Information Acquisition and Provision in School Choice: An Experimental Study

Yan Chen* YinghuaHe*

* University of Michigan * Rice University

December 11, 2020

School Choice and College Admissions

- School choice
 - Students choose which school to attend
 - Increased popularity of centralized public school choice
 - Amsterdam, Beijing, Boston, Chicago, Minnesota, New York City, Paris, etc.
 - ► Typically **multiple** schools

School Choice and College Admissions

- School choice
 - Students choose which school to attend
 - Increased popularity of centralized public school choice
 - Amsterdam, Beijing, Boston, Chicago, Minnesota, New York City, Paris, etc.
 - ► Typically **multiple** schools
- College/university admissions
 - Choose which college/university to attend.
 - hundreds of colleges / college programs.

The Information Problem

▶ Relevant info may be unavailable or costly to acquire

The Information Problem

- ▶ Relevant info may be unavailable or costly to acquire "It was very hard, and very time-consuming," New Orleans resident Carrie Fisher said of trying to find a school for her daughter, who entered kindergarten last fall. "I'm educated, I have a bachelor's degree, … and I do have time to read articles online and research things."
 - Arianna Prothero, "Parents Confront Obstacles as School Choice Expands," Education Week 2015

Theory versus Practice

- Matching theory typically assumes students have perfect information on own preferences
 - ▶ at least the ordinal preferences

Theory versus Practice

- Matching theory typically assumes students have perfect information on own preferences
 - ▶ at least the ordinal preferences
- Evidence shows:
 - Providing more information changes student choices
 - ▶ Info on school quality (Hastings and Weinstein 2008)
 - ▶ Info on financial aid (Hoxby and Turner 2015)
 - many other field experiments.

► Research questions:

- ► Research questions:
 - 1. Investigate students' incentives to acquire information about
 - own preferences (private values; independent of others' pref)

- ► Research questions:
 - 1. Investigate students' incentives to acquire information about
 - own preferences (private values; independent of others' pref)
 - others' preferences (strategic consideration;)

- Research questions:
 - 1. Investigate students' incentives to acquire information about
 - own preferences (private values; independent of others' pref)
 - others' preferences (strategic consideration;)
 - under different school choice mechanisms.

- Research questions:
 - 1. Investigate students' incentives to acquire information about
 - own preferences (private values; independent of others' pref)
 - others' preferences (strategic consideration;)
 - under different school choice mechanisms.
 - Measure the welfare effects of information provision by educational authorities.
 - own preferences: costless ways to access info about a school
 - others' preferences: costless ways to learn others' pref (and therefore others' strategies)

- Research questions:
 - 1. Investigate students' incentives to acquire information about
 - own preferences (private values; independent of others' pref)
 - others' preferences (strategic consideration;)
 - under different school choice mechanisms.
 - Measure the welfare effects of information provision by educational authorities.
 - own preferences: costless ways to access info about a school
 - others' preferences: costless ways to learn others' pref (and therefore others' strategies)
- Approaches:
 - a theoretical model
 - optimal strategies of every student
 - a lab experiment
 - extensive empirical evidence on sub-optimal strategies of students.

Literature

- An extensive literature on information acquisition in many fields: mostly theoretical.
- Information acquisition in mechanism design: Bergemann and Valimaki (2006)
- Information acquisition in market design
 - ▶ Bade (2015); Harless and Manjunath (2015): ordinal preferences.
- Information acquisition experiments
 - Voting:
 - ► Elbittar et al. (2014)
 - ▶ Bhattacharya, Duffy and Kim (2015)
 - Auctions:
 - Choi, Guerra, and Kim (2015); Davis et al. (2011); Gretschko and Rajko (2015);
- Advice giving in school choice (experiments):
 - Ding and Schotter (2014, 2015)

