
Revisiting the Optimal Inflation Rate with Downward
Nominal Wage Rigidity: The Role of Heterogeneity

Tomohide Mineyama∗

October 30, 2020

Abstract

In this paper, I study the optimal inflation rate in a sticky price economy in which

workers are heterogeneous in labor productivity and wage changes are subject to asym-

metric adjustment costs. The model calibrated to U.S. micro wage data implies down-

ward nominal wage rigidity (DNWR). The optimal inflation rate is substantially higher

than stated in the literature in the presence of worker heterogeneity. A key to under-

standing the result is that DNWR causes an inefficient cross-sectional allocation of

labor as well as inefficient aggregate dynamics, enlarging the “grease the wheels” effect

of inflation.
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1 Introduction

There has been a long-lasting debate regarding the optimal inflation rate. It is one of

the most fundamental questions in monetary economics in that it involves the costs and

benefits of inflation. In the literature, one of the first studies to address the question is

Friedman (1969), who argues that the inflation rate should be negative so as to minimize the

opportunity cost of holding money. In the wake of the New Keynesian theory around the

1990s, a widely accepted view is that zero inflation is optimal in a cashless economy because

both inflation and deflation generate welfare losses through relative price dispersion (e.g.,

King and Wolman 1999).

In contrast to the early literature that supports the inflation rate at or below zero, many

central banks in both advanced and emerging economies have adopted positive inflation

targets. Schmitt-Grohé and Uribe (2010) point out that the observed positive inflation

targets are puzzling in the light of the conventional wisdom of monetary theories.

One potential justification for positive inflation targets is downward nominal wage rigid-

ity (DNWR).1 Numerous studies report that nominal wages are more downwardly rigid

than upwardly (e.g., Card and Hyslop 1997, Bewley 1999, and Grigsby et al. 2019 more

recently). In this regard, Tobin (1972) claims that positive inflation facilitates real wage de-

clines upon a contractionary shock even if nominal wages are downwardly rigid, mitigating

the adverse effect of DNWR. However, the magnitude of such “grease the wheels” effect is

still controversial. For example, Kim and Ruge-Murcia (2009, 2019) (KRM henceforth)build

a representative agent New Keynesian model with DNWR and find that the optimal inflation

1Other candidates include the zero lower bound on nominal interest rates (ZLB) and trends in relative
prices as well as biases in measuring the inflation rate. More discussion is provided shortly.
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rate in the model economy is positive but close to zero.

In this paper, I demonstrate that the implications of DNWR for the optimal inflation

rate are substantially altered once worker heterogeneity is taken into account. Specifically,

I develop a sticky price model in which workers are heterogeneous in labor productivity.

To capture the lumpy and asymmetric wage adjustments observed in the data, I introduce

asymmetric wage adjustment costs. The specification nests the cases of absolute DNWR and

fully flexible wages. When calibrated to U.S. micro wage data, the model suggests a much

larger cost for downward wage adjustments than upward ones, which implies the presence

of DNWR.

In the baseline heterogeneous agent (HA) model, I find that the optimal inflation rate

is around 2 percent per year. Notably, the optimal inflation rate is substantially higher

than in a representative agent (RA) model that is often used by previous studies.2 The

main reason behind the higher optimal inflation rate in the HA model is that individual

workers seek to adjust their wages in response to idiosyncratic shocks as well as to aggregate

conditions. Consequently, the lack of wage adjustments due to DNWR leads to a sizable

welfare loss through an inefficient cross-sectional allocation of labor, whereas such cross-

sectional implications of DNWR are abstracted in a RA model. In other words, the benefits

of holding positive inflation become larger in the presence of worker heterogeneity.

Regarding the level of the optimal inflation rate obtained in this paper, it is worth

noting that the specification of nominal price rigidity is conservative for generating a positive

optimal inflation rate. Specifically, I adopt the staggered price setting of Calvo (1983) with

2While I consider a simple monetary policy rule as in Taylor (1993), several previous studies including
KRM2009 investigate the Ramsey policy, which can potentially lower the optimal inflation rate. However, I
verify in the later sections that the difference in terms of the optimal inflation rate between the HA model
and the RA model remains under the same monetary policy.
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non-zero steady-state inflation as a form of nominal price rigidity. It is known that the welfare

cost of inflation is larger in the Calvo (1983) model than in other popular specifications,

though there is a substantial debate on the empirical validity of each specification.3

This paper is related to a long line of literature on the optimal inflation rate.4 In partic-

ular, a number of studies explore the benefits of positive inflation after the Global Financial

Crisis when many advanced economies suffered a severe downturn in a low-inflation envi-

ronment. Some of these studies focus on DNWR (e.g., KRM2009, KRM2019, Abo-Zaid

2013, Carlsson and Westermark 2016); the ZLB (e.g., Coibion et al. 2012, Andrade et al.

2019); trends in relative prices (e.g., Wolman 2011, Ikeda 2015); and biases in measuring the

inflation rate (e.g., Schmitt-Grohé and Uribe 2012). On the other hand, previous studies

point out that shifting the steady-state inflation rate into a positive territory generates a

considerable welfare loss through nominal price rigidity (e.g., Coibion et al. 2012). In fact,

most of the studies mentioned above conclude that a moderate inflation rate or an inflation

rate close to zero is optimal as a consequence of the trade-off between the costs and benefits

of inflation. The optimal inflation rate in a heterogeneous agent model is a relatively new

research field. Previous studies address various dimensions of heterogeneity including firms’

productivity growth (Adam and Weber 2019), firms’ price setting (Blanco forthcoming), and

houholds’ asset holdings (Menna and Tirelli 2017). I contribute to this line of the literature

by investigating the role of worker heterogeneity in the labor market.

As for the literature on DNWR, several studies including Akerlof et al. (1996), Benigno

3For example, Burstein and Hellwig (2008) study the menu cost model, Lombardo and Vestin (2008) the
quadratic price adjustment cost model of Rotemberg (1982), and Coibion et al. (2012) the the fixed-duration
pricing model of Taylor (1980). All of these studies find that the welfare cost of inflation in the Calvo model
is larger than that in other models.

4A comprehensive survey on the optimal inflation rate is conducted by Diercks (2017).
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and Ricci (2011), and Daly and Hobijn (2014) consider some sort of worker heterogeneity

in an economy with DNWR, though quantitative investigation for the optimal inflation

rate is not provided.5 An exception is Fagan and Messina (2009), who study the optimal

inflation rate by in a stationary environment with worker heterogeneity. Built upon these

previous studies on DNWR, the novelty of this paper is threefold. First, I explicitly compare

the optimal inflation rate in a HA model and a RA model to focus on the role of worker

heterogeneity. Second, I develop a general setting for individual workers’ productivity process

and wage adjustment costs, and exploit micro wage data to discipline the model. Indeed,

the model setting of this paper is more general than the studies mentioned above. Third,

I take the aggregate dynamics into account, and thereby investigate both cross-sectional

and time-series dynamics as well as their potential interactions. These features allow the

model to quantitatively evaluate the costs and benefits of inflation and therefore the optimal

inflation in a rigorous manner.6

The remainder of the paper is organized as follows. Section 2 develops the model, and

Section 3 describes the computation method and calibration procedure. Section 4 investi-

gates the optimal inflation rate in the calibrated model. Section 5 offers various sensitivity

analyses. Section 6 concludes.

5For example, Benigno and Ricci (2011) mention the possibility that the optimal inflation becomes positive
in the presence of DNWR, though quantitative analysis is not conducted. Wagner (2018), using a model
developed by Daly and Hobijn (2014), investigate the transition dynamics under different levels of the
steady-state inflation rates.

6Compared with the model of Fagan and Messina (2009), I develop a more general setting that accom-
modates job-changes and different trend productivity growth across workers in order capture the individual
workers’ wage dynamics observed in the data. Regarding nominal price rigidity, the quadratic price adjust-
ment cost, which Fagan and Messina (2009) employ, has little micro-founded interpretation in a stationary
environment. On the other hand, I employ the Calvo-type nominal price rigidity and evaluate the welfare
loss arising from the inflation dynamics as well as the steady-state allocation.
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2 Model

2.1 Stylized partial equilibrium model

I start by building a stylized partial equilibrium model that embeds DNWR to explore its

welfare implications. Specifically, I consider a wage-setting problem in an environment in

which (i) each worker stays in the same job forever, (ii) nominal wages are subject to absolute

DNWR, and (iii) there are no aggregate shocks. Each of these assumptions is relaxed in a

quantitative model developed in Section 2.2. Note that, though the model developed in this

section shares many features with that of my companion paper, Mineyama (2020), I add

several modifications in Section 2.2 according to the purpose of this paper.

2.1.1 Wage setting with DNWR

There is a continuum of households indexed by j on the unit interval, each of which supplies

a differentiated labor service to the production sector:

lt(j) = zt(j)ht(j), (1)

where lt(j) is the effective unit of labor and ht(j) is hours worked. zt(j) denotes worker-

specific labor productivity. The aggregate labor supply takes the Dixit-Stiglitz form Lt =

(
∫ 1

0
lt(j)

(θw−1)/θwdj)θw/(θw−1) where θw represents labor demand elasticity. The user of the

labor service minimizes the cost of using a certain amount of composite labor inputs, taking

each worker’s wage as given. The first-order condition (FOC) for the cost minimization
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problem yields the following individual labor demand function:

lt(j) =

(
wt(j)/zt(j)

Wt

)−θw
Lt, (2)

where wt(j) is the wage rate of worker j, and the aggregate wage index Wt satisfies Wt =

{
∫ 1

0
(wt(j)/zt(j))

1−θwdj}1/(1−θw)

Each household receives utility from consumption ct(j) and disutility from hours worked

ht(j). Expected lifetime utility is given by

Et

[
∞∑
s=0

βsu
(
ct+s(j), ht+s(j)

)]
, (3)

where β is the subjective discount factor. Budget constraint is given by

ct(j) +
bt(j)

Pt
≤ wt(j)

Pt
ht(j) +Rt−1

bt−1(j)

Pt
+
τt(j)

Pt
+ Φt(j), (4)

where bt(j), τt(j), and Φt(j) are the amount of nominal bond holdings, lump-sum transfer,

and share of the producer’s real profits distributed to household j. Pt is the aggregate price

index and Rt is the gross nominal interest rate.

In this stylized model, nominal wages are subject to absolute DNWR:

wt(j) ≥ wt−1(j) . (5)

The assumption is a parsimonious way to represent the empirical fact that nominal wage

cuts are rare to occur (e.g., Barattieri et al. 2014); similar assumptions are often used in
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previous studies (e.g., Benigno and Ricci 2011, Daly and Hobijn 2014). Note, however, that

the assumption is relaxed in Section 2.2 by allowing for a more general form of adjustment

cost and estimating the relevant parameters according to U.S. micro data.

Each household j maximizes expected lifetime utility (3) by choosing ct(j), bt(j), and

wt(j) subject to (4), (2), and (5).7 The FOC for wt(j) along with the complementary

slackness conditions for (5) yields the following wage rule:

wt(j)

Pt
= max

{
wdt (j)

Pt
,

1

Πp
t

wt−1(j)

Pt−1

}
, (6)

where
wdt (j)

Pt
= µwzt(j)

uh,t(j)

uc,t(j)︸ ︷︷ ︸
mrst(j)

−βEt[ψt+1(j)]

(
uc,t(j)

θwht(j)

wdt (j)

)−1

. (7)

uc,t(j) = ∂u(ct(j), ht(j))/∂ct(j) and uh,t(j) = ∂u(ct(j), ht(j))/∂ht(j). Πp
t = Pt/Pt−1 is the

gross price inflation rate, µw = θw/(θw−1) is the steady-state wage markup that arises from

the workers’ monopolistic power over their labor service, mrst(j) is the marginal rate of

substitution (MRS) of hours worked for consumption, and ψt(j) ≥ 0 denotes the Lagrange

multiplier for (5). wdt (j) denotes the desired wages, which are the wages chosen by workers

when DNWR does not bind in the current period. According to (6), the wages take a max

function, with the first element corresponding to the case in which DNWR does not bind in

the current period and the second element to the case in which it binds.

