

Fiscal-monetary policy interactions in a low interest rate world

Boris Hofmann, Marco J. Lombardi, Benoît Mojon and Athanasios Orphanides

Background: Low r^{*} and $r^{*}<g^{*}$

Source: Holston et al (2017)

Outline

Goal: Assess the interaction of monetary and fiscal policy in low r^{*} environment

1. Implications of lower r^{*} for conventional monetary policy (ZLB frequency)
2. Effectiveness of central bank balance sheet policy and fiscal policy at low r^{*}

- For macroeconomic stability and for public debt stability

3. The role of fiscal rules and negative policy rates

Methodology

- Toolbox: small-scale semi-structural model featuring:
- Short- and long-term interest rates
- Central bank bond purchases (QE)
- Fiscal policy and public debt accumulation
- Expectations formations can be rationale or under learning to allow for de-anchoring
- Simulations of fiscal-monetary interactions
- Stochastic simulations of the model over a period of 50 years
- Severe recession scenarios

BIS

The model

IS curve and Phillips curve

- IS curve: linking the unemployment gap to long-term real rates and the primary fiscal balance

$$
u_{t}=\phi_{u} u_{t-1}+\left(1-\phi_{u}\right) E\left(u_{t+1}\right)+\alpha_{u}\left(r_{t}^{l}-r^{l *}\right)+\alpha_{f}\left(p b_{t}-p b^{*}\right)+\epsilon_{u, t}
$$

Calibration: $\phi_{u}=0.5, \alpha_{u}=0.15, \alpha_{f}=0.5$ (tiscal output multiplier=1), shock $\mathrm{SD}=0.45$ (calibration of $r^{l^{*}}$ and $p b^{*}$ later)

- Phillips curve: linking inflation to the unemployment gap

$$
\pi_{t}=\phi_{\pi} \pi_{t-1}+\left(1-\phi_{\pi}\right) E\left(\pi_{t+1}\right)+\alpha_{\pi}\left(u_{t}-u^{*}\right)+\epsilon_{\pi, t}
$$

Calibration: $\phi_{\pi}=0.5, \alpha_{\pi}=0.1$ (flat Phillips curve), shock $\mathrm{SD}=0.75$

$$
\pi^{*}=2 \%, u^{*}=4 \%
$$

Long-term interest rates

- Long-term interest rates: driven by expected short-term rates and the term premium (5y maturity)

$$
r_{t}^{l}=\frac{1}{L} \sum_{j=0}^{L} r_{j}^{s}+t p_{t}, i_{t}^{l}=\frac{1}{L} \sum_{j=0}^{L} i_{j}+t p_{t} .
$$

- Term premium: increasing in net supply of debt to public (increasing in $d-d^{*}$, decreasing in $b-b^{*}$)

$$
t p_{t}=t p^{*}+\alpha_{t p}\left(b_{t-1}-b^{*}\right)-\alpha_{t p}\left(d_{t-1}-d^{*}\right)
$$

Calibration: $\alpha_{t p}=-0.05$ (-5 bp for each pp increase in $b-b^{*}$) based on Li and Wei (2013)

$$
b^{*}=10 \%, d^{*}=100 \%
$$

- Steady state long-term real interest rate:

$$
r^{l *}=r^{*}+t p^{*}=1.5 \%\left(r^{*}=0.5 \% \text { and } t p^{*}=1 \%\right)
$$

Monetary policy

- Conventional monetary policy: Follows inertial Taylor rule and faces ZLB constraint

$$
\begin{gathered}
i_{t}=\max \left[i_{t}^{T}+\epsilon_{i, t}, 0\right] \\
i_{t}^{T}=\theta_{i} i_{t-1}+\left(1-\theta_{i}\right)\left[r^{*}+\pi_{t-1}+\theta_{\pi}\left(\pi_{t-1}-\pi^{*}\right)+\theta_{u}\left(u_{t-1}-u^{*}\right)\right]
\end{gathered}
$$

