Fiscal-monetary policy interactions in a low interest rate world

Boris Hofmann, Marco J. Lombardi, Benoît Mojon and Athanasios Orphanides

The views expressed are not necessarily those of the BIS
Background: Low r^* and $r^* < g^*$

Outline

Goal: Assess the interaction of monetary and fiscal policy in low r^* environment

1. Implications of lower r^* for conventional monetary policy (ZLB frequency)

2. Effectiveness of central bank balance sheet policy and fiscal policy at low r^*
 - For macroeconomic stability and for public debt stability

3. The role of fiscal rules and negative policy rates
Methodology

- **Toolbox**: small-scale semi-structural model featuring:
 - Short- and long-term interest rates
 - Central bank bond purchases (QE)
 - Fiscal policy and public debt accumulation
 - Expectations formations can be rationale or under learning to allow for de-anchoring

- **Simulations** of fiscal-monetary interactions
 - Stochastic simulations of the model over a period of 50 years
 - Severe recession scenarios
The model
IS curve and Phillips curve

- **IS curve**: linking the unemployment gap to long-term real rates and the primary fiscal balance

 \[u_t = \phi_u u_{t-1} + (1 - \phi_u)E(u_{t+1}) + \alpha_u (r^l_t - r^l*) + \alpha_f (pb_t - pb^*) + \epsilon_{u,t} \]

 Calibration: \(\phi_u = 0.5, \alpha_u = 0.15, \alpha_f = 0.5 \) (fiscal output multiplier = 1), shock SD = 0.45

 (calibration of \(r^l* \) and \(pb^* \) later)

- **Phillips curve**: linking inflation to the unemployment gap

 \[\pi_t = \phi_\pi \pi_{t-1} + (1 - \phi_\pi)E(\pi_{t+1}) + \alpha_\pi (u_t - u^*) + \epsilon_{\pi,t} \]

 Calibration: \(\phi_\pi = 0.5, \alpha_\pi = 0.1 \) (flat Phillips curve), shock SD = 0.75

 \(\pi^* = 2\% \), \(u^* = 4\% \)
Long-term interest rates

- **Long-term interest rates**: driven by expected short-term rates and the term premium (5y maturity)

\[r_t^l = \frac{1}{L} \sum_{j=0}^{L} r_j^s + tp_t, \quad i_t^l = \frac{1}{L} \sum_{j=0}^{L} i_j + tp_t. \]

- **Term premium**: increasing in net supply of debt to public (increasing in \(d-d^* \), decreasing in \(b-b^* \))

\[tp_t = tp^* + \alpha_{tp} (b_{t-1} - b^*) - \alpha_{tp} (d_{t-1} - d^*) \]

Calibration: \(\alpha_{tp} = -0.05 \) (-5 bp for each pp increase in \(b-b^* \)) based on Li and Wei (2013)

- **Steady state long-term real interest rate**:

\[r_t^l = r^* + tp^* = 1.5\% \quad (r^* = 0.5\% \text{ and } tp^* = 1\%) \]
Monetary policy

- **Conventional monetary policy**: Follows inertial Taylor rule and faces ZLB constraint

\[
i_t = \max[i_t^T + \epsilon_{i,t}, 0]
\]

\[
i_t^T = \theta_i i_{t-1} + (1 - \theta_i) [\pi_t - \pi_t^* + \theta_u (u_t - u_t^*)]
\]

Calibration: \(\theta_i = 0.85, \theta_\pi = 0.5, \theta_u = 2.0\) (inertial Taylor (1999) rule)

- **Unconventional monetary policy**: Follows inertial bond holding rule when \(i\) is at the ZLB

\[
b_t = \zeta_b b_{t-1} + (1 - \zeta_b) b^* + \zeta_\pi (\pi_{t-1} - \pi^*) + \zeta_u (u_{t-1} - u^*) + \epsilon_{b,t}
\]

when \(i\) is at the ZLB

\[
b_t = \zeta_b b_{t-1} + (1 - \zeta_b) b^*
\]

otherwise

Calibration:

- \(\zeta_b = 0.95\) corresponds to a half-life of the balance sheet of over 3 years
- \(\zeta_\pi = 6.75, \zeta_u = 9\) (non-inertial Taylor (1999) rule cast on bond holdings based on the response of long-term rates to conventional and unconventional MP shocks)
Fiscal policy