On the other hand, without the DNWR constraint, ψt(j) = 0 holds for all j and t. In

7Wage is a workers’ choice variable under monopolistic competition of labor supply. In other words, wages
are posted by firms along with the corresponding labor demand and workers choose the most preferable wage
available. In this regard, the literature provides ample evidence on firms’ reluctance to offer nominal wage
cuts (e.g., Bewley 1999).
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that case, the optimality conditions are reduced to

wft (j)

P f
t

= µwzt(j)mrs
f
t (j), (8)

where xft denotes the variable xt under flexible prices and wages. Equation (8) suggests that

the flexible wages are determined by labor productivity zt(j) and the MRS mrsft (j), as well

as the steady-state wage markup µw.

2.1.2 Welfare implications of DNWR

Wage rules (6) and (7) imply that the wages in this economy can deviate from the flexible

ones both upwardly and downwardly, as illustrated in Figure 1. The upward deviations are

straightforward to see in (6). When DNWR binds in the current period, the actual wages

tend to be higher than the flexible wages.8 On the other hand, downward deviations occur

due to a forward-looking effect of DNWR. Specifically, (7) suggests that the desired wages

are weakly lower than the flexible wages due to the Lagrange multiplier included in the

second term of the right-hand side. Intuitively, a worker internalizes the possibility that

the DNWR constraint might bind in future periods, and therefore desires to hold a buffer

to prevent future constraints from binding. In other words, the actual wages can be lower

than the flexible wages due to the precautionary motives for a future downturn.9 It is also

noteworthy that positive inflation mitigates these effects of DNWR by ensuring room for

8Strictly speaking, the actual wages can be lower than the flexible ones even when DNWR binds if the
forward-looking effect is strong enough.

9It should be noted that the flexible wages are still distorted by the workers’ monopolistic power over
their labor service, which is represented by the steady-state wage markup µw. Hence, the precautionary
motives to keep a lower wage provided for a future downturn compress wage markup, which can be welfare-
improving. However, in the numerical analysis in the following sections, I find that the welfare-deteriorating
effect of DNWR by generating deviations from the flexible wages is quantitatively dominant.
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Figure 1: Wage setting with DNWR
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Pt−1
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Πp
t ⇑

DNWR binding DNWR not binding

real wage declines upon an adverse shock according to (7).

Importantly, the presence of heterogeneity in workers’ labor productivity zt(j) implies

that the desired wages are more dispersed than that for a representative worker, leading to

larger deviations from the flexible wages at the individual level. This is a potential source

of welfare loss. In this regard, the aggregate welfare consequences of DNWR depend on

the state of the distribution of individual workers’ lagged wages as well as the current labor

productivity. Moreover, there can be aggregate feedback through the rest of the economy

though this stylized partial equilibrium model is agnostic about them. In the next subsection,

therefore, I develop a quantitative model that will be used for assessing welfare consequences

of DNWR in the presence of worker heterogeneity.

2.2 Quantitative general equilibrium model

In this subsection, I develop a quantitative general equilibrium model by generalizing the

stylized model in Section 2.1. The economy consists of households, monopolistically com-
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petitive firms, and a central bank. Households supply differentiated labor service, earn labor

income, and make saving-consumption decisions. Importantly, each worker receives individ-

ual labor productivity shocks, and wage changes are subject to asymmetric adjustment costs.

Firms produce differentiated goods and set prices under the staggered contract á la Calvo

(1983). The central bank follows an interest-rate feedback rule of Taylor (1993). Compared

to the model of Mineyama (2020), this paper’s model employs the Calvo-type nominal price

rigidity with non-zero steady-state inflation rates to rigorously evaluate the cost of inflation.

It also considers time-variations of job-changes.

2.2.1 Households

Nominal wage changes are subject to asymmetric adjustment costs for positive and negative

wage changes. The adjustment costs are composed of a fixed cost and a linear cost that is

proportional to the size of wage changes.10 Note that the specification nests the absolute

DNWR in Section 2.1 when the fixed cost for downward wage adjustments is infinitely

large and that the costs for upward changes are zero. It is also more general than the one

employed by previous studies.11 In addition, job changes are introduced to capture potential

heterogeneity in the degree of DNWR depending on the job-change status. For simplicity, job

changes are assumed to occur randomly with a time-varying probability δt ∈ [0, 1] and job-

changers—workers who switch jobs—are free from wage adjustment costs. This assumption

10In Online Appendix C, alternative specifications, such as a fixed cost only and a combination of fixed
and quadratic costs, are assessed. It is verified that the baseline specification of a combination of fixed and
linear costs fits micro evidence on wage adjustments better than alternative ones.

11For example, Benigno and Ricci (2011) and Daly and Hobijn (2014) consider absolute DNWR with a
random fraction of being free from the constraint, which corresponds to ζ in my model. Fagan and Messina
(2009) use a fixed adjustment cost, while Elsby (2009) employs a linear one. Jo (2020) considers five different
cases; flexible wage, Calvo wage rigidity, long-term contract, symmetric menu cost, and absolute DNWR.
Though my model does not take into account the long-term contract, it nests the other four specifications.
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reflects the empirical findings of previous studies, by which wages change frequently when

workers move to another job (e.g., Barattieri et al. 2014). Moreover, a random fraction

ζ ∈ [0, 1] of job-stayers—workers who remain in the same job—are also assumed to be free

from wage adjustment costs to capture small wage changes observed in the data.12 In sum,

the wage adjustment costs mt(j) are given below.

mt(j) =



(m+
0 +m+

1 ln Πw
t (j))1{wt(j)>wt−1(j)} + (m−0 +m−1 ln Πw

t (j))1{wt(j)<wt−1(j)}

if st(j) = s1 . . . job-stayers with adjustment costs

0 if st(j) = s2 . . . job-stayers without adjustment costs

0 if st(j) = s3 . . . job-changers

, (9)

where Πw
t (j) = wt(j)/wt−1(j), and m+

0 , m+
1 , m−0 , and m−1 are parameters for the adjustment

costs. st(j) denotes the status regarding job-change and adjustment costs; st(j) = s1 for

job-stayers with adjustment costs, st(j) = s2 for job-stayers without adjustment costs, and

st(j) = s3 for job-changers. The fraction of workers in each status is (1−δt)(1−ζ), (1−δt)ζ,

and δt, respectively. The adjustment costs captures various factors that potentially prevent

wage adjustments, including psychological costs and effects on workers’ morale for negative

ones. Though the adjustment costs enter the households’ budget constraint in the baseline

model, I consider an alternative setting in which they are rebated back to households so as

to eliminate the direct effects of paying these costs in Section 5.

Labor productivity zt(j) consists of a deterministic growth component z1,t(j) and a

12This specification is often used for the same purpose in the price-setting literature (e.g., Vavra 2014).
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stochastic one z2,t(j):

ln zt(j) = ln z1,t(j) + ln z2,t(j). (10)

Different labor productivity processes are considered for job-stayers and job-changers. For

job-stayers, a labor productivity shock is assumed to hit infrequently with a probability

(1− γ) ∈ (0, 1) along with a deterministic trend growth rate µstz > 0:

ln z1,t(j) = µstz + ln z1,t−1(j), (11)

ln z2,t(j) =


ρstz ln z2,t−1(j) + εz,t(j), εz,t(j) ∼ i.i.d.N(0, σst2z ) with prob. 1− γ

ln z2,t−1(j) with prob. γ

. (12)

The infrequent productivity shock accommodates promotion, performance evaluation con-

ducted periodically, and other occasional events that affect labor productivity. It could

replicate fat tails of wage change distribution observed in the data. Similar specifications are

often employed in the literature on income risk (e.g., Guvenen et al. 2019) and price setting

(e.g. Vavra 2014).

For job-changers, on the other hand, labor productivity follows a random walk with a

deterministic growth rate µchz > 0. µchz can differ from µstz , and the average growth rate

among workers in each period is defined as gt = (1 − δt)µstz + δtµ
ch
z . To capture the larger

variations of job-changers’ wage changes observed in the data, a shock for job-changers is

assumed to be drawn from a uniform distribution with a support U ch
z > 0. The shock
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captures a match-specific labor productivity. The process is written as

ln z1,t(j) = µchz + ln z1,t−1(j), (13)

ln z2,t(j) = ln z2,t−1(j) + εz,t(j), εz,t(j) ∼ i.i.d.U [−U ch
z , U

ch
z ]. (14)

The period utility takes the following form:

u (ct(j), ht(j)) = ln ct(j)−
ht(j)

1+1/η

1 + 1/η
, (15)

where η is the Frisch labor supply elasticity. Notice that the log-utility of consumption is

consistent with balanced growth. Reflecting the generalization mentioned above, the period

budget constraint (4) is modified to

ct(j) +mt(j)ct(j) +
bt(j)

Pt
≤ wt(j)

Pt
ht(j) +Qt−1Rt−1

bt−1(j)

Pt
+
τt(j)

Pt
+ Φt(j), (16)

where wage adjustment costs are proportional to consumption. Qt is an exogenous risk

premium, which is described shortly.

I assume that households have access to a complete contingent claim market for consump-

tion so that they consume the same amount, although they are still subject to an uninsurable

idiosyncratic labor productivity shock.13 This assumption allows one to focus on the het-

erogeneity of individual wages and the cross-sectional allocation in the labor market. The

13Note that the setting is crucially different from many recent papers that deal with heterogeneity in
consumption and asset holdings in an incomplete market, the so-called “HANK” literature (e.g., Kaplan
et al. 2018). The assumption is largely due to computational burden to deal with wage and consumption
heterogeneity simultaneously, and is commonly used by previous studies that study DNWR with heteroge-
neous workers (e.g., Fagan and Messina 2009, Benigno and Ricci 2011, Daly and Hobijn 2014, Wagner 2018,
Jo 2020). I discuss the welfare implications of relaxing this assumption in Online Appendix C.
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FOCs for consumption and nominal bond holdings yield the consumption Euler equation:

βEt

[(
Ct+1

Ct

)−1
QtRt

Πt+1

]
= 1. (17)

The individual wage setting problem is written in a recursive representation:

V

(
wt−1(j)

Pt−1

, zt(j), st(j)

)
= max

wt(j)
−ht(j)

1+1/η

1 + 1/η
+ C−1

t︸︷︷︸
uc,t

(
wt(j)

Pt
ht(j)−mt(j)Ct

)

+
β

g
Et
[
V

(
wt(j)

Pt
, zt+1(j), st+1(j)

)]
, (18)

subject to (1), (2), (9), and (10)–(14), given all of the aggregate variables. Note that the

wage setting problem is separable from consumption choice conditional on uc,t due to additive

separability in preference.

2.2.2 Firms

There is a continuum of firms indexed by i on the unit interval. Firm i produces a differen-

tiated good using a linear production technology:

yt(i) = lt(i), (19)

using composite labor inputs lt(i) = (
∫ 1

0
lt(i, j)

(θw−1)/θwdj)θw/(θw−1) where l(i, j) denotes the

labor service supplied by household j and used by firm i.
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The aggregate output Yt is given by the CES aggregator:

Yt =

(∫ 1

0

yt(i)
θp−1

θp di

) θp
θp−1

, (20)

where θp is the goods demand elasticity. Firms face individual demand:

yt(i) =

(
pt(i)

Pt

)−θp
Yt, (21)

where the price index is given by Pt = (
∫ 1

0
pt(i)

1−θpdi)1/(1−θp).