Calibration: $\theta_{i}=0.85, \theta_{\pi}=0.5, \theta_{u}=2.0$ (inertial Taylor (1999) rule)

- Unconventional monetary policy: Follows inertial bond holding rule when i is at the ZLB

$$
\begin{gathered}
b_{t}=\zeta_{b} b_{t-1}+\left(1-\zeta_{b}\right) b^{*}+\zeta_{\pi}\left(\pi_{t-1}-\pi^{*}\right)+\zeta_{u}\left(u_{t-1}-u^{*}\right)+\epsilon_{b, t} \quad \text { when } i \text { is at the ZLB } \\
b_{t}=\zeta_{b} b_{t-1}+\left(1-\zeta_{b}\right) b^{*} \quad \text { otherwise }
\end{gathered}
$$

Calibration:

- $\zeta_{b}=0.95$ corresponds to a half-life of the balance sheet of over 3 years
- $\zeta_{\pi}=6.75, \zeta_{u}=9$ (non-inertial Taylor (1999) rule cast on bond holdings based on the response of long-term rates to conventional and unconventional MP shocks)

Fiscal policy

- Fiscal rule: expressed in terms of primary balance (as a share of GDP)

$$
p b_{t}=\rho_{p b} p b_{t-1}+\left(1-\rho_{p b}\right) p b^{*}+\psi\left(u_{t-1}-u^{*}\right)+\delta\left(d_{t-1}-d^{*}\right)+\epsilon_{p b, t}
$$

- Fiscal stance depends on unemployment gap and on the deviation of debt from target level Calibration: $\rho_{p b}=0.7, \psi=-0.25$ (Taylor (2000) fiscal rule), $\boldsymbol{\delta}=\mathbf{0 . 0 1}$ (in baseline)
- Government debt dynamics:

$$
d_{t}=\left(1+i_{q, t}^{d}-g_{q, t}-\pi_{q, t}\right) d_{t-1}-p b_{t}
$$

- $i_{q, t}^{d}, g_{q, t, t} \pi_{q, t}$ are respectively the quarterly fractions of the government debt service cost (5-year moving average the bond yield), of the annualised inflation rate and of the annualised real GDP growth $g_{t}=g^{*}-2\left(u_{t}-u_{t-1}\right)$ applying Okun's law and setting $g^{*}=1.5 \%$
- Quarterly steady state primary balance: stabilises d at d^{\star} in steady state

$$
p b^{*}=\left(r_{q}^{*}+t p_{q}^{*}-g_{q}^{*}\right) d^{*}
$$

Expectations formation

- Agents observe the history of π, u and i
- Estimate a VAR and use that for forecasting
- One-period ahead inflation and unemployment
- L-period ahead inflation (to construct real long-term rates)
- Constant-gain learning as in Orphanides and Williams (2007), $\kappa=0.02$
- Recursive updating of the VAR coefficients (VAR comprises π, u and i)

$$
\begin{aligned}
c_{t} & =c_{t-1}+\kappa R_{t}^{-1} X_{t}\left(Y_{t}-X_{t}^{\prime} c_{t-1}\right), \\
R_{t} & =R_{t-1}+\kappa\left(X_{t} X_{t}^{\prime}-R_{t-1}\right),
\end{aligned}
$$

- Starting point: RE solution

BIS

Simulation results

Lower r* makes the ZLB noticeably more binding

- Benchmark fiscal rule
- Benchmark interest rate rule
- No balance sheet policy

CB balance sheet policy alleviates ZLB constraint

From now on, $r^{*}=0.5 \%$

				BS)						
	u	pi	rs	$r l$	bs	pb	d	ZLB_s	ZLB_l	NegTP
Mean	4.9	1.1	1.0	2.6	10.0	0.4	134.8	20\%	0\%	0\%
Stdev	0.8	1.6	1.1	0.8	0.0	0.6	24.4			
Mean	4.0	2.0	1.1	1.6	22.2	0.0	100.4	9\%		28%
Stdev	0.6	1.6	1.0	0.6	8.8	0.3	6.8			

