Evidence Acquisition and Voluntary Disclosure

Motivation

- People provide information to influence others' decision
- In contrast to unsupported claims, hard evidence is convincing
- Agents strategically seek evidence to persuade
- entrepreneurs \rightarrow investors
- sellers \rightarrow buyers
- -workers \rightarrow firms
- lawyers \rightarrow arbitrators
- But: often no obligation to disclose evidence
- Non-disclosure of unfavorable evidence if there is *ur* whether it was obtained

Question

Which evidence to seek when disclosure is voluntary

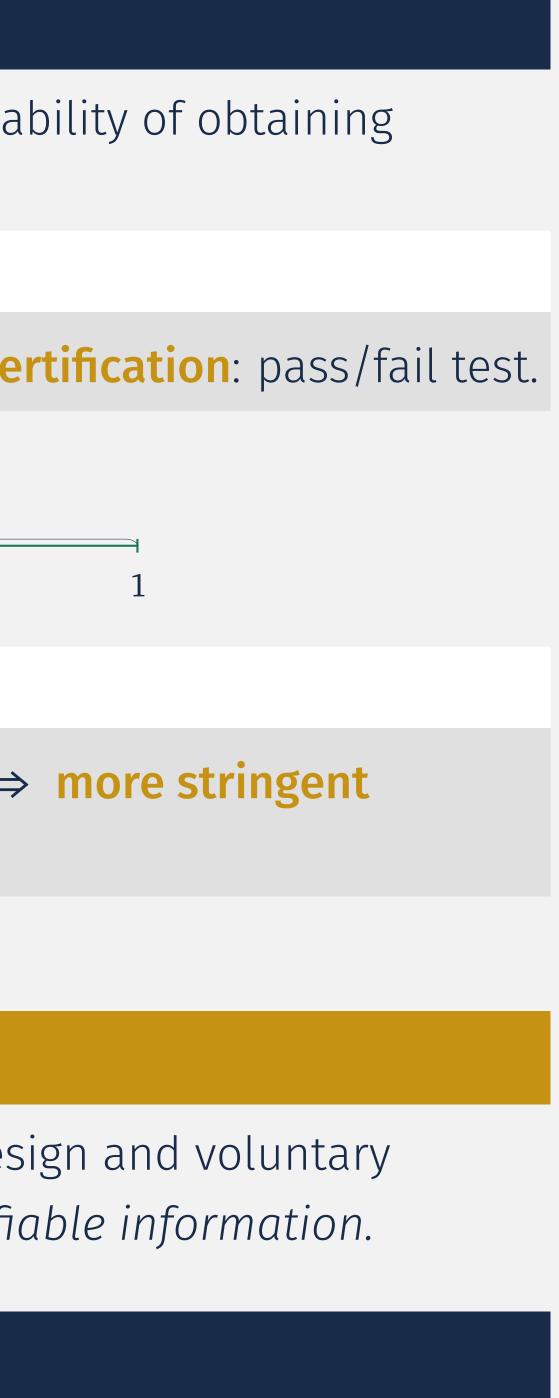
Model

- Players: Sender (**S**) and Receiver (**R**)
- · State (project quality) $\theta \in \Theta = [0, 1]$ unknown to bot
- $\cdot \mathbf{R}$'s privately known outside option $\omega \sim \text{single-peake}$
- above $\cdot \mathbf{R} \stackrel{\text{approves}}{\text{rejects}}$ the project if posterior mean θ below
- •**S** always wants approval
- **S** chooses which hard evidence to seek and disclose $- set E = \{ pieces of evidence \}$
- $-\mathbf{S}$ chooses evidence structure $\pi: \Theta \to \Delta E$
- -with probability $q \in (0, 1]$ obtains $e \sim \pi(\theta)$
- decides whether to disclose *e* or not

• What is the optimal evidence structure?

Denis Shishkin

Department of Economics, UC San Diego


denisshishkin.com • dshishkin@ucsd.edu

	Main Results
isions more	Optimal structure depends on $q =$ proba evidence
more	Result 1:
	If q is low, the optimum π^* is a binary ce
	fail pass
	$0 \qquad \longleftarrow \text{state } \theta \longrightarrow$
	Result 2:
incertainty	Evidence more likely to be obtained \implies standards under binary certification
?	Takeaway
	The interaction between information des disclosure can lead to simplicity of verific
oth S and R	Equilibrium Evidence Structure
	q
ed density	
ω	pool reveal pool

q

pool

pool

If evidence is likely to be obtained: two-sided censorship

If evidence is unlikely to be obtained: binary certification

Intuition

Two forces affect information 1. Information design (which information to seek)

- \implies Upper pooling

2. **Voluntary disclosure** (what to disclose)

- \implies Non-disclosure of unfavorable evidence
- \implies Lower pooling

Intuition for optimal evidence structure:

- · Under q < 1: lower $q \implies$ less **R**'s skepticism \implies **S** discloses less \implies more pooling at the bottom
- \cdot If $q < \overline{q}$, **S** uses binary certification to disclose more often
- Moreover, as q decreases (below \bar{q}), lower certification standard compensates for lower chance of obtaining evidence by increasing probability of favorable evidence

Conclusion

- voluntary disclosure
- The combination of design and disclosure incentives can lead to hard information taking a form of a pass/fail test.

 \implies Imprecise information about high quality projects

• Under q = 1: **R** fully skeptical \implies unraveling at disclosure stage \implies S solves pure information design problem \implies optimum has pooling (revelation) above (below) a threshold

• This paper endogenizes the evidence structure in a game of

• Interaction between these two forces leads to a reversal of the skepticism effect of uncertainty on the set of concealed states.

• Higher probability of obtaining evidence benefits both players, not just because it allows the sender to communicate more often, but also because she does so more efficiently.

UC San Diego