Firms set their prices under the staggered contract á la Calvo (1983). In each period,

a fraction ξ ∈ (0, 1) of firms keeps their prices unchanged, whereas the remaining fraction

(1− ξ) of firms resets their prices. The reset price P ∗t maximizes the expected real profits:

Et

[
∞∑
s=0

ξs βs
(
Ct+s
Ct

)−1

︸ ︷︷ ︸
Λt,t+s

(
P ∗t
Pt+s

yt+s|t −
Wt+s

Pt+s
yt+s|t

)
︸ ︷︷ ︸

Φt+s|t

]
, (22)

subject to the individual good demand yt+s|t = (P ∗t /Pt+s)
−θpYt+s, where Λt,t+s is the stochas-

tic discount factor between time t and t+ s and Φt+s|t is the real profit at t+ s of the firms

that reset their prices at t. Notice that the firm index i is dropped because the optimization

problem is identical across the firms that reset their prices at t. The FOC is derived as
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below.

P ∗t
Pt

=
Ω1,t

Ω2,t

, (23)

where Ω1,t = µp
Wt

Pt
C−1
t Yt + ξβEt

[
(Πp

t+1)θpΩ1,t+1

]
,

Ω2,t = C−1
t Yt + ξβEt

[
(Πp

t+1)θp−1Ω2,t+1

]
.

µp = θp/(θp − 1) is the steady-state price markup that arises from the firms’ monopolistic

power over their products. The price index is rearranged as14

1 = (1− ξ)
(
P ∗t
Pt

)1−θp
+ ξ(Πp

t )
θp−1. (25)

Integrating the individual production function (19) over firms yields

Yt =
Lt
Dt

, (26)

where Dt =
∫ 1

0
(pt(i)/Pt)

−θpdi and Lt =
∫ 1

0
lt(i)di. Dt represents the misallocation associated

with relative price dispersion. It evolves according to a recursive formula:

Dt = ξ(Πp
t )
θpDt−1 + (1− ξ)

(
P ∗t
Pt

)−θp
. (27)

14Taking the first-order approximation of (23) and (25) around the zero-inflation steady state yields the
well-known linearized New Keynesian Phillips curve:

πpt = βEt
[
πpt+1

]
+ κm̂ct, (24)

where κ = (1− ξ)(1− βξ)/ξ, πpt = ln Πp
t , MCt = Wt/Pt, and variables with hats denote the log-deviations

from the steady-state values.
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The goods market clearing condition is given by

Yt = Ct (1 +Mt) , (28)

where Mt =

∫ 1

0

mt(j)dj.

2.2.3 Central bank

The central bank follows the Taylor (1993) rule in which it sets the gross nominal interest

rate Rt to stabilize the gross inflation rate Πt around its target rate Π∗ and the output gap

Y gap
t = Yt/Y

f
t :15

Rt = R∗
(

Πp
t

Π∗

)φπ (Y gap
t

Y ∗

)φy
, (29)

where φπ and φy are the responsiveness to inflation and the output gap, R∗ is the steady-state

nominal interest rate, and Y f
t is the output under flexible prices and wages.16

2.2.4 Aggregate shock

Regarding an aggregate shock, I focus on exogenous fluctuations in the risk premium on the

nominal interest rate.17 Following a convention of the literature, such as Krusell and Smith

15In this specification, the target inflation rate Π∗ is achieved in the deterministic steady state in which
all exogenous shocks are muted. As is pointed out by Coeurdacier et al. 2011, however, the deterministic
steady state does not necessarily coincide with the stochastic mean or the risky steady state in a non-linear
environment. Since Π∗ is used as an instrument for the optimal inflation analysis, I adjust Y ∗ so that Π∗

coincides with the stochastic mean of the inflation rate under calibrated parameters.
16Throughout this paper, I focus on a simple monetary policy rule rather than the Ramsey policy. The

choice is partly due to theoretical and computational challenges of implementing the Ramsey policy in my
heterogeneous agent setting. However, as Schmitt-Grohé and Uŕıbe (2007) argue, a simple policy rule can
be justifiable as a feasible solution to an economic problem that central banks face in reality. I also conduct
sensitivity analyses with respect to the monetary policy rule in Section 5.

17A risk premium shock is a parsimonious way to capture the fluctuations in the aggregate demand.
Coibion et al. (2012) argue that the fluctuations in risk premium have similar effects to net-worth shocks in
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(1998), I assume that the aggregate state follows a two-state Markov chain:

lnQt =


−∆ if at = h

∆ if at = l

, (30)

where at represents the aggregate state. The transition probabilities are given by P (at =

j|at−1 = i) = pij with
∑

j pij = 1 for i, j = h, l. ∆ > 0 is the size of the risk premium shock.

A higher risk premium indicates a contractionary state in which households lose their desire

to consume in the current period. In addition, I assume that the probability of job changes

evolves according to the aggregate state, i.e., δt = δi if at = i for i = {h, l} with δh > δl.

2.2.5 Equilibrium

A recursive competitive equilibrium consists of a households’ policy function for real wage

w̃t(j) ≡ wt(j)/Pt = h(w̃t−1(j), zt(j), st(j);χt−1, Dt−1, at), a policy function for a set of aggre-

gate variables Xt ≡ {Yt, Lt, Ct,Πp
t , Rt, Dt, Y

f
t } = f(χt−1, Dt−1, at), and a law of motion Γ for

the cross-sectional density of real wages gt, given exogenous processes {zt(j), st(j)}j∈[0,1], and

at, such that (i) a households’ policy function h solves the individual wage setting problem;

(ii) an aggregate policy function f satisfies the aggregate conditions; (iii) markets clear; and

(iv) the cross-sectional density χ satisfies a recursive rule:

χt = Γ(χt−1, Dt−1, at).

a model with financial frictions.
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2.2.6 Social welfare

I define social welfare as the unconditional expectation of household life-time utility:

SW ≡ 1

1− β
E

[
lnCt −

∫ 1

0

ht(j)
1+1/η

1 + 1/η
dj

]
. (31)

In what follows, I measure welfare losses as the deviations of the social welfare in the model

economy from that in the flexible price and wage economy.

2.2.7 Numerical method

I solve the model by using the modified Krusell-Smith algorithm developed by Mineyama

(2020). The details are provided in Online Appendix A.

3 Calibration

I follow a two-step procedure to set parameter values of the model. In the first step, I

calibrate several parameters according to external evidence. In the second step, I estimate

the parameters for cross-sectional wage distribution using the simulated method of moments

(SMM).

3.1 Externally fixed parameters

I calibrate the model to U.S. macro and micro data. The time frequency is quarterly. The

externally fixed parameters are listed in Table 1. For preference, the subjective discount

factor β is set to 0.995. The Frisch labor supply elasticity η is set to 0.5 according to the
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value that Chetty et al. (2011) report as the mean of the estimates in the existing studies

using micro data. The elasticity of substitution across individual goods θp is set equal to

7 following Coibion et al. (2012). The value implies that the steady-state price markup is

around 17 percent, which is consistent with empirical estimates in the literature such as

Basu and Fernald (1997). The elasticity of substitution across individual labor service θw

is set to 3.5 following KRM2009. The degree of price stickiness ξ is set to 0.63 based on

the frequency of price changes reported by Nakamura and Steinsson (2008).18 The average

productivity growth rate g = E[gt] is set equal to 1.4 percent per year. The value corresponds

to the mean growth rate of real GDP per capita in the past few decades. For the monetary

policy rule, I set the responsiveness to inflation φπ equal to 1.50 and that to the output

gap φπ to 0.25. Regarding exogenous processes, the remaining probability in each state

phh = pll = 0.94 and the size of risk premium shocks ∆ = 0.0054 are set to match the

persistence and variance of real GDP per capita after the Greenspan era. Following Grigsby

et al. (2019), the probability of job changes δ is set according to the Job-to-Job Flow Data

from the Longitudinal Employer-Household Dynamics (LEHD) program. I split the available

sample depending on whether the unemployment rate is above or below its median, which

corresponds to the low and high states in the model, and use the average of each period for

δl and δh.

18Nakamura and Steinsson (2008) report that the median duration of price changes is 7.4–8.7 months
during different time periods. I use the mean of these values, implying ξ = 1−1/(0.5× (7.4+8.7)/3) ≈ 0.63.
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Table 1: Externally fixed parameters

Description Symbol Value Source
Subjective discount factor β 0.995 —

Frisch labor supply elasticity η 0.50 CGMW (2011)
Goods demand elasticity θp 7.00 CGW (2012)
Labor demand elasticity θw 3.50 KRM (2009)

Price stickiness ξ 0.63 NS (2008)
Average productivity growth (% per year) g 1.40 GDP growth per capita

Responsiveness to inflation φπ 1.50 —
Responsiveness to the output gap φy 0.25 —

Remaining prob. of aggregate state phh, pll 0.94 Persistence and Std.
Size of aggregate shock ∆ 0.0054 of GDP per capita

Prob. of job changes in low state δl 0.045 J2J Flow Data
Prob. of job changes in high state δh 0.056 J2J Flow Data

Support of labor productivity U chz 1.000 —

Notes: The abbreviations are as follows; CGMW (2011): Chetty et al. (2011), CGW (2012): Coibion et al.
(2012), KRM (2009): Kim and Ruge-Murcia (2009), and NS (2008): Nakamura and Steinsson (2008).

3.2 Internally estimated parameters

3.2.1 Simulated method of moments (SMM)

I use the SMM to estimate the parameters for cross-sectional wage distribution. To be

precise, I choose the values of a set of parameters Θ̂ to minimize the distance between the

target and model moments:19

Θ̂ = arg min
Θ

:
(
d−m(Θ)

)′
WΘ

(
d−m(Θ)

)
, (32)

where d is a vector of the target moments, m(Θ) is a vector that collects the correspond-

ing model moments, and WΘ is a weighting matrix. For the target moments, I use the

moments of individual workers’ wage changes reported by Grigsby et al. (2019) (GHY

henceforth). They collect administrative payroll data from a large U.S. payroll process-

ing company, and report detailed facts regarding nominal wage adjustments, such as the

19To generate the model moments, I solve for the stationary equilibrium of the model due to the compu-
tational burden of repeatedly deriving the recursive competitive equilibrium.
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size and frequency of wage changes for both job-stayers and job-changers.20 I use the prob-

ability, median size, and mean size of positive and negative wage changes, as well as the

median, mean, and standard deviation of unconditional wage changes. These moments are

available for different job statuses (job-stayers, job-changers, and all workers) and differ-

ent time frequencies (quarterly and yearly). The total number of target moments included

in d is 46.21 On the other hand, the number of model parameters to estimate is 9, i.e.,

Θ = {m+
0 ,m

−
0 ,m

+
1 ,m

−
1 , ζ, γ, µ

st
z , ρ

st
z , σ

st
z }.22 Lastly, I use a diagonal matrix for the weighting

matrix WΘ and weight the moments for job-stayers, job-changers, and all workers with their

unconditional fractions in the LEHD.

3.2.2 Choice of target moments

I next make a heuristic identification argument that justifies the choice of target moments.

Each parameter is disciplined by empirical moments as follows.

First, regarding the adjustment cost parameters m+
0 ,m

−
0 ,m

+
1 ,m

−
1 , fixed and linear costs

are guided by the frequency and size of wage changes in the data given productivity processes.