Theoretical Analysis
Experiment Design
Results from Experimental Data
Conclusion

Theoretical Analysis

Experiment Design Results from Experimental Data Conclusion

- A school choice problem consists of:
 - ightharpoonup a set of students $I = \{i_1, i_2, \dots, i_{|I|}\}$
 - ightharpoonup a set of schools $S = \{s_1, s_2, \dots, s_{|S|}\}$
 - ightharpoonup the number of available seats at school s: q_s
 - for simplicity: schools do not rank students ex ante
 - rank them by a random lottery ex post
 - true in many school choice programs

- A school choice problem consists of:
 - ightharpoonup a set of students $I = \{i_1, i_2, \dots, i_{|I|}\}$
 - ightharpoonup a set of schools $S = \{s_1, s_2, \dots, s_{|S|}\}$
 - ightharpoonup the number of available seats at school s: q_s
 - for simplicity: schools do not rank students ex ante
 - rank them by a random lottery ex post
 - true in many school choice programs
 - Varying information structure on preferences:
 - ▶ Maintained assumption: Private values; all \succeq outside option.
 - Previous literature: Ordinal P_i or cardinal V_i known

- A school choice problem consists of:
 - ightharpoonup a set of students $I = \{i_1, i_2, \dots, i_{|I|}\}$
 - ightharpoonup a set of schools $S = \{s_1, s_2, \dots, s_{|S|}\}$
 - ightharpoonup the number of available seats at school s: q_s
 - for simplicity: schools do not rank students ex ante
 - rank them by a random lottery ex post
 - true in many school choice programs
 - Varying information structure on preferences:
 - Maintained assumption: Private values; all ≥ outside option.
 - Previous literature: Ordinal P_i or cardinal V_i known
- ► The school choice game under a given mechanism
 - the Gale-Shapley deferred-acceptance mechanism (DA) or
 - the (Boston) immediate-acceptance mechanism (IA).

- A school choice problem consists of:
 - ightharpoonup a set of students $I = \{i_1, i_2, \dots, i_{|I|}\}$
 - ightharpoonup a set of schools $S = \{s_1, s_2, \dots, s_{|S|}\}$
 - ightharpoonup the number of available seats at school s: q_s
 - for simplicity: schools do not rank students ex ante
 - rank them by a random lottery ex post
 - true in many school choice programs
 - Varying information structure on preferences:
 - Maintained assumption: Private values; all ≥ outside option.
 - Previous literature: Ordinal P_i or cardinal V_i known
- ► The school choice game under a given mechanism
 - the Gale-Shapley deferred-acceptance mechanism (DA) or
 - ▶ the (Boston) immediate-acceptance mechanism (IA).
 - Strategy: students submit a rank-ordered list of schools.

- A school choice problem consists of:
 - ightharpoonup a set of students $I = \{i_1, i_2, \dots, i_{|I|}\}$
 - ightharpoonup a set of schools $S = \{s_1, s_2, \dots, s_{|S|}\}$
 - ightharpoonup the number of available seats at school s: q_s
 - for simplicity: schools do not rank students ex ante
 - rank them by a random lottery ex post
 - true in many school choice programs
 - Varying information structure on preferences:
 - Maintained assumption: Private values; all ≥ outside option.
 - Previous literature: Ordinal P_i or cardinal V_i known
- The school choice game under a given mechanism
 - the Gale-Shapley deferred-acceptance mechanism (DA) or
 - ▶ the (Boston) immediate-acceptance mechanism (IA).
 - Strategy: students submit a rank-ordered list of schools.
 - Outcome: student-school matching.

Information acquisition on own preferences

- Information acquisition happens before one enters the school choice game
 - i.e., before submitting rank-ordered lists.

Information acquisition on own preferences

- Information acquisition happens before one enters the school choice game
 - i.e., before submitting rank-ordered lists.
- Common knowledge
 - ex ante homogenous students;
 - ▶ the distribution of V_i (∈ [0,1] $^{|S|}$), but i doesn't knows V_i , $\forall i$.

