

Boris Hofmann, Marco J. Lombardi, Benoît Mojon and Athanasios Orphanides

The views expressed are not necessarily those of the BIS

Background: Low r* and r*<g*

Source: Holston et al (2017)

Outline

Goal: Assess the interaction of monetary and fiscal policy in low r* environment

- 1. Implications of lower r* for conventional monetary policy (ZLB frequency)
- 2. Effectiveness of central bank balance sheet policy and fiscal policy at low r*
 - For macroeconomic stability and for public debt stability
- 3. The role of fiscal rules and negative policy rates

Methodology

- <u>Toolbox</u>: small-scale semi-structural model featuring:
 - Short- and long-term interest rates
 - Central bank bond purchases (QE)
 - Fiscal policy and public debt accumulation
 - Expectations formations can be rationale or under learning to allow for de-anchoring
- <u>Simulations</u> of fiscal-monetary interactions
 - Stochastic simulations of the model over a period of 50 years
 - Severe recession scenarios

The model

IS curve and Phillips curve

• IS curve: linking the unemployment gap to long-term real rates and the primary fiscal balance

$$u_{t} = \phi_{u}u_{t-1} + (1 - \phi_{u})E(u_{t+1}) + \alpha_{u}(r_{t}^{l} - r^{l*}) + \alpha_{f}(pb_{t} - pb^{*}) + \epsilon_{u,t}$$

<u>Calibration</u>: ϕ_u =0.5, α_u =0.15, α_f =0.5 (fiscal output multiplier=1), shock SD = 0.45 (calibration of r^{l^*} and pb^* later)

Phillips curve: linking inflation to the unemployment gap

$$\pi_t = \phi_{\pi} \pi_{t-1} + (1 - \phi_{\pi}) E(\pi_{t+1}) + \alpha_{\pi} (u_t - u^*) + \epsilon_{\pi,t}$$

<u>Calibration</u>: ϕ_{π} =0.5, α_{π} =0.1 (flat Phillips curve), shock SD = 0.75

$$\pi^* = 2\%$$
, $u^* = 4\%$

Long-term interest rates

Long-term interest rates: driven by expected short-term rates and the term premium (5y maturity)

$$r_t^l = \frac{1}{L} \sum_{j=0}^{L} r_j^s + t p_t, i_t^l = \frac{1}{L} \sum_{j=0}^{L} i_j + t p_t.$$

• **Term premium**: increasing in net supply of debt to public (increasing in d-d*, decreasing in b-b*)

$$tp_t = tp^* + \alpha_{tp}(b_{t-1} - b^*) - \alpha_{tp}(d_{t-1} - d^*)$$

<u>Calibration</u>: $\alpha_{tp} = -0.05$ (-5 bp for each pp increase in b-b*) based on Li and Wei (2013)

Steady state long-term real interest rate:

$$r^{l*} = r^* + tp^* = 1.5\%$$
 ($r^* = 0.5\%$ and $tp^* = 1\%$)

Monetary policy

Conventional monetary policy: Follows inertial Taylor rule and faces ZLB constraint

$$i_t = max[i_t^T + \epsilon_{i,t}, 0]$$

$$i_t^T = \theta_i i_{t-1} + (1 - \theta_i) [r^* + \pi_{t-1} + \theta_\pi (\pi_{t-1} - \pi^*) + \theta_u (u_{t-1} - u^*)]$$

<u>Calibration</u>: θ_i =0.85, θ_{π} =0.5, θ_{μ} =2.0 (inertial Taylor (1999) rule)

Unconventional monetary policy: Follows inertial bond holding rule when i is at the ZLB

$$b_t = \zeta_b b_{t-1} + (1 - \zeta_b) b^* + \zeta_\pi (\pi_{t-1} - \pi^*) + \zeta_u (u_{t-1} - u^*) + \epsilon_{b,t}$$
 when i is at the ZLB $b_t = \zeta_b b_{t-1} + (1 - \zeta_b) b^*$ otherwise

Calibration:

- $\zeta_b = 0.95$ corresponds to a half-life of the balance sheet of over 3 years
- response of long-term rates to conventional and unconventional MP shocks)

Fiscal policy

Fiscal rule: expressed in terms of primary balance (as a share of GDP)

$$pb_{t} = \rho_{pb}pb_{t-1} + (1 - \rho_{pb})pb^{*} + \psi(u_{t-1} - u^{*}) + \delta(d_{t-1} - d^{*}) + \epsilon_{pb,t}$$

- Fiscal stance depends on unemployment gap and on the deviation of debt from target level <u>Calibration</u>: $\rho_{pb} = 0.7$, $\psi = -0.25$ (Taylor (2000) fiscal rule), $\delta = 0.01$ (in baseline)
- **Government debt dynamics**:

$$d_t = (1 + i_{q,t}^d - g_{q,t} - \pi_{q,t})d_{t-1} - pb_t$$

- $i_{q,t}^d$, $g_{q,t}$, $\pi_{q,t}$ are respectively the quarterly fractions of the government debt service cost (5-year moving average the bond yield), of the annualised inflation rate and of the annualised real GDP growth $g_t = g^* - 2(u_t - u_{t-1})$ applying Okun's law and setting $g^*=1.5\%$
- **Quarterly steady state primary balance**: stabilises d at d^* in steady state