For example, a larger fixed cost lowers the frequency of wage changes, whereas a larger linear

cost reduces the size of wage changes. Moreover, positive and negative costs are disciplined

20Their data record administrative measures of hourly wage for hourly paid workers. For salaried workers,
data contain the employee’s contracted earnings per pay period, such as weekly or monthly. Since the
data is according to payroll record, it is supposed to be free from measurement errors that are present in
survey based wage measures. GHY argue that the empirical moments reported by them are consistent with
other empirical studies after conducting necessary adjustments, though they provide more comprehensive
information to discipline the model.

21The median and mean size of positive and negative wage changes for all workers are not available in GHY.
Consequently, the total number of target moments available is 9(moments)× 3(job-status)× 2(frequency)−
4(moments)× 2(frequency) = 46.

22µchz is computed consistently with g once the estimate for µstz is obtained. Moreover, I fix U chz = 1 due
to computational difficulty in searching for an equilibrium under a larger value of U chz . Though this is a
parsimonious approach, the empirical moments are closely matched by the model under the fixed value of
U chz as is shown in Table 3
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by the empirical moments for positive and negative wage changes, respectively.

Second, the probability of not being subject to adjustment costs ζ governs the overall

degree of the connection between the moments of productivity changes and those of wage

changes.

Third, the probability of not receiving a productivity shock γ is related to the kurtosis of

wage change distribution. A higher γ implies that the distribution has a fatter tail as well as

a large mass around zero. These features are captured by the difference between the mean

and median of wage changes and the frequency of them in the target moments. Note that

this parameter can be separately estimated from m+
0 ,m

−
0 because remaining at the same

productivity level still leads to positive nominal wage changes under positive trend inflation

whereas a large m+
0 ,m

−
0 implies zero nominal wage changes.

Fourth, the mean and standard deviation of innovations of productivity µstz and σstz govern

the mean and overall dispersion of wage changes.

Fifth, the persistence of a productivity shock ρstz governs the differences in desires of wage

adjustments at each time horizon. Note that the literature on price rigidity often employs the

hazard function to identify this parameter (e.g., Nakamura and Steinsson 2008). Analogously,

the differences between the empirical moments of quarterly and annual wage changes play a

corresponding role in the estimation here.

3.2.3 Estimation result

The estimated parameters are listed in Table 2 whereas the target and model moments are

reported in Table 3.23 As GHY discuss in detail, nominal wage adjustments in the data

23The standard deviation of the estimates is not obtained because the variance-covariance matrix of the
target moments is not available.
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Table 2: Internally estimated parameters

Description Symbol Value
For job-stayers

Fixed cost for positive wage changes m+
0 0.012

Fixed cost for negative wage changes m−
0 0.097

Linear cost for positive wage changes m+
1 0.675

Linear cost for negative wage changes m−
1 3.626

Prob. of not subject to adjustment cost ζ 0.011
Prob. of not receiving labor productivity shock γ 0.848
Mean growth of labor productivity (% per year) µstz 1.692

Persistence of labor productivity ρstz 0.698
S.D. of innovations to labor productivity σstz 0.097

For job-changers
Mean growth of labor productivity (%) µchz 8.085

have the following features: (i) negative wage changes are quite rare for job-stayers whereas

job-changers often receive them; (ii) the size of wage changes is larger for job-changers than

for job-stayers; (iii) the mean wage change is higher for job-changers than for job-stayers.

Consistent with these features, the estimated parameters have the following features.

First, the estimated fixed and linear costs are much larger for negative wage adjustments

than for positive ones (m−0 > m+
0 ,m

−
1 > m+

1 ). In particular, a large fixed cost is essential for

replicating the infrequent nominal wage adjustments observed in the data. The estimated

values imply the adjustment cost for a median size wage increase is 1.0% of annual consump-

tion whereas that for a wage cut is 9.0%.24 The result suggests the presence of DNWR. Since

only some fraction of workers change their nominal wages in each period, the total resource

cost associates with nominal wage adjustments is around 0.35% of annual consumption.

Second, the probability of not being subject to adjustment costs for job-stayers (ζ) is

quite low. This also reflects infrequent wage changes in the data.

24The larger cost for negative wage changes partly reflect a large size of wage cuts. The cost for a 1%
wage increase is around 0.5% and that for a 1% wage decrease is 3.3%. The estimates are close to those of
Fagan and Messina (2009), who estimated the menu cost for negative wage changes to be 37% of wage rate
(roughly equivalent to 9% of annual consumption) according to micro wage data in the PSID after correcting
measurement errors.
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Table 3: Targeted moments

Quarterly changes Yearly changes
Moment Data Model Data Model

Job-stayers
Probability of positive wage changes 0.185 0.187 0.639 0.638
Probability of negative wage changes 0.009 0.011 0.024 0.035
Median size of positive wage changes 0.033 0.041 0.035 0.046
Median size of negative wage changes –0.077 –0.074 –0.066 –0.072
Mean size of positive wage changes 0.057 0.055 0.063 0.067
Mean size of negative wage changes –0.087 –0.080 –0.073 –0.080

Median of unconditional wage changes 0.000 0.000 0.024 0.035
Mean of unconditional wage changes 0.010 0.010 0.039 0.040
S.D. of unconditional wage changes 0.037 0.029 0.065 0.056

Job-changers
Probability of positive wage changes 0.527 0.589 0.568 0.610
Probability of negative wage changes 0.374 0.402 0.380 0.371
Median size of positive wage changes 0.167 0.191 0.185 0.202
Median size of negative wage changes –0.136 –0.173 –0.158 –0.161
Mean size of positive wage changes 0.235 0.209 0.261 0.223
Mean size of negative wage changes –0.165 –0.187 –0.185 –0.178

Median of unconditional wage changes 0.023 0.043 0.046 0.065
Mean of unconditional wage changes 0.063 0.048 0.080 0.070
S.D. of unconditional wage changes 0.259 0.238 0.293 0.238

All workers
Probability of positive wage changes 0.206 0.207 0.627 0.634
Probability of negative wage changes 0.032 0.030 0.087 0.095

Median of unconditional wage changes 0.000 0.000 0.025 0.036
Mean of unconditional wage changes 0.012 0.012 0.044 0.046
S.D. of unconditional wage changes 0.067 0.060 0.120 0.114

Notes: Data moments are those reported by GHY, who use administrative payroll data from a large payroll-
processing company in the U.S. The sample period is from 2008 to 2016. Model moments are obtained from
the stationary equilibrium. In the estimation, the average productivity growth g, the target inflation rate
Π∗, and the probability of job changes δ are set consistent with those in the dataset of GHY. Specifically,
Π∗ is set to 1.5% per year according to the average inflation rate during 2008–2016 in the GDP deflator. g
is set to 3.1% per year consistent with the average nominal wage growth rate in the dataset of GHY (4.6%),
which correspond to gΠ∗ in the model. δ is set to 4.8% according to the average job-change rate during
2008–2016 in the Job-to-Job Flow Data from the LEHD.

Third, the implied standard deviation of a labor productivity shock is larger for job-

changers than for job-stayers (U ch
z /
√

6 > σstz ). This is consistent with the larger dispersion

of wage changes for job-changers in the data.

Fourth, the mean growth rate of labor productivity is higher for job-changers than for

job-stayers (µchz > µstz ). Notice that though the estimated mean and standard deviation of

labor productivity change for job-changers are substantially large, the realized wage changes

are compressed due to precautionary motives, i.e., each worker will be subject to wage
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adjustment costs as a job-stayer from the next period.

Lastly, the estimated parameters for labor productivity process ρstz and γ imply that a

labor productivity shock for job-stayers arrives on average once in 1.6 years and the half-life

is 2 quarters. These values are broadly consistent with the estimates of previous studies.25

3.3 Validation analysis

To check the validity of the model, Table 4 reports the untargeted moments in the estimation

procedure. The table compares the cross-sectional moments under high and low wage-growth

periods.26 As GHY emphasize, the data indicates state-dependency of wage changes; there

are fewer positive changes and slightly more negative ones, as a consequence of which the

fraction of workers with wage freezes becomes larger, under a low wage-growth rate. The

model is successful in replicating these patterns. This is because under a lower wage-growth

rate more workers stay close to their DNWR constraint—i.e., while more workers’ desired

wages decline, they keep their wages unchanged due to the large adjustment cost for down-

ward wage changes. Consistently, the the standard deviation of wage changes is slightly

lower in the low wage growth period as in the data.

25For example, Kaplan et al. (2018) estimate earning process using Social Security Administration data
and find that a transitory shock arrives on average once 3 years and has the half-life of around 1 quarter.

26GHY split the sample period of 2008-2016 into two sub-periods: from March 2009 to December 2010
and January 2012 to December 2016. I refer to the former as “low wage-growth period” and the latter as
“high wage-growth period.”
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Table 4: Untargeted moments

Low wage growth High wage growth
Moment Data Model Data Model

Job-stayers
Probability of positive wage changes 0.525 0.539 0.674 0.755
Probability of negative wage changes 0.042 0.079 0.020 0.021

Probability of zero wage changes 0.433 0.382 0.306 0.224
S.D. of unconditional wage changes 0.063 0.055 0.070 0.060

Job-changers
Probability of positive wage changes 0.505 0.579 0.581 0.631
Probability of negative wage changes 0.440 0.400 0.364 0.351

Probability of zero wage changes 0.055 0.021 0.055 0.018
S.D. of unconditional wage changes 0.314 0.239 0.289 0.245

All workers
Probability of positive wage changes 0.520 0.546 0.660 0.733
Probability of negative wage changes 0.106 0.137 0.084 0.080

Probability of zero wage changes 0.374 0.317 0.256 0.177
S.D. of unconditional wage changes 0.121 0.114 0.124 0.118

Notes: The listed moments are those of yearly wage changes. The data moments are those reported by GHY.
The low wage-growth period in the data is from May 2009 to December 2010, whereas the high wage-growth
period is from January 2012 to December 2016. The average nominal wage growth rate in each period is
2.8% and 6.4% per year, respectively.

4 Welfare analysis

4.1 Welfare losses under calibrated Taylor rule

Table 5 shows the welfare losses and relevant moments of the baseline HA model under the

calibrated Taylor rule (column 1).27 The target inflation rate Π∗ is set to 2.1 percent in

the annual rate according the mean inflation rate after the Greenspan era. For comparison

purposes, the table also reports the values of the RA model with asymmetric smooth wage

adjustment cost (column 2)28 and those of both models under flexible wages (columns 3

27In Online Appendix B, I derive the second-order approximation of social welfare and show that welfare
losses arise from four sources: (i) aggregate mean, (ii) aggregate variance, (iii) cross-sectional variance, and
(iv) cross-sectional covariance. Table 5 reports the relevant moments of each component.

28In the representative agent model with asymmetric smooth wage adjustment cost, the aggregate wage
growth Πw

t = Wt/Wt−1 is governed by the following wage Phillips curve:

Ψ
′

w(Πw
t )Πw

t = βEt
[
Ψ

′

w(Πw
t+1)Πw

t+1

]
+ θw

(
H

1/η
t Ct −

1

µw

Wt

Pt

)
Ht

Ct
, (33)

where Ψw(Πw
t ) = φw

(
exp(−ψw(Πw

t − 1)) + ψw(Πw
t − 1)− 1

ψ2
w

)
.
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Table 5: Welfare losses under a calibrated Taylor rule

(1) (2) (3) (4)
With wage rigidity Without wage rigidity

HA model RA model HA model RA model
(baseline)

Welfare loss (CE, %) –0.97 –0.20 –0.27 –0.22

σj
(

lnwt(j)
)

(%) 17.21 — 21.05 —
ρj
(

lnwt(j), ln zt(j)
)

0.98 — 1.00 —

Notes: HA denotes heterogeneous agent and RA representative agent. All the specifications embed nominal
price rigidity. The target inflation rate Π∗ is set to 2.1% per year. The value corresponds to the mean of the
inflation rate after the Greenspan era. Welfare losses are in terms of the consumption equivalent (CE) loss
compared with the economy under flexible prices and wages. σj(·), and ρj(·, ·) denote the standard deviation
and correlation of cross-sectional distribution.

and 4).29 All the specifications embed nominal price rigidity. Note that the asymmetric

smooth wage adjustment cost is often used in the literature to approximate DNWR in a

representative agent setting (e.g., KRM2009, Aruoba et al. 2017).