- **Fiscal rule:** expressed in terms of primary balance (as a share of GDP)

\[pb_t = \rho_{pb} pb_{t-1} + (1 - \rho_{pb}) pb^* + \psi (u_{t-1} - u^*) + \delta (d_{t-1} - d^*) + \epsilon_{pb,t} \]

- Fiscal stance depends on unemployment gap and on the deviation of debt from target level

Calibration: \(\rho_{pb} = 0.7, \psi = -0.25 \) (Taylor (2000) fiscal rule), \(\delta = 0.01 \) (in baseline)

- **Government debt dynamics:**

\[d_t = (1 + i_d^{d, t} - g_q, t - \pi_q, t) d_{t-1} - pb_t \]

- \(i_d^{d, t}, g_q, t, \pi_q, t \) are respectively the quarterly fractions of the government debt service cost (5-year moving average the bond yield), of the annualised inflation rate and of the annualised real GDP growth

\[g_t = g^* - 2 (u_t - u_{t-1}) \]
applying Okun’s law and setting \(g^* = 1.5\% \)

- **Quarterly steady state primary balance:** stabilises \(d \) at \(d^* \) in steady state

\[pb^* = (r_q^* + tp_q^* - g_q^*) d^* \]
Expectations formation

- Agents observe the history of π, u and i
 - Estimate a VAR and use that for forecasting
 - One-period ahead inflation and unemployment
 - L-period ahead inflation (to construct real long-term rates)

- Constant-gain learning as in Orphanides and Williams (2007), $\kappa = 0.02$
 - Recursive updating of the VAR coefficients (VAR comprises π, u and i)

$$c_t = c_{t-1} + \kappa R_t^{-1} X_t(Y_t - X'_t c_{t-1}),$$

$$R_t = R_{t-1} + \kappa (X_t X'_t - R_{t-1}),$$

- Starting point: RE solution
Simulation results
Lower r* makes the ZLB noticeably more binding

<table>
<thead>
<tr>
<th></th>
<th>u</th>
<th>pi</th>
<th>rs</th>
<th>rl</th>
<th>bs</th>
<th>pb</th>
<th>d</th>
<th>ZLB_s</th>
<th>ZLB_l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>4.4</td>
<td>1.5</td>
<td>2.5</td>
<td>3.9</td>
<td>10.0</td>
<td>0.6</td>
<td>113.1</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>Stdev</td>
<td>0.7</td>
<td>1.6</td>
<td>1.0</td>
<td>0.6</td>
<td>0.0</td>
<td>0.4</td>
<td>12.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP, r = 0.5*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>4.9</td>
<td>1.1</td>
<td>1.0</td>
<td>2.6</td>
<td>10.0</td>
<td>0.4</td>
<td>134.8</td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td>Stdev</td>
<td>0.8</td>
<td>1.6</td>
<td>1.1</td>
<td>0.8</td>
<td>0.0</td>
<td>0.6</td>
<td>24.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP, r = 0.5, no ZLB*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>4.0</td>
<td>2.0</td>
<td>0.5</td>
<td>1.5</td>
<td>10.0</td>
<td>0.0</td>
<td>100.5</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Stdev</td>
<td>0.5</td>
<td>1.5</td>
<td>1.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.3</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Benchmark fiscal rule
- Benchmark interest rate rule
- No balance sheet policy
CB balance sheet policy alleviates ZLB constraint

From now on, r* = 0.5%

<table>
<thead>
<tr>
<th></th>
<th>FP (no BS)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>d</th>
<th>ZLB_s</th>
<th>ZLB_l</th>
<th>NegTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>4.9</td>
<td>1.1</td>
<td>1.0</td>
<td>2.6</td>
<td>10.0</td>
<td>0.4</td>
<td>134.8</td>
<td>20%</td>
<td>0%</td>
</tr>
<tr>
<td>Stdev</td>
<td>0.8</td>
<td>1.6</td>
<td>1.1</td>
<td>0.8</td>
<td>0.0</td>
<td>0.6</td>
<td>24.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>FP + BS</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>4.0</td>
<td>2.0</td>
<td>1.1</td>
<td>1.6</td>
<td>22.2</td>
<td>0.0</td>
<td>100.4</td>
<td>9%</td>
<td>14%</td>
</tr>
<tr>
<td>Stdev</td>
<td>0.6</td>
<td>1.6</td>
<td>1.0</td>
<td>0.6</td>
<td>8.8</td>
<td>0.3</td>
<td>6.8</td>
<td></td>
<td>28%</td>
</tr>
</tbody>
</table>