Information acquisition on own preferences

- Information acquisition happens before one enters the school choice game
 - i.e., before submitting rank-ordered lists.
- Common knowledge
 - ex ante homogenous students;
 - ▶ the distribution of V_i (∈ [0,1] $^{|S|}$), but i doesn't knows V_i , $\forall i$.
- Costly information acquisition
 - Sequential: acquire info on ordinal then cardinal pref.
 - ightharpoonup cost: $c(\alpha, \beta)$.
 - 1. Investment in acquiring ordinal preference: $\alpha \in [0, \bar{\alpha}]$
 - 2. Investment in acquiring cardinal preference: $\beta \in [0,\bar{\beta}]$

Incentives to acquire information about own preference

Under a set of conditions (including bounded cost and Inada conditions for information acquisition technology, $a(\alpha)$, $b(\beta)$), we have:

Proposition

In any symmetric Bayesian Nash equilibrium under DA or IA,

- (i) students always have an incentive to learn their own ordinal preferences;
- (ii) under DA, there is no incentive to learn own cardinal preferences;
- (iii) under IA, there exists a distribution of preferences such that students have an incentive to learn their own cardinal preferences.

Incentives to acquire information about own preference

Under a set of conditions (including bounded cost and Inada conditions for information acquisition technology, $a(\alpha)$, $b(\beta)$), we have:

Proposition

In any symmetric Bayesian Nash equilibrium under DA or IA,

- (i) students always have an incentive to learn their own ordinal preferences;
- (ii) under DA, there is no incentive to learn own cardinal preferences;
- (iii) under IA, there exists a distribution of preferences such that students have an incentive to learn their own cardinal preferences.

Remark

Part (ii) is true for all strategy-proof mechanisms that elicit ordinal information from students.

Incentives to acquire information about others' preferences

- ► Given everyone **knows her own preferences**, the incentive to learn others' preferences:
 - ▶ a similar information acquisition technology as before;
 - ▶ a direct measure of the incentive (cost) to be strategic.
 - others' preferences do not affect my preferences.

Incentives to acquire information about others' preferences

- ► Given everyone **knows her own preferences**, the incentive to learn others' preferences:
 - ▶ a similar information acquisition technology as before;
 - a direct measure of the incentive (cost) to be strategic.
 - others' preferences do not affect my preferences.

Proposition

In an arbitrary symmetric Bayesian Nash equilibrium,

- (i) under DA, there is no incentive to learn others' preferences;
- (ii) under IA, there exists a distribution of preferences such that some students have incentives to learn others' preferences.

Incentives to acquire information about others' preferences

- ► Given everyone **knows her own preferences**, the incentive to learn others' preferences:
 - ▶ a similar information acquisition technology as before;
 - ▶ a direct measure of the incentive (cost) to be strategic.
 - others' preferences do not affect my preferences.

Proposition

In an arbitrary symmetric Bayesian Nash equilibrium,

- (i) under DA, there is no incentive to learn others' preferences;
- (ii) under IA, there exists a distribution of preferences such that some students have incentives to learn others' preferences.

Remark

Part (i) is true for all strategy-proof mechanisms that elicit ordinal information from students.

Theoretical Analysis

Experiment Design

Results from Experimental Data

Conclusion

- ▶ three students, $i \in \{1, 2, 3\}$
- ▶ three schools, $s \in \{A, B, C\}$
- ▶ Each school has one slot and ranks students with a lottery.

- ▶ three students, $i \in \{1, 2, 3\}$
- ▶ three schools, $s \in \{A, B, C\}$
- Each school has one slot and ranks students with a lottery.
- ► Payoff distribution

Students	s = A	s = B	s = C
$i \in \{1,2,3\}$	100	10 with probability 4/5; 110 with probability 1/5	0

- ▶ three students, $i \in \{1, 2, 3\}$
- ▶ three schools, $s \in \{A, B, C\}$
- Each school has one slot and ranks students with a lottery.
- ► Payoff distribution

Students	s = A	A s = B	
$i \in \{1,2,3\}$ 100		10 with probability 4/5; 110 with probability 1/5	0

- ▶ Uncertainty: realization of the value of school B
- Ex ante, expected payoff of being assigned to B is 30.
 - ightharpoonup ex ante submitting (A, B, C) is a dominant strategy.