Several points are noteworthy in the table. First, the welfare loss of the baseline HA

model in column (1) is around five times larger than that of the RA model in column (2).

The welfare loss arising from wage rigidity can be measured by the size of the wage markup,

i.e., the deviations of wages from the socially optimal levels. In this regard, individual workers

face idiosyncratic fluctuations in their optimal wages due to individual labor productivity

shocks in the presence of worker heterogeneity, even when the aggregate wage is stable.

Consequently, the lack of wage adjustments due to adjustment costs results in a larger

welfare loss in the HA model than in the RA model.

Second, the point above is also verified by comparing the cases with and without wage

rigidity in columns (1) and (3). Regarding the cross-sectional moments, the standard de-

Ψw(Πw
t ) is wage adjustment cost. The parameter ψw governs the degree of asymmetry, whereas φw deter-

mines the overall degree of wage rigidity. The parameter values are calibrated according to the estimates
by KRM2019. The details are presented in Online Appendix D. Note that though the model considers a
continuum of workers, I label it as a representative agent model in the sense that equilibrium is characterized
only by the relationships among aggregate variables.

29The allocations under flexible wages are described in Online Appendix B.
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viation of wages is smaller with wage rigidity, and the correlation between wage and labor

productivity is slightly lower. These features indicate that wage rigidity impedes wage ad-

justments upon idiosyncratic shocks. As for the mean of the aggregate variables, the output

is inefficiently high due to the wage adjustment cost represented by Mt. Consequently, the

presence of wage rigidity leads to a sizable welfare loss in the HA model.

Third, it is also notable that the welfare implication of wage rigidity is flipped once worker

heterogeneity is taken into account. In the RA models in columns (2) and (4), adding wage

rigidity to a sticky price setting does not enlarge the welfare loss, consistent with the findings

of previous studies (e.g., Gaĺı and Monacelli 2016). This is because wage rigidity makes real

wages and therefore marginal cost sticky. This reduces the fluctuations in the inflation rate,

leading to a smaller welfare loss arising from nominal price rigidity. On the other hand, in the

HA models in columns (1) and (3), the welfare deterioration arising from the increased labor

market inefficiency due to wage rigidity overwhelms the benefits of reducing the inflation

variations.

4.2 Optimal inflation rate

The welfare analysis in Section 4.1 indicates that the presence of worker heterogeneity sub-

stantially increases the welfare loss arising from wage rigidity. Next, I investigate the con-

sequences of these welfare differences for the optimal inflation rate. Specifically, I search for

the level of inflation target Π∗ that maximizes social welfare.30

Figure 2 displays the welfare losses under different levels of Π∗. Social welfare is maxi-

30Notice that maximizing social welfare by changing Π∗ is isomorphic to minimizing the welfare loss from
the flexible wage and price economy, because monetary policy does not affect allocations in the flexible price
and wage economy.
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Figure 2: Welfare losses under different levels of Π∗
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Notes: The y-axis represents the consumption equivalent welfare loss compared with the economy under
flexible prices and wages. For the ease of presentation, the welfare losses are shown in negative values. They
are computed at different levels of the inflation target Π∗ with an interval of 0.2 percentage points. In the
heterogeneous agent model in the left panel, the moving average for the five points centering each point is
taken to smooth out small deviations.

mized when Π∗ is around 2 percent in the baseline HA model shown in the left panel. Positive

inflation can benefit the economy because fewer workers suffer DNWR at a higher inflation

rate. On the other hand, a higher inflation rate enlarges the distortion due to nominal price

rigidity as relative prices become more dispersed. The optimal inflation rate is determined

by the trade-off between the benefits and costs of inflation.

It is also notable that the curvature of welfare losses around the optimum is considerably

flat. For example, the range of Π∗ from 1.0 to 3.0 percent delivers welfare differences from

the optimum within 0.05 percent of consumption, and the range of Π∗ from 0.8 to 3.6 percent

within 0.1 percent of consumption.

The right panel of Figure 2 shows the case of the RA model with asymmetric smooth wage

adjustment cost. The result is striking; social welfare is monotonically decreasing in Π∗ in a

positive territory although the model embeds asymmetric wage adjustment cost. Precisely

speaking, I find that the optimal inflation rate is –0.4 percent in the RA model. The reason

behind the negative optimal inflation rate is the presence of positive trend productivity

growth. Due to a positive trend growth rate in productivity, real wages have a upward
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Figure 3: Selected moments under different levels of Π∗
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Panel (B): Fraction of wage changes
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Panel (C): Cross-sectional moments
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Notes: The x-axis is the target inflation rate (%, annualized).

trend. Hence, a negative inflation rate brings the nominal wage growth down close to zero,

reducing the welfare loss associated with wage adjustments. This result is also obtained

by Amano et al. (2009).31 Overall, the analysis here suggests that the benefit of positive

inflation through DNWR, or the “grease the wheels” effect, becomes substantially larger in

the presence of worker heterogeneity.

31Consistently, the previous studies that abstract trend productivity growth report non-negative values
for the optimal inflation rate in an economy with DNWR (e.g., KRM2009).
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4.3 Determinants of optimal inflation rate

To examine the mechanism that determines the optimal Π∗, Figure 3 displays selected mo-

ments of the baseline HA model under different levels of Π∗.

Panel (A) reports the stochastic mean and standard deviation of each aggregate variable.

Notably, the mean consumption Ct is hump-shaped; it increases in Π∗ at low inflation rates,

and it starts to decrease when Π∗ exceeds a certain point. There are two offsetting forces

behind this property. On the one hand, the distortion arising from nominal price rigidity

increases as Π∗ rises. More specifically, the increase in the relative price dispersion Dt

generates inefficiency in production. Indeed, the labor input Lt monotonically increases in

Π∗ while Ct is hump-shaped due to the inefficiency. On the other hand, the misallocations

in the labor market are lessened as Π∗ rises as fewer workers suffer DNWR at a higher Π∗.

Regarding the standard deviation, that of Ct decreases, whereas that of πpt increases, in Π∗.

This is because wage changes become more frequent at a higher Π∗, which makes marginal

cost and thereby inflation more flexible.

Panel (B) indicates that fewer workers experience wage freezes at a higher Π∗. Con-

sequently, the standard deviation of wages and the correlation between wages and labor

productivity shown in Panel (C) become higher, getting closer to the allocations under flexi-

ble wage. These lead to a lower cross-sectional mean and standard deviation of labor wedge,

defined as the difference between the marginal product of labor (MPL) and the MRS.
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5 Sensitivity analysis

In this section, I conduct various sensitivity analyses regarding the baseline quantitative re-

sults presented in Section 4. I focus on alternative settings in terms of (i) trend productivity

growth, (ii) wage adjustment cost, (iii) labor market parameters such as idiosyncratic vari-

ations of productivity and labor supply and demand elasticities, and (vi) monetary policy

rule.32 The results are summarized in Table 6. Essentially, the difference between the HA

and RA models remains considerable in these alternative settings though the impact of each

factor is in a broad range.

5.1 Trend productivity growth

Trend productivity growth is a crucial factor for the optimal inflation rate because it pro-

motes real wage growth, making DNWR less binding given the level of Π∗. Row (2) and (3)

of Table 6 show the optimal inflation rates when the productivity growth rate g becomes

lower or higher by 0.5 percentage points from the baseline calibration (g = 0.9% in Row 2

and g = 1.9% in Row 3). These results indicate that the optimal Π∗ is negatively related to

the level of g as is expected. Moreover, the relationship is almost one-to-one; the lower and

higher g respectively lead to the optimal Π∗ of 2.6 percent and 1.6 percent, with the changes

in the optimal Π∗ close to those of g.

32Sensitivity to other calibrated parameters is investigated in Online Appendix C. The appendix also
discusses potential effects of consumption heterogeneity, which is abstracted in the baseline model.
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Table 6: Optimal inflation rates in alternative settings

Opt. Π∗ Wel. diff. <0.05% Opt. Π∗

in HA
model

in HA model in RA
model

(1) Baseline 2.0 [ 1.0 3.0 ] –0.4
Trend productivity growth g

(2) Lower g by 0.5%p 2.6 [ 1.4 3.4 ] –0.4
(3) Higher g by 0.5%p 1.6 [ 0.4 2.8 ] –0.6

Degree of wage adjustment cost m (m+
0 ,m

−
0 ,m

+
1 ,m

−
1 )

(4) Lower m by 50% 1.8 [ 1.0 2.4 ] –0.7
(5) Higher m by 50% 2.2 [ 1.6 2.6 ] –0.4
(6) Symmetric m –1.4 [ –1.8 –1.0 ] –0.5

Rebating adjustment costs
(7) Rebating adjustment costs 1.4 [ 1.2 3.2 ] 0.0

Idiosyncratic labor productivity shock σstz
(8) Lower σstz by 50% 1.2 [ 0.8 3.0 ] —
(9) Higher σstz by 50% 2.2 [ 1.4 3.4 ] —

Frisch labor supply elasticity η
(10) Lower η (η = 0.3) 2.2 [ 1.4 3.0 ] –1.0
(11) Higher η (η = 1.0) 1.2 [ 0.8 2.0 ] –0.1

Labor demand elasticity θw
(12) Lower θw (θw=2) 1.0 [ 0.4 1.4 ] 0.0
(13) Higher θw (θw=5) 2.4 [ 1.2 3.6 ] –1.0

Monetary policy rule
(14) Higher δπ (δπ = 3) 2.0 [ 1.0 2.8 ] –0.1
(15) Higher δy (δy = 0.5) 2.4 [ 0.4 3.2 ] –0.1
(16) Wage growth rule 1.6 [ 0.4 2.4 ] –0.5

Aggregate volatility σq
(17) Lower σq by 50% 2.4 [ 0.8 3.2 ] 0.0
(18) Higher σq by 50% 1.8 [ 1.6 2.2 ] –1.0

Notes: The HA model is solved at different levels of Π∗ with an interval of 0.2 percentage points due to the
computational burden of deriving equilibrium repeatedly at different Π∗. The RA model is solved with an
interval of 0.1 percent points, and the range of Π∗ is truncated at –1.0 percent because equilibrium tends to
be unstable at a lower Π∗. The second and third columns report the range of Π∗ within which the differences
in welfare loss from the optimum are within 0.05 percent of consumption.

5.2 Wage adjustment cost

Degree of wage adjustment cost. The degree of wage rigidity is apparently one of the

key factors for the optimal Π∗. Row (4) and (5) consider the cases in which the parameters

for wage adjustment cost are decreased or increased by 50 percent from the baseline values

(m+
0 = 0.006,m−0 = 0.0485,m+

1 = 0.3375,m−1 = 1.813 in Row 4 and m+
0 = 0.0218,m−0 =

0.1455,m+
1 = 1.0125,m−1 = 5.439 in Row 5). As is expected, the lower (higher) degree of

wage rigidity tends to lead to a lower (higher) optimal Π∗. However, it is worth noting
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that the sensitivity of the optimal Π∗ is low. One reason behind the low sensitivity is that

idiosyncratic labor productivity shocks and wage adjustment costs are quite large compared

to the aggregate fluctuations. Hence, the changes in the degree of wage adjustment costs do

not drastically alter the responsiveness to the aggregate conditions that are caused by the

changes in Π∗.