- Benchmark fiscal rule
- Benchmark interest rate rule
- Benchmark balance sheet policy

No balance sheet policy vs baseline Initial shock: 6pp increase in unemployment, persistence 0.9

- Without balance sheet policy slower recovery and much higher debt

Debt and inflation under benchmark rules

Only FP
$F P+B S$

Debt-averse fiscal policy is counterproductive

Debt-averse FP+BS, $\boldsymbol{\delta}=\mathbf{0 . 0 4}, \mathrm{r}^{\boldsymbol{*}}=\mathbf{0 . 5}$

	u	pi	rs	r	bs	$p b$	d	ZLB_s	ZLB_l	NegTP
Mean	4.3	1.6	1.2	1.7	27.3	0.1	102.6	15\%	21\%	28\%
Stdev	0.8	1.7	1.2	0.9	11.8	0.4	5.1			
			Benchmark FP+BS, r* $=0.5$							28\%
Mean	4.0	2.0	1.1	1.6	22.2	0.0	100.4	9\%	14\%	
Stdev	0.6	1.6	1.0	0.6	8.8	0.3	6.8			

- Benchmark interest rate rule
- Benchmark balance sheet policy

Debt-averse FP vs baseline: Debt and inflation outcomes

Debt-averse FP $(\delta=0.04)+$ BS
Baseline FP + BS

Debt-averse FP vs baseline: Distribution of inflation outcomes

Debt averse FP ($\delta=0.04$)

Baseline FP ($\delta=0.01$)

Extra accommodative fiscal policy at the ZLB

$$
p b_{t}=\rho_{p b} p b_{t-1}+\left(1-\rho_{p b}\right) p b^{*}+\psi\left(u_{t-1}-u^{*}\right)+\delta\left(d_{t-1}-d^{*}\right)+\Psi_{Z L B}\left(i_{t}-i_{t}^{T}\right)+\epsilon_{p b, t}
$$

EA FP $\left(\Psi_{\text {ZLB }}=0.5\right)+\mathrm{BS}$

Baseline FP + BS
$\operatorname{EAFP}\left(\Psi_{\text {ZLB }}=0.5\right)+$ no BS

π

Negative rates (ELB=-0.5\%)
$E L B=-0.5 \%+B S \quad$ Baseline ZLB + BS

$E L B=-0.5 \%+$ no $B S$

π

BIS

Recession scenario

No balance sheet policy vs baseline Initial shock: 6pp increase in unemployment, persistence 0.9

- Without balance sheet policy slower recovery and much higher debt

Debt averse fiscal policy ($\delta=0.04$) vs baseline ($\delta=0.01$)

Initial shock: 8pp increase in unemployment, persistence 0.9

- With debt averse fiscal policy slower recovery

Extra accommodative fiscal policy at the ZLB $\left(\Psi_{\text {ZLB }}=0.5\right)$ vs baseline Initial shock: 6pp increase in unemployment, persistence 0.9

- With extra accommodative fiscal policy faster recovery without larger increase in debt

Negative rates (ELB $=-0.5$) vs baseline Initial shock: 6pp increase in unemployment, persistence 0.9

- With negative rates slightly faster recovery but noticeable smaller rise in debt

BIS

Wrapping up

Key takeaways

- Low r* significantly constrains conventional monetary policy through the ZLB
- Unemployment and inflation diverge from steady state levels
- Greater risk of debt deflation
- CB balance sheet policy alleviates ZLB constraints
- Unemployment and inflation stabilised around steady state levels
- Stabilises public debt without explicitly aiming to do so
- Fiscal rules matter
- Excessively debt averse fiscal rules are counterproductive in a low r* world
- Extra accommodative fiscal policy in case of a binding ZLB constraint enhances both economic and debt stability when combined with CB balance sheet policy
- Combining negative rates with CB balance sheet policy further helps somewhat dampening downturns and containing the associated rise in debt