- ▶ three students, $i \in \{1, 2, 3\}$
- ▶ three schools, $s \in \{A, B, C\}$
- Each school has one slot and ranks students with a lottery.
- ► Payoff distribution

Students	s = A	s = B	s = C
$i \in \{1,2,3\}$	100	10 with probability 4/5; 110 with probability 1/5	0

- ▶ Uncertainty: realization of the value of school B
- Ex ante, expected payoff of being assigned to B is 30.
 - \triangleright ex ante submitting (A, B, C) is a dominant strategy.
- ▶ Inefficiency: assign a type-(100, 10, 0) student to school *B* if there is at least one other student of type-(100, 110, 0)

Experimental Design

 $2(mechanisms) \times 2(information to acquire) \times 2(cost conditions)$

- 1. IA vs. DA (between-subject)
- 2. Own value vs. others' values (between-subject)
- 3. Free vs. costly info (within-subject)

Table: Features of Experimental Sessions

Info to acquire	Immediate Acceptance		Deferred Acceptance	
Own Value	free-costly	3×12	free-costly	3×12
	costly-free	3×12	costly-free	3×12
Others' Values	free-costly	3×12	free-costly	3×12
	costly-free	3×12	costly-free	3×12

12 subjects per session, random re-matching, 20 rounds

24 independent sessions and 288 participants

Willingness to Pay for Information: Becker-Degroot-Marshak

- ► Enter WTP for own value (others' values) in [0,15]
- Server collects WTP and generates a random number between [0, 15] for each participant
 - ▶ If her WTP > random number, she finds out information and pays the random number
 - Otherwise, she does not find out the information and pays zero
- Instructions adapted from Benhabib, Bisin and Schotter (2010)

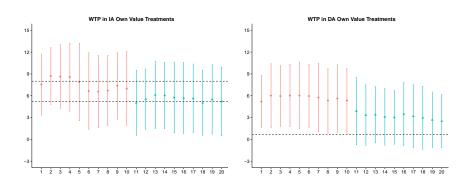
Incentivized Belief Elicitation: Binarized Scoring Rule

Incentive to acquire info depends on the belief about others' info acquisition.

Incentivized Belief Elicitation: Binarized Scoring Rule

- Incentive to acquire info depends on the belief about others' info acquisition.
- Implementation of Binarized Scoring Rule (BSR)
 - ► Each subject submits a guess for the average WTP of the other two participants;
 - Server computes the squared error of the guess and the actual average, MSE;
 - Server randomly draw a number, R, uniformly from [0, 49].
 - ▶ If the MSE \leq R, the subject gets a fixed prize of 5 points
 - Otherwise, she gets zero from guessing
 - ► The random number, R, is drawn independently for each subject, and for each round.

Incentivized Belief Elicitation: Binarized Scoring Rule

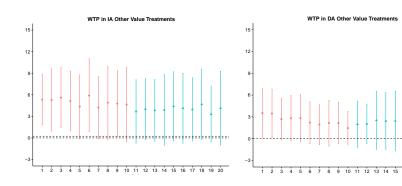

- Incentive to acquire info depends on the belief about others' info acquisition.
- Implementation of Binarized Scoring Rule (BSR)
 - Each subject submits a guess for the average WTP of the other two participants;
 - Server computes the squared error of the guess and the actual average, MSE;
 - Server randomly draw a number, R, uniformly from [0, 49].
 - ▶ If the MSE \leq R, the subject gets a fixed prize of 5 points
 - Otherwise, she gets zero from guessing
 - The random number, R, is drawn independently for each subject, and for each round.
 - Most relevant literature
 - ► Hossain and Okui (2013)
 - Schotter and Trevino (2014)

Risk Attitude Elicitation; Curiosity

- Risk attitude elicitation
 - Holt and Laury lottery choice
- Curiosity
 - Informed of payoff from lottery choice
 - WTP for the realization of lottery decision
 - non-instrumental information
 - Golman and Loewenstein (2016)

Theoretical Analysis
Experiment Design
Results from Experimental Data
Conclusion

WTP for Own Values


Hypothesis

IA > DA > 0.