Asymmetry of wage adjustment cost. Row (6) considers the case in which wage adjust-

ment cost is symmetric. For this analysis, I set the wage adjustment costs at the mean of

positive and negative adjustment costs in the baseline calibration (m+
0 = m−0 = 0.0545,m+

1 =

m−1 = 2.1505). In this case, the optimal Π∗ becomes negative as in the RA model. In other

words, asymmetry in wage adjustment cost is essential to capture the benefit of holding

positive inflation.

Eliminating resource cost. In Row (7), I eliminate the effect of wage adjustment cost

on household budget by rebating them through lump-sum transfer to households, so as to

focus on the effect on the misallocation in the labor market. Note that the entire output is

consumed in this case, i.e., Ct = Yt. The optimal Π∗ in the HA model remains higher than

in RA model, implying that the main driver of the higher optimal Π∗ in the HA model is

not the resource cost of wage adjustment itself but the resulting misallocation.

5.3 Labor market parameters

Idiosyncratic variations of productivity. Row (8) and (9) consider the cases in which

the standard deviation of labor productivity shocks for job-stayers σstz becomes lower or

higher by 50 percent of the baseline value (σstz = 0.0485 in Row 8 and σstz = 0.1455 in
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Row 9). The lower (higher) σstz leads to a lower (higher) optimal Π∗ because the desired

wages of individual workers become less (more) dispersed, reducing (enlarging) the effects

of wage rigidity. Interestingly, the sensitivity is asymmetric; the decline in the optimal

Π∗ corresponding to the smaller value of σstz is relatively large whereas the optimal Π∗ is

insensitive to the larger value of σstz . This is presumably because idiosyncratic shocks are

much larger than aggregate fluctuations, and therefore the effects of the further increase of

σstz cannot be mitigated by the changes in Π∗.

Labor supply elasticity. Row (10) and (11) investigate the sensitivity with respect to the

Frisch labor supply elasticity η. Note that the higher value (η = 1.0) is often used in the

macro literature (e.g., Coibion et al. 2012) though it is above the range of the most estimates

based on micro data (e.g., Chetty et al. 2011). The higher (lower) η results in a lower (higher)

optimal Π∗. This is because a higher η implies that disutility from labor supply is less

convex, which causes smaller welfare losses due to insufficient wage adjustments. However,

the difference of the optimal Π∗ between the HA and RA models remains considerable.

Labor demand elasticity. Row (12) and (13) turn to the assessment of sensitivity regard-

ing the labor demand elasticity θw. The lower and higher values of θw analyzed here (θw = 2

in Row 12 and θw = 5 in Row 13) imply the steady-state wage markup µw is 100% and

25% respectively, whereas the baseline value of θw = 3.5 implies that of 40%. A higher θw

means that labor demand is more elastic to wages, enlarging the labor market misallocations

arising from wage rigidity. Consequently, the optimal Π∗ is lower under a lower θw, though

it is still substantially higher than that in the RA model.
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5.4 Monetary policy rule

Alternative monetary policy rules are analyzed. Row (14) and (15) consider stronger respon-

siveness to inflation and the output gap in the Taylor rule, respectively (δπ = 3.0 in Row 14

and δy = 0.5 in Row 15). Row (16) considers a monetary policy rule that responds to wage

growth instead of inflation.33

The results suggest that the high responsiveness to the output gap has strong stabilization

power, especially mitigating the adverse effects of at a high Π∗ associated with price rigidity.

This leads to a slightly higher optimal Π∗ than the baseline calibration. On the other hand,

the wage growth rule addresses the distortion arising from wage rigidity, which results in

a slightly lower optimal Π∗. Still, the difference between the HA and RA models remains

considerable under alternative monetary policy rules at least within the moderate degree of

modifications that are considered here.

5.5 Aggregate volatility

One of key distinctions of this paper from previous studies such as Fagan and Messina (2009)

is the presence of an aggregate shock. To see its consequence, Row (17) and (18) consider

the cases in which the standard deviation of aggregate risk premium shock σq becomes lower

or higher by 50 percent (σq = 0.0027 in Row 17 and σq = 0.0081 in Row 18). Since aggregate

uncertainty affects both the costs and benefits of inflation, the effect on the optimal Π∗ is

unclear a priori. It turns out that lower aggregate uncertainty leads to a higher optimal

Π∗. There are two reasons behind the result. First, since the welfare loss arising from price

33The alternative monetary policy rule is given by Rt = R∗(Πw
t /Π

w∗)φπw (Y gapt /Y ∗)φy , where the respon-
siveness φπw is set to 1.5 consistent with the baseline calibration.
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rigidity is highly convex in terms of the fluctuations in inflation, it increases as aggregate

uncertainty is enlarged. Second, higher aggregate uncertainty leads to stronger precautionary

behavior in wage setting as is discussed in Section 2.1, and therefore the benefit of a higher

inflation rate is weakened.34 Both contribute to the higher Π∗ under the lower σq.

6 Conclusion

In this paper, I develop a heterogeneous agent model in which heterogeneity stems from

worker productivity and wage changes are subject to asymmetric adjustment costs. Worker

heterogeneity enlarges the welfare loss that arises from wage rigidity by generating an in-

efficient cross-sectional allocation of labor. Reflecting the larger “grease the wheels” effect,

the optimal inflation rate obtained in the heterogeneous agent model is substantially higher

than in a representative agent model that is often used in the literature.

A number of extensions are possible for future research. First, elaborating the source of

welfare loss associated with wage rigidity and exploring endogenous mechanism behind wage

rigidity, reflecting developments of recent theoretical and empirical literature (e.g., Dupraz

et al. 2020), would be interesting. This point is also related to the allocativeness of wages

(e.g., Basu and House 2016). Second, though this paper focuses on the consequences of

DNWR on the optimal inflation rate, interactions of DNWR with other factors affecting

the costs and benefits of inflation, such as the ZLB, money holdings, etc., would be worth

investigating. Third, international comparison would be an important policy question. Al-

though the inflation targets adopted by central banks in advanced economies are somewhat

34The point is consistent with Wagner (2018), who claims that the effects of different levels of Π∗ are
partly mitigated by the precautionary behavior.
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concentrated around 2 percent, different degrees of DNWR across economies can lead to

divergent implications on the optimal inflation rate.
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This Appendix is structured as follows:

• Appendix A provides the details of computation methods. It explains the modified

Krusell-Smith algorithm and other elements for the equilibrium computation.

• Appendix B provides miscellaneous elements of the baseline heterogeneous agent model;

decomposition of social welfare and allocations under flexible wages.

• Appendix C provides sensitivity analyses. It assesses alternative specification of wage

adjustment costs and sensitivity to calibrated parameters that supplement the analyses

in the main article. It also discusses potential effects of consumption heterogeneity,

which is abstracted in the baseline model.

• Appendix D describes a representative agent model with asymmetric smooth wage

adjustment cost.

A-1



A Computation

In this appendix, I present the equilibrium computation method. Though the method largely

follows that developed in my companion paper, Mineyama (2020), I add several modifications

according to the model setting of this paper.

A.1 Modified Krusell-Smith algorithm

Approximated equilibrium. To deal with the infinite dimensionality of the cross-sectional

distribution, Krusell and Smith (1998) propose an approximated equilibrium in which each

agent perceives the evolution of aggregate state variables as a function of a small number of

moments of the cross-sectional distribution. One of their key findings is that using a very

small set of moments, usually the mean of distribution, is sufficient to achieve a good ap-

proximation. Adopting their insight, I assume that the aggregate endogenous state variable,

aggregate real wage W̃t, follows an aggregate law of motion (ALM):

W̃t = ΓW̃ (W̃t−1, Dt−1, at), (A.1)

where the variables with tilde denote those detrended by the deterministic real growth rate

g. Other notations follow those in the main article.

Specification of ALM. To parameterize the ALM ΓW̃ , I first forecast the wage growth

rate Πw
t using a log-linear form of lagged real wage W̃t−1 and relative price dispersion Dt−1.1

1I find that this specification delivers higher accuracy than the ALM that directly forecasts the current
real wage W̃t.
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Specifically, I consider a semiparametric specification that allows for different coefficients of

the ALM for each aggregate exogenous state st. The ALM is given by

ln Πw
t = Ba

0 +Ba
1 ln W̃t−1 +Ba

2 lnDt−1 for at = ai, (A.2)

where i = {l, h}. The coefficients of the ALM B = {Bi
0, B

i
1, B

i
2}i∈{l,h} govern the dynamics

of the aggregate state variable. It should be noted that, although the ALM takes a simple

functional form in terms of W̃t−1, it can capture rich nonlinear dynamics because of the

semiparametric specification of the coefficients B.2

Once the forecast of the wage growth rate is obtained, the current real wage W̃t can be

recovered according to the following equation:

W̃t =
Πw
t

Πp
t

W̃t−1, (A.3)

where the inflation rate Πp
t is obtained when solving the aggregate part of the economy.

Algorithm. The algorithm takes the following steps for each iteration m = 1, 2, 3, ...

1. (Forecasting) Given the aggregate state variables St = {at, Dt−1, W̃t−1}, each agent

uses the ALM (A.2) with the coefficients B(m) to forecast the current period aggregate

state variable W̃ fore
t .

2. (Aggregate problem) Given the forecast variable W̃ fore
t , the policy function f (m) for

2The log-linear specification is often used in the literature to approximate the ALM (e.g., Krusell and
Smith (1998), Krueger et al. (2016)). Though my companion paper, Mineyama (2020) uses a quadratic ALM
for the model with the ZLB and AR(1) shocks, I find that a log-linear ALM delivers enough explanatory
power for the specification of this paper.
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aggregate jump variables Xt ≡ {Yt, Lt, Ct,Πp
t , Rt, Dt, Y

f
t } is obtained by solving the

aggregate part of the economy. The aggregate part is a New Keynesian system that

consists of the Euler equation (A.4), pricing equations (A.5)–(A.8), and the Taylor rule

(A.9), along with the aggregate production function (A.10), the law of motion of price

dispersion (A.11), and the resource constraint (A.12). This step is feasible because

the aggregate part of the economy does not depend on the cross-sectional distribution

once being conditional on W̃ fore
t . Note that, when computing the aggregation of ad-

justment costs Mt =
∫ 1

0
mt(j)dj in (A.12), I approximate the fraction of wage changes

to its stochastic mean, i.e., Mt ≈ E[
∫ 1

0
mt(j)dj]. The approximation is due to the

computation burden to obtain the fraction of wage changes for each point of aggregate

state variables. However, the approximation errors are considered to be quantitatively

small because the changes in the fraction of workers who pay menu costs has up to the
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second order effects.

βEt

[(
Ct+1

Ct

)−1
QtRt

Πp
t+1

]
= 1, (A.4)

P ∗t
Pt

=
Ω1,t

Ω2,t

, (A.5)

where Ω1,t = µp
Wt

Pt
C−1
t Yt + ξβEt

[
(Πp

t+1)θpΩ1,t+1

]
, (A.6)

Ω2,t = C−1
t Yt + ξβEt

[
(Πp

t+1)θp−1Ω2,t+1

]
, (A.7)

1 = (1− ξ)
(
P ∗t
Pt

)1−θp
+ ξ(Πp

t )
θp−1, (A.8)

Rt = R∗
(

Πp
t

Π∗

)φπ (Y gap
t

Y ∗

)φy
, (A.9)

Yt =
Lt
Dt

, (A.10)

Dt = ξ(Πp
t )
θpDt−1 + (1− ξ)

(
P ∗t
Pt

)−θp
, (A.11)

Yt = Ct (1 +Mt) . (A.12)

3. (Individual problem) Given the aggregate state and jump variables St and Xt, along

with the individual state variables st(j) ≡ {w̃t−1(j), zt(j), st(j)}, individual households

solve the following wage-setting problem to derive their policy function h(m).