$$pb^* = (r_q^* + tp_q^* - g_q^*)d^*$$

Expectations formation

- Agents observe the history of π , u and i
 - Estimate a VAR and use that for forecasting
 - One-period ahead inflation and unemployment
 - L-period ahead inflation (to construct real long-term rates)
- Constant-gain learning as in Orphanides and Williams (2007), $\kappa = 0.02$
 - Recursive updating of the VAR coefficients (VAR comprises π , u and i)

$$c_t = c_{t-1} + \kappa R_t^{-1} X_t (Y_t - X_t' c_{t-1}),$$

$$R_t = R_{t-1} + \kappa (X_t X_t' - R_{t-1}),$$

- Starting point: RE solution

Simulation results

Lower r* makes the ZLB noticeably more binding

	и	рi
Mean	4.4	1.5
Stdev	0.7	1.6
Mean	4.9	1.1
Stdev	0.8	1.6
Mean	4.0	2.0
Stdev	0.5	1.5

ır,	1 -2.5					
rs	rl	bs	рb	d	ZLB_s	ZLB_l
2.5	3.9	10.0	0.6	113.1	10%	0%
1.0	0.6	0.0	0.4	12.6		
FP,	r*=0.5					
1.0	2.6	10.0	0.4	134.8	20%	0%
1.1	0.8	0.0	0.6	24.4		
P, r*=().5, no ZL	.В				
0.5	1.5	10.0	0.0	100.5	0%	0%
1.0	0.5	0.0	0.3	4.7		
						,

- Benchmark fiscal rule
- Benchmark interest rate rule
- No balance sheet policy

CB balance sheet policy alleviates ZLB constraint

From now on, r*=0.5%

	FP (no BS)									
	ш	pi	rs	rl	bs	pb	d	ZLB_s	ZLB_l	NegTP
Mean	4.9	1.1	1.0	2.6	10.0	0.4	134.8	20%	0%	0%
Stdev	0.8	1.6	1.1	8.0	0.0	0.6	24.4			
	FP + BS									
Mean	4.0	2.0	1.1	1.6	22.2	0.0	100.4	9%	14%	28%
Stdev	0.6	1.6	1.0	0.6	8.8	0.3	6.8			

- Benchmark fiscal rule
- Benchmark interest rate rule
- Benchmark balance sheet policy

No balance sheet policy vs baseline

Initial shock: 6pp increase in unemployment, persistence 0.9

Without balance sheet policy slower recovery and much higher debt

Debt and inflation under benchmark rules

Debt-averse fiscal policy is counterproductive

Debt-averse FP+BS, δ =0.04, r*=0.5

	и	pi	rs	rl	bs	pb	d	ZLB_s	s ZLB_	NegTP
Mean	4.3	1.6	1.2	1.7	27.3	0.1	102.6	15%	6 21%	28%
Stdev	0.8	1.7	1.2	0.9	11.8	0.4	5.1			
			Benchmark	FP+BS, r*	=0.5					
Mean	4.0	2.0	1.1	1.6	22.2	0.0	100.4	99	% 14%	28%
Stdev	0.6	1.6	1.0	0.6	8.8	0.3	6.8			

- Benchmark interest rate rule
- Benchmark balance sheet policy

Debt-averse FP vs baseline: Debt and inflation outcomes

Debt-averse FP (δ =0.04) + BS

Baseline FP + BS

 π

Debt-averse FP vs baseline: Distribution of inflation outcomes

Debt averse FP (δ =0.04)

Baseline FP (δ =0.01)

Extra accommodative fiscal policy at the ZLB

$$pb_{t} = \rho_{pb}pb_{t-1} + (1 - \rho_{pb})pb^{*} + \psi(u_{t-1} - u^{*}) + \delta(d_{t-1} - d^{*}) + \Psi_{ZLB}(i_{t} - i_{t}^{T}) + \epsilon_{pb,t}$$

EA FP (
$$\Psi_{ZLB} = 0.5$$
) + BS

Baseline FP + BS

EA FP ($\Psi_{ZLB} = 0.5$) + no BS

Negative rates (ELB=-0.5%)

Recession scenario

No balance sheet policy vs baseline

Initial shock: 6pp increase in unemployment, persistence 0.9

Without balance sheet policy slower recovery and much higher debt

Debt averse fiscal policy (δ =0.04) vs baseline (δ =0.01)

Initial shock: 8pp increase in unemployment, persistence 0.9

With debt averse fiscal policy slower recovery

Extra accommodative fiscal policy at the ZLB ($\Psi_{ZLB} = 0.5$) vs baseline

Initial shock: 6pp increase in unemployment, persistence 0.9

With extra accommodative fiscal policy faster recovery without larger increase in debt

Negative rates (ELB= -0.5) vs baseline

Initial shock: 6pp increase in unemployment, persistence 0.9

With negative rates slightly faster recovery but noticeable smaller rise in debt

Wrapping up

Key takeaways

- Low r* significantly constrains conventional monetary policy through the ZLB
 - Unemployment and inflation diverge from steady state levels
 - Greater risk of debt deflation
- CB balance sheet policy alleviates ZLB constraints
 - Unemployment and inflation stabilised around steady state levels
 - Stabilises public debt without explicitly aiming to do so
- Fiscal rules matter
 - Excessively debt averse fiscal rules are counterproductive in a low r* world
 - Extra accommodative fiscal policy in case of a binding ZLB constraint enhances both economic and debt stability when combined with CB balance sheet policy
- Combining negative rates with CB balance sheet policy further helps somewhat dampening downturns and containing the associated rise in debt