Result (session average)

$$IA > DA \ (p = 0.03), \ IA > 0, \ DA > 0 \ (p < 0.01)$$

WTP for Others' Values

Hypothesis

$$IA > DA = 0$$

Result (session average)

$$IA > DA \ (p = 0.01), \ IA > 0, \ DA > 0 \ (p < 0.01)$$

Excessive WTP

- ► Excessive WTP for information (except IA OwnValues)
- Excess information acquisition in the literature
 - Jury/committee voting: Bhattacharya, Duffy and Kim (2015)
 - Auctions: Gretschko and Rajko (2015), "regret avoidance"
- ► Why?

Excessive WTP

- ► Excessive WTP for information (except IA OwnValues)
- Excess information acquisition in the literature
 - ▶ Jury/committee voting: Bhattacharya, Duffy and Kim (2015)
 - Auctions: Gretschko and Rajko (2015), "regret avoidance"
- ► Why?
- Decomposition of WTP at subject level

Determinants of Subject-Average WTP: Tobit Model

	Full Sample	Subsample 1	Subsample 1	Subsample 2
IA_OwnValue	6.45***	6.26***	5.22***	5.77***
	(0.56)	(0.57)	(1.10)	(1.74)
IA_OtherValue	4.32***	4.05***	3.46***	3.91**
	(0.62)	(0.72)	(1.21)	(1.91)
DA_OwnValue	4.13***	3.78***	2.94***	3.60**
DA OtherValue	(0.71) 1.47***	(0.82) 1.01**	(1.07) 0.91	(1.71) 1.98
_	(0.45)	(0.47)	(1.13)	(1.79)
% playing a dominated strategy with free info			6.85***	6.29***
Curiosity			(2.02) 0.34***	(2.21) 0.33***
Costly-Free			(0.05) 1.88***	(0.04) 1.87***
			(0.45)	(0.36)
Risk Aversion			-0.28**	-0.20
			(0.13)	(0.13)
Demographics				Yes
N	288	241	241	233

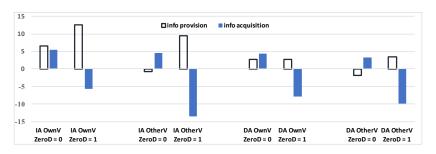
Decomposition of Subject WTP for Information

	IA Own	IA Other	DA Own	DA Other
WTP: data	6.49	4.29	4.30	1.78
(i) Cognitive load	-0.70	0.36	0.99	0.45
(ii) Learning	0.30	0.10	0.63	0.71
(iii) Conformity	4.10	2.10	2.78	1.30
(iv) Misunderstand			0.41	0.25
(v) Curiosity	1.36	1.69	0.75	0.57
(vi) Risk aversion	-1.43	-0.24	-0.51	0.31
Total explained	3.60	3.17	3.73	1.68
Remaining/unexplained	2.88	1.13	0.58	0.11
Theoretical prediction	[5.2, 8]	[0, 0.24]	0.67	0
# of Obs.	549	495	558	495
# of Subj.	61	55	62	55

Decomposition of Subject WTP for Information

	IA Own	IA Other	DA Own	DA Other
WTP: data	6.49	4.29	4.30	1.78
(i) Cognitive load	-0.70	0.36	0.99	0.45
(ii) Learning	0.30	0.10	0.63	0.71
(iii) Conformity	4.10	2.10	2.78	1.30
(49-73%)				
(iv) Misunderstand			0.41	0.25
(v) Curiosity	1.36	1.69	0.75	0.57
(17-39%)				
(vi) Risk aversion	-1.43	-0.24	-0.51	0.31
Total explained	3.60	3.17	3.73	1.68
Remaining/unexplained	2.88	1.13	0.58	0.11
Theoretical prediction	[5.2, 8]	[0, 0.24]	0.67	0
# of Obs.	549	495	558	495
# of Subj.	61	55	62	55

Heterogenous types: Zero-demand for information


Table: Participants who always submit 0 WTP for information

	$ZeroD_i = 1$		
Treatment	n	Proportion	
IA OwnV	6	8%	
IA OtherV	7	10%	
DA OwnV	11	15%	
DA OtherV	20	28%	
Total	44	15%	

Who have zero demand for information (linear probit model with treatment dummies)?