V

(
w̃t−1(j), zt(j), st(j)

)
= max

w̃t(j)
−ht(j)

1+1/η

1 + 1/η
+ C−1

t

(
w̃t(j)ht(j)−mt(j)Ct

)
+
β

g
Et
[
V

(
w̃t(j), zt+1(j), st+1(j)

)]
, (A.13)
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subject to

lt(j) = zt(j)ht(j), (A.14)

lt(j) =

(
w̃t(j)/zt(j)

W̃t

)−θw
Lt, (A.15)

where

ln zt(j) = ln z1,t(j) + ln z2,t(j), (A.16)

for job-stayers (st(j) = 1, 2),

ln z1,t(j) = µstz + ln z1,t−1(j), (A.17)

ln z2,t(j) =


ρstz ln z2,t−1(j) + εz,t(j), εzt(j) ∼ i.i.d.N(0, σst2z ) w.pr. 1− γ

ln z2,t−1(j) w.pr. γ

(A.18)

and for job-changers (st(j) = 3),

ln z1,t(j) = µchz + ln z1,t−1(j), (A.19)

ln z2,t(j) = ln z2,t−1(j) + εz,t(j), εz,t(j) ∼ i.i.d.U [−U ch
z , U

ch
z ]. (A.20)

4. (Stochastic aggregation) Given the aggregate policy function f (m) and the individual

policy function h(m), the model economy is simulated with N households for T periods.

I numerically integrate individual real wages according to the definition (A.21) to
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recover the aggregate real wage:

W̃t =

{∫ 1

0

(
w̃t(j)

zt(j)

)1−θw
dj

} 1
1−θw

. (A.21)

The simulation delivers the series of aggregate variables
{
S

(m)
t ,X

(m)
t

}T
t=T0+1

. The initial

cross-sectional wage distribution is set at one in the stationary equilibrium, and the

initial T0 periods are discarded. I set N = 10, 000, T = 2, 200, and T0 = 200.3 When

random shocks are drawn, I adjust the number of workers in each state so that it

is equal to the respective number in the ergodic distribution following the method

proposed by Heer and Maussner (2009).

5. (Updating) Using the simulated variables {S(m)
t ,X

(m)
t }Tt=T0+1, the suggested coefficients

B̂ are obtained by running the OLS of the ALM (A.2). The coefficients B(m+1) are

updated according to the rule:

B(m+1) = λB̂ + (1− λ)B(m), (A.22)

where λ is the weight for updating. I set λ to 0.1.

6. Repeat from step 1 to step 5 until convergence criteria for the coefficients B are at-

tained.

Convergence criteria of ALM. I use two convergence criteria for the ALM coefficients B.

First, I repeat iterations until the maximum quadratic distance between the original and up-

dated coefficients becomes smaller than 10−5. In addition, to guarantee the accuracy of the

3I confirm that the computation results do not change even if I further increase N or T .
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ALM, I check whether the model’s dynamics do not change over iterations. More specifically,

I verify that the changes in the mean, the standard deviation, and the first-order autocorre-

lation of each aggregate variable from those in the previous iteration stay within 0.5×10−2%.

Accuracy of ALM. To assess the accuracy of the ALM, I use the maximum distance

statistic proposed by Den Haan (2010) as well as standard measures such as the R-squared

statistics (R2) and forecast error. The statistic measures the maximum distance between

the aggregate state variables computed according only to the ALM for the entire time period

{W̃ alm
t }Tt=T0+1, and those derived from equilibrium conditions in the simulation {W̃t}Tt=T0+1:

maxDH = max
t∈[T0+1,T ]

| ln W̃t − ln W̃ alm
t |. (A.23)

Den Haan (2010) proposes using the statistic rather than R2 to check the accuracy of the

ALM because R2 only measures the average error in the one-period-ahead forecast.

The accuracy of the converged ALM under the calibrated Taylor rule is reported in Table

A.1. The R2 is slightly lower than that in previous studies that report the values such as

above 0.99 by forecasting the aggregate capital (e.g., Krusell and Smith 1998). One reason

for the slightly lower R2 in my model is that the autocorrelation of real wage is lower than

that of capital, and therefore the explanatory power of the ALM tends to be lower. However,

it does not necessarily indicate a low forecast accuracy. In fact, the mean absolute forecast

error (MAFE) is smaller than 0.05%, verifying the accuracy of the forecasting rule. The Den

Haan (2010) statistics is around 0.47%, which indicates that the cumulative error of agents’

prediction of the aggregate real wage is smaller than 0.5% over 2,000 periods. The value is
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Table A.1: Accuracy of forecasting rule

Forecast
variable

R2 MAFE
(%)

maxDH
(%)

aveDH
(%)

Baseline Πw
t 0.9375 0.0449 0.4660 0.1033

Notes: The R2 is computed as the average across exogenous states as follows: R2 = 1 −
∑T
t=T0+1(ln W̃t −

ln W̃ fore
t )2/

∑T
t=T0+1(ln W̃t− ln W̃ )2 with ln W̃ =

∑T
t=T0+1 ln W̃t/(T −T0). The mean absolute forecast error

MAFE is defined as MAFE =
∑T
t=T0+1 | ln W̃t − ln W̃ fore

t |/(T − T0). Notice that both statistics measure

the accuracy of the one-period-ahead forecast W̃ fore
t . On the other hand, maxDH refers to the maximum

Den Haan (2010) statistic defined in (A.23), whereas the average Den Haan (2010) statistics aveDH is

defined as aveDH =
∑T
t=T0+1 | ln W̃t − ln W̃ alm

t |/(T − T0).

on the same order as those of previous studies.4

A.2 Global solution method

Global solution method. I use a global solution method to solve each of the aggregate

and individual parts of the model. In this regard, a local solution method, such as the

perturbation method, cannot be applied due to the nonlinearity of my model. More precisely,

since the fixed cost for wage adjustments causes the individual policy function to be kinked,

the function is not differentiable.

For that reason, I apply the policy function iteration method of Coleman (1990) to the

aggregate problem. The version I use is the time iteration method. To this end, Richter

et al. (2014), who compare several variations of the policy function iteration method, argue

that the time iteration method performs in a balanced way in terms of accuracy, speed, and

robustness. To solve the individual problem, I employ the value function iteration method.

In both methods, I discretize the state spaces and numerically search for the functions that

4For example, Den Haan (2010) compares several computation algorithms to solve a heterogeneous agent
model, and finds that the Krusell-Smith algorithm with stochastic aggregation, which is the most accurate
one, gives around 0.2% as the maximum Den Haan (2010) statistic and 0.05% as the average one over 10,000
periods.
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Table A.2: Time-series moments
σ (%) ρ ρY

Data Model Data Model Data Model

Y 1.13 1.13 0.87 0.87 1.00 1.00
L 1.35 1.17 0.94 0.88 0.86 1.00
C 0.95 1.13 0.89 0.87 0.91 1.00
πp 0.22 0.28 0.68 0.95 0.34 0.84
πw 0.20 0.29 0.55 0.91 0.55 0.88
i 0.55 0.64 0.94 0.93 0.49 0.94

Notes: The standard deviation σ, first-order autocorrelation ρ, and correlation with output ρY are reported.
In the data series, Y is the real GDP per capita, L is the total hours worked per capita, C is the real personal
consumption expenditure per capita, πp is the GDP deflator, πw is the earnings per hour in the non-farm
business sector, and i is the effective federal funds rate. Y , L, and C are taken as log and detrended by
the HP-filter. πp, πw, and i are the quarterly rates. The sample spans from 1987Q4 to 2008Q4. The start
point of the sample corresponds to the Greenspan Era whereas the end point is determined to exclude the
ZLB periods. To compute the moments of the model, the inflation target Π∗ is set equal to the mean of the
inflation rates during the sample periods.

satisfy the equilibrium conditions. To evaluate expectations, I use linear interpolation and

numerical integration over the discretized grid points.

A.3 Welfare evaluation

Once I solve for equilibrium, I conduct the stochastic simulations to evaluate welfare losses.

In this step, I approximate the unconditional expectation operator in social welfare function

by taking the mean of the simulated series.

A.4 Time-series moments

Table A.2 compares the time-series moments of the data and the model while cross-sectional

moments are reported in the mail article. Though the model lacks some of the ingredients

and sources of shocks that are often introduced in a medium-scale DSGE model to match the

data, it captures salient features of the data. These includes: (i) low standard deviation of

inflation and wage growth relative to that of output and labor input, (ii) moderate persistence
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of each variable, and (iii) comovements among variables.5

B Details of baseline heterogeneous agent model

B.1 Decomposition of welfare loss

In this appendix, I derive analytical expression for the source of welfare loss in the model.

The approach adopted here follows Rotmberg and Woodford (1997) and Erceg et al. (2000).

I take the second order Taylor expansion of the current social welfare SWt around the

deterministic steady state:

SWt ≡ lnCt −
1

1 + 1/η

∫ 1

0

ht(j)
1+1/ηdj (A.24)

≈ ¯SW +

(
dCt
C̄

)
− 1

2

(
dCt
C̄

)2

− h̄1+1/η

{∫ 1

0

(
dht(j)

h̄

)
dj − 1

2η

∫ 1

0

(
dht(j)

h̄

)2

dj

}
, (A.25)

where
dat
ā
≡ at − ā

ā
.

ā is the value of variable at in the deterministic steady state where prices and wages are

flexible and any exogenous shocks are muted.

5There are several dimensions of the data that the model cannot precisely match. First, the model
cannot match the different dynamics of output, labor input, and consumption, presumably because capital
investment and productivity shocks are abstracted. Second, the model generates a slightly higher standard
deviation of inflation and wage growth than that of the data.
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Following Erceg et al. (2000), two approximations are used:

dat
ā
≡ at − ā

ā
≈ ât +

1

2
â2
t , (A.26)

where ât ≡ ln at − ln ā

and, if at =
(∫ 1

0
at(j)

ϕdj
)1/ϕ

, then

ât ≈ Ej[ât(j)] +
1

2
ϕVarj(ât(j)) (A.27)

where Ej[·] and Varj(·) are the expectation and the variance across j.

Substituting (A.26) into (A.25) yields

SWt ≈ ¯SW +

(
Ĉt +

1

2
Ĉ2
t

)
− 1

2

(
Ĉt +

1

2
Ĉ2
t

)2

− h̄1+1/η

{∫ 1

0

(
ĥt(j) +

1

2
ĥt(j)

2

)
dj +

1

2η

∫ 1

0

(
ĥt(j) +

1

2
ĥt(j)

2

)2

dj

}

≈ ¯SW + Ĉt − h̄1+1/η

{∫ 1

0

(
ĥt(j) +

1

2

(
1 +

1

η

)
ĥt(j)

2

)
dj

}
= ¯SW + Ĉt − h̄1+1/η

{∫ 1

0

(
(l̂t(j)− ẑt(j)) +

1

2

(
1 +

1

η

)
(l̂t(j)− ẑt(j))2

)
dj

}
, (A.28)

where the last equality comes from lt(j) = zt(j)ht(j). Notice that the third and higher order

terms are ignored since I focus on the second-order approximation.
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By (A.26) and (A.27), cross-sectional moments of labor service are rearranged to

∫ 1

0

l̂t(j)dj = Ej[l̂t(j)]

≈ L̂t −
1

2

θw − 1

θw
Varj[l̂t(j)], (A.29)∫ 1

0

l̂t(j)
2dj = Ej[l̂t(j)2]

= Varj[l̂t(j)]− Ej[l̂t(j)]2

≈ Varj[l̂t(j)]−
(
L̂t −

1

2

θw − 1

θw
Varj[l̂t(j)]

)2

≈ Varj[l̂t(j)]− L̂2
t , (A.30)∫ 1

0

l̂t(j)ẑt(j)dj = Ej[l̂t(j)ẑt(j)]

= Covj[l̂t(j)ẑt(j)]− Ej[l̂t(j)]Ej[ẑt(j)]

= Covj[l̂t(j)ẑt(j)], (A.31)

where the last equality holds because Ej[ẑt(j)] = 0.

