outputs (typical census data).
- Unique data on subsidies at the firm level.

Framework

• Policy implemented on a distorted economy with Hsieh-Klenow capital and output wedges that prevent the efficient allocation of resources.

Counterfactuals

- TFP with and without the subsidies.
- TFP-maximizing and TFP-min policy implementations.

Distortions

- Even in the absence of subsidies firms face distortions
- Firm's profit: $\pi_{i} = (1 - \tau_{Yi})p_{i}Y_{i} - wL_{i} - (1 + \tau_{Ki} - \tau_{si})RK_{i}$
- A subsidy τ_{si} is an additional distortion that can improve or deteriorate allocative efficiency.

Measurement & Decomposition of distortions

- Measure τ_{Yi} , $(\tau_{Ki} \tau_{si})$ from production data,
- and τ_{si} from the subsidy data.
- Recover the capital distortion net of subsidies τ_{Ki} .

Firm Subsidies and Resource Misallocation

Alexandros Fakos

School of Business at ITAM, January 2021. Prepared for the Annual conference of the American Economic Association.

How much of the observed misallocation do subsidies explain?

Little, but on par with other sources of misallocation found in the literature.

- Subsidies explain 5.5% of the variance of log MRPK, which is \approx the explanatory power of capital adj. costs.
- Reduced TFP by 0.15%, explaining 0.61% of the output loss from misallocation.

What is the potential effect of such a policy on TFP?

Substantial.

- If subsidies are directed to the **'right' firms**, TFP can increase by up to 2.2%.
- But if are directed to the 'wrong' firms, TFP can decrease by up to 3.5%.

Why is the effect of the actual policy so small, then?

Because the **'right'** and the **'wrong'** firms received a subsidy with similar odds. The graphs below show who is applying and who is subsidized under the actual and TFP-maximizing policies.

- Conditioning on the TFPR measure of overall distortions, the applicants and receivers of subsidies are nearly random draws from the population of firms (left graph).
- A TFP-maximizing policy would subsidize firms with high TFPR (right graph).

Subsidy data • $\approx 25\%$ of firms applied for a subsidy, • and $\approx 20\%$ of them received a subsidy. • Cash transfer Capital at time of the grant: Median = 16%. Second-Best approach

Empirical setting

• Data on a policy subsidizing the acquisition of capital for Greek manufacturing firms, typical in the EU. • Sample of 2,000 firms ≥ 10 employees.

• The literature shows that each market or policy failure responsible for the observed misallocation explains a tiny fraction of it.

• Hence, any policy analysis falls in *Second Best* territory (Lipsey and Lancaster, 1956): focusing on a particular friction while ignoring the rest leads to wrong policy recommendations.

• This paper analyzes subsidies considering all other frictions summarized in the recovered output and capital wedges (τ_{Yi}, τ_{Ki}) .

• The TFP-maximizing policy crucially depends on the existing distortions. Different implementations of the same policy can have markedly different effects: From an increase in TFP of 2% to a decrease of 3%.

Additional Information

• Email: alexandros.fakos@itam.mx • Paper on SSRN: bit.ly/SubsidiesMisallocation • Slides: bit.ly/SubsidiesMisallocationSlidesAEA21