- Benchmark fiscal rule
- Benchmark interest rate rule
- Benchmark balance sheet policy
No balance sheet policy vs baseline
Initial shock: 6pp increase in unemployment, persistence 0.9

- Without balance sheet policy slower recovery and much higher debt
Debt and inflation under benchmark rules

Only FP

FP + BS
Debt-averse fiscal policy is counterproductive

Debt-averse FP+BS, δ=0.04, r*=0.5

<table>
<thead>
<tr>
<th></th>
<th>(u)</th>
<th>(pi)</th>
<th>(rs)</th>
<th>(rl)</th>
<th>(bs)</th>
<th>(pb)</th>
<th>(d)</th>
<th>(ZLB_s)</th>
<th>(ZLB_l)</th>
<th>NegTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>4.3</td>
<td>1.6</td>
<td>1.2</td>
<td>1.7</td>
<td>27.3</td>
<td>0.1</td>
<td>102.6</td>
<td>15%</td>
<td>21%</td>
<td>28%</td>
</tr>
<tr>
<td>Stdev</td>
<td>0.8</td>
<td>1.7</td>
<td>1.2</td>
<td>0.9</td>
<td>11.8</td>
<td>0.4</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Benchmark FP+BS, r*=0.5

<table>
<thead>
<tr>
<th></th>
<th>(u)</th>
<th>(pi)</th>
<th>(rs)</th>
<th>(rl)</th>
<th>(bs)</th>
<th>(pb)</th>
<th>(d)</th>
<th>(ZLB_s)</th>
<th>(ZLB_l)</th>
<th>NegTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>4.0</td>
<td>2.0</td>
<td>1.1</td>
<td>1.6</td>
<td>22.2</td>
<td>0.0</td>
<td>100.4</td>
<td>9%</td>
<td>14%</td>
<td>28%</td>
</tr>
<tr>
<td>Stdev</td>
<td>0.6</td>
<td>1.6</td>
<td>1.0</td>
<td>0.6</td>
<td>8.8</td>
<td>0.3</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Benchmark interest rate rule
- Benchmark balance sheet policy
Debt-averse FP vs baseline: Debt and inflation outcomes

Debt-averse FP ($\delta = 0.04$) + BS

Baseline FP + BS
Debt-averse FP vs baseline: Distribution of inflation outcomes

Debt averse FP ($\delta=0.04$)
Baseline FP ($\delta=0.01$)
Extra accommodative fiscal policy at the ZLB

\[pb_t = \rho p b p b_{t-1} + (1 - \rho_p b) p b^* + \psi(u_{t-1} - u^*) + \delta(d_{t-1} - d^*) + \Psi_{ZLB}(i_t - i^T_t) + \epsilon_{p b, t} \]

EA FP (\(\Psi_{ZLB} = 0.5 \)) + BS

Baseline FP + BS

EA FP (\(\Psi_{ZLB} = 0.5 \)) + no BS
Negative rates (ELB=-0.5%)

ELB=-0.5% + BS

Baseline ZLB + BS

ELB=-0.5% + no BS
Recession scenario
No balance sheet policy vs baseline
Initial shock: 6pp increase in unemployment, persistence 0.9

- Without balance sheet policy slower recovery and much higher debt
Debt averse fiscal policy ($\delta=0.04$) vs baseline ($\delta=0.01$)

Initial shock: 8pp increase in unemployment, persistence 0.9

- With debt averse fiscal policy slower recovery
Extra accommodative fiscal policy at the ZLB ($\Psi_{ZLB} = 0.5$) vs baseline
Initial shock: 6pp increase in unemployment, persistence 0.9

- With extra accommodative fiscal policy faster recovery without larger increase in debt
Negative rates (ELB= -0.5) vs baseline
Initial shock: 6pp increase in unemployment, persistence 0.9

• With negative rates slightly faster recovery but noticeable smaller rise in debt
Wrapping up
Key takeaways

- Low r* significantly constrains conventional monetary policy through the ZLB
 - Unemployment and inflation diverge from steady state levels
 - Greater risk of debt deflation

- CB balance sheet policy alleviates ZLB constraints
 - Unemployment and inflation stabilised around steady state levels
 - Stabilises public debt without explicitly aiming to do so

- Fiscal rules matter
 - Excessively debt averse fiscal rules are counterproductive in a low r* world
 - Extra accommodative fiscal policy in case of a binding ZLB constraint enhances both economic and debt stability when combined with CB balance sheet policy

- Combining negative rates with CB balance sheet policy further helps somewhat dampening downturns and containing the associated rise in debt