- Curiosity (-0.02, p < 0.01)
- ► Asian (0.10, p < 0.05)

Effects of Information Provision & Costly Acquisition (relative to no relevant information)

- Hypothesis 1: Zero-demand participants use free information less efficiently than others.
 - Reject
- ► Hypothesis 2: Costly information acquisition hurts zero-demand participants, while benefiting others who have the opportunity to obtain more information.
 - Fail to reject.

Theoretical Analysis
Experiment Design
Results from Experimental Data
Conclusion

- Incentives for information acquisition in school choice vary across mechanisms
 - distinguish info on own or others' values, or
 - preference formation vs. gaming.

- Incentives for information acquisition in school choice vary across mechanisms
 - distinguish info on own or others' values, or
 - preference formation vs. gaming.

- Incentives for information acquisition in school choice vary across mechanisms
 - distinguish info on own or others' values, or
 - preference formation vs. gaming.
- Welfare analyses:
 - Free info on own values: main focus of the literature
 - Welfare-improving under DA/IA, true in both theory and experiment.

- Incentives for information acquisition in school choice vary across mechanisms
 - distinguish info on own or others' values, or
 - preference formation vs. gaming.
- ► Welfare analyses:
 - Free info on own values: main focus of the literature
 - Welfare-improving under DA/IA, true in both theory and experiment.
 - Free info on others' values: different results
 - ► Theoretically, no use under DA the benefit of being strategy-proof; ambiguous effects under IA.
 - ► In experiment, welfare-improving under DA/IA.

- Incentives for information acquisition in school choice vary across mechanisms
 - distinguish info on own or others' values, or
 - preference formation vs. gaming.
- Welfare analyses:
 - Free info on own values: main focus of the literature
 - Welfare-improving under DA/IA, true in both theory and experiment.
 - Free info on others' values: different results
 - ► Theoretically, no use under DA the benefit of being strategy-proof; ambiguous effects under IA.
 - ► In experiment, welfare-improving under DA/IA.
- Excessive WTP due to curiosity and conformity in experiment.

- Incentives for information acquisition in school choice vary across mechanisms
 - distinguish info on own or others' values, or
 - preference formation vs. gaming.
- Welfare analyses:
 - Free info on own values: main focus of the literature
 - Welfare-improving under DA/IA, true in both theory and experiment.
 - Free info on others' values: different results
 - ► Theoretically, no use under DA the benefit of being strategy-proof; ambiguous effects under IA.
 - ► In experiment, welfare-improving under DA/IA.
- Excessive WTP due to curiosity and conformity in experiment.
- A strong case for information provision

Concluding Remarks: Information Provision

- Providing information on own preferences
 - Accessible presentation material on school offerings and performance (Hastings and Weinstein 2008)
 - Knowledgeable guidance counselors and teachers (Sattin-Bajaj 2014)

Concluding Remarks: Information Provision

- Providing information on own preferences
 - Accessible presentation material on school offerings and performance (Hastings and Weinstein 2008)
 - Knowledgeable guidance counselors and teachers (Sattin-Bajaj 2014)

Concluding Remarks: Information Provision

- Providing information on own preferences
 - Accessible presentation material on school offerings and performance (Hastings and Weinstein 2008)
 - Knowledgeable guidance counselors and teachers (Sattin-Bajaj 2014)
- Providing information on others' preferences
 - School choice mechanism in Wake County, North Carolina (Dur, Hammond and Morrill 2018)
 - ▶ Japan Residency Matching program (# students list each hospital program as first choice: 9/22-10/5)
 - University of Tokyo: matching students to departments
 - College admissions in Inner Mongolia (Gong and Liang 2017)