Using (A.29)–(A.31), (A.28) is rearranged to

SWt ≈ ¯SW + Ĉt − h̄1+1/η

{(
L̂t −

1

2

θw − 1

θw
Varj[l̂t(j)]

)
+

1

2

(
1 +

1

η

)(
Varj[l̂t(j)] + L̂2

t

)
−
(

1 +
1

η

)
Covj[l̂t(j), ẑt(j)] +

1

2

(
1 +

1

η

)
Ej[ẑt(j)2]

}
= ¯SW +

{
Ĉt − h̄1+1/ηL̂t − h̄1+1/η 1

2

(
1 +

1

η

)
L̂2
t

}
− h̄1+1/η 1

2

(
1

θw
+

1

η

)
Varj[l̂t(j)]

+ h̄1+1/η

(
1 +

1

η

)
Covj[l̂t(j), ẑt(j)] + h̄1+1/η 1

2

(
1 +

1

η

)
Ej[ẑt(j)2], (A.32)
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On the firm side, the aggregation of Lt and Yt implies

L̂t ≈ Ei[l̂t(i)] +
1

2
Vari[l̂t(i)], (A.33)

Ŷt ≈ Ei[ŷt(i)] +
1

2

θp − 1

θp
Vari[ŷt(i)], (A.34)

where i denotes the index for firm. From yt(i) = lt(i), (A.33) and (A.34) lead to

L̂t ≈ Ŷt +
1

2θp
Vari[ŷt(i)], (A.35)

L̂2
t ≈ Ŷ 2

t . (A.36)

Moreover, the individual labor demand implies

Vari[ŷt(i)] = θ2
pVari[p̂t(i)]. (A.37)

In the Calvo model, it is shown that

Vari[p̂t(i)] = Ei
[
(p̂t(i)− Ei[p̂t(i)])2]

= ξEi
[
(p̂t−1(i)− Ei[p̂t(i)])2]+ (1− ξ)Ei

[
(p̂∗t (i)− Ei[p̂t(i)])2]

≈ ξ
(
Vari[p̂t−1(i)] + (Π̂p

t )
2
)

+ (1− ξ)
(

ξ(Π∗)θp−1

1− ξ(Π∗)θp−1

)2

(Π̂p
t )

2. (A.38)

The derivation follows Rotmberg and Woodford (1997) and Erceg et al. (2000). Notice that

the second term in the right-hand side of (A.38) is adjusted for the non-zero trend inflation
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Π∗. Taking the unconditional expectation of (A.38) leads to,

E [Vari[p̂t(i)]] ≈
ξ
{

1− ξ(Π∗)θp−1 + ξ(Π∗)θp−1((Π∗)θp−1 − 1)
}

(1− ξ)(1− ξ(Π∗)θp−1)2︸ ︷︷ ︸
cΠ

E[(Π̂p
t )

2]. (A.39)

Notice that cΠ = ξ/(1− ξ)2 if Π∗ = 1. Then, (A.35), (A.37), and (A.39) yield

E[L̂t] ≈ E[Ŷt] +
θp
2
cΠE[(Π̂p

t )
2]. (A.40)

The resource constraint implies

Ĉt = Ŷt − ln(1 +Mt), (A.41)

Using (A.36), (A.40), and (A.41), the unconditional expectation of the second term in

(A.32) is rearranged to

E
[
Ĉt − h̄1+1/ηL̂t − h̄1+1/η 1

2

(
1 +

1

η

)
L̂2
t

]
≈ E[Ŷt]− E[ln(1 +Mt)]− h̄1+1/η

(
E[Ŷt] +

θp
2
cΠE[(Π̂p

t )
2]

)
− h̄1+1/η 1

2

(
1 +

1

η

)
E[Ŷ 2

t ]

=
(
1− h̄1+1/η

)
E[Ŷt]− E[ln(1 +Mt)]− h̄1+1/η θp

2
cΠE[(Π̂p

t )
2]− h̄1+1/η 1

2

(
1 +

1

η

)
E[Ŷ 2

t ].

(A.42)

Taking the difference from the social welfare under flexible prices and wages, welfare loss
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is written as

SW − SW f =
1

1− β
E[SWt]−

1

1− β
E[SW f

t ]

≈ 1− h̄1+1/η

1− β︸ ︷︷ ︸
ωgap

(
E[Ŷt]− E[Ŷ f

t ]
)
− 1

1− β︸ ︷︷ ︸
ωm

E[ln(1 +Mt)]

− h̄1+1/η

1− β
θp
2
cΠ︸ ︷︷ ︸

ωπ

E[(Π̂p
t )

2]− h̄1+1/η

1− β
1

2

(
1 +

1

η

)
︸ ︷︷ ︸

ωy

(
E[Ŷ 2

t ]− E[(Ŷ f
t )2]

)

− h̄1+1/η

1− β
1

2

(
1

θw
+

1

η

)
︸ ︷︷ ︸

ωl

(
Varj[l̂t(j)]− Varj[l̂ft (j)]

)

+
h̄1+1/η

1− β

(
1 +

1

η

)
︸ ︷︷ ︸

ωlz

(
Covj[l̂t(j), ẑt(j)]− Covj[l̂ft (j), ẑt(j)]

)
. (A.43)

Note that I abbreviate the unconditional expectation operator E[·] in front of Varj[·] and

Covj[·] for the ease of notation.

Here,

E[Ŷt]− E[Ŷ f
t ] = E[lnYt − lnY f

t ]

= E[lnY gap
t ], (A.44)

E[Ŷ 2
t ]− E[(Ŷ f

t )2] = E[(Ŷt − Ŷ f
t )2 + 2ŶtŶ

f
t ]

= Var[lnY gap
t ] + E[lnY gap

t ]2 + 2E[ŶtŶ
f
t ]

≈ Var [lnY gap
t ] (A.45)

E[(Π̂p
t )

2] = Var[ln Πp
t ] + E[Π̂p

t ]
2

≈ Var[ln Πp
t ], (A.46)

A-16



I assume that E[lnY gap
t ] and E[Π̂p

t ] are of second-order according to the insights of Erceg

et al. (2000), and the higher order terms are neglected in the second-order approximation.

Moreover,

Varj[l̂t(j)] = Ej
[
(l̂t(j)− Ej[l̂t(j)])2

]
= Ej

[
(ln lt(j)− Ej[ln lt(j)])2

]
= Varj[ln lt(j)], (A.47)

Covj[l̂t(j), ẑt(j)] = Ej
[
(l̂t(j)− Ej[l̂t(j)])(ẑt(j)− Ej[ẑt(j)])

]
= Ej [(ln lt(j)− Ej[ln lt(j)])(ln zt(j)− Ej[ln zt(j)])]

= Covj[ln lt(j), ln zt(j)]. (A.48)

Using these equations, the welfare is expressed in the following equation:

SW − SW f = ωgapE[lnY gap
t ]− ωmE[ln(1 +Mt)]︸ ︷︷ ︸

aggregate mean

− ωπVar[ln Πt]− ωyVar[lnY gap
t ]︸ ︷︷ ︸

aggregate variance

− ωl
(
Varj[ln lt(j)]− Varj[ln lft (j)]

)
︸ ︷︷ ︸

cross-sectional variance

+ ωlz

(
Covj[ln lt(j), ln zt(j)]− Covj[ln lft (j), ln zt(j)]

)
︸ ︷︷ ︸

cross-sectional covariance

+ (higher order terms). (A.49)

(A.49) indicates four main sources of welfare loss in this economy: (i) aggregate mean; (ii)
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aggregate variance; (iii) cross-sectional variance; and (iv) cross-sectional covariance.

B.2 Allocations under flexible wages

Under flexible wages, real wage is equated to the marginal rate of substitution (MRS) along

with individual labor productivity and the steady-state markup:

wt(j)

Pt
= µwzt(j)h

1/η
t Ct︸ ︷︷ ︸
mrst(j)

. (A.50)

Individual labor demand along with lt(j) = zt(j)ht(j) implies

lt(j) =

(
µwzt(j)h

1/η
t Ct/zt(j)

Wt/Pt

)−θw
Lt

⇔ lt(j) = zt(j)
θw/η

1+θw/η

(
L

1/θw
t Wt/Pt
µwCt

) θw
1+θw/η

. (A.51)

Substituting (A.51) into (A.50), real wage is written as

wt(j)

Pt
= µwzt(j)

zt(j) θw/η
1+θw/η

(
L

1/θw
t Wt/Pt
µwCt

) θw
1+θw/η 1

zt(j)


1/η

Ct

=

{
zt(j)

1+θw/η−1/η

(
Wt

Pt

)θw/η
µwL

1/η
t Ct

} 1
1+θw/η

. (A.52)
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Using the definition of the aggregate wage index, (A.52) implies

Wt

Pt
=

∫ 1

0

{
zt(j)

−1/η

(
Wt

Pt

)θw/η
µwL

1/η
t Ct

} 1−θw
1+θw/η

dj


1

1−θw

=

(∫ 1

0

zt(j)
− 1−θw
η(1+θw/η)dj

) 1
1−θw

{(
Wt

Pt

)θw/η
µwL

1/η
t Ct

} 1
1+θw/η

⇔ Wt

Pt
=

(∫ 1

0

zt(j)
− 1−θw
η(1+θw/η)dj

) 1+θ/η
1−θw

︸ ︷︷ ︸
cz

µwL
1/η
t Ct. (A.53)

Notice that the coefficient of the right-hand side cz is constant over time. In other words,

under flexible wages, the aggregate dynamics are summarized into the relation among the

aggregate variables through worker heterogeneity is present. Substituting (A.53) into (A.52),

the individual wages have an analytical expression:

wt(j)

Pt
= zt(j)

1+θw/η−1/η
1+θw/η c

θw/η
1+θw/η
z µwL

1/η
t Ct. (A.54)

Furthermore, under flexible prices, the price markup remains constant:

1

µp
=
Wt

Pt
. (A.55)

Along with the market clearing conditions Yt = Lt = Ct, it can be verified that

lt(j) =
{

(µwµp)
−θwzt(j)

θw/ηL1−θw
t

} 1
1+θw/η , (A.56)
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Finally, the output under flexible prices and wages is given by

Yt = (czµwµp)
− 1

1+1/η , (A.57)

C Sensitivity analyses

C.1 Sensitivity to specifications of wage adjustment cost

I investigate alternative specifications of wage adjustment cost. In the baseline case in the

main article, the wage adjustment cost is assumed to be the sum of a fixed cost and a linear

cost proportional to the size of nominal wage changes:

mt(j) = (m+
0 +m+

1 ln Πw
t (j))1{wt(j)>wt−1(j)} + (m−0 +m−1 ln Πw

t (j))1{wt(j)<wt−1(j)}. (A.58)

As alternative cases, I consider a fixed cost only:

mt(j) = m+
0 1{wt(j)>wt−1(j)} +m−0 1{wt(j)<wt−1(j)}, (A.59)

and the sum of fixed and quadratic costs:

mt(j) =

(
m+

0 +
m+

2

2
ln Πw

t (j)2

)
1{wt(j)>wt−1(j)} +

(
m−0 +

m−2
2

ln Πw
t (j)2

)
1{wt(j)<wt−1(j)}.

(A.60)

Several points should be noted regarding the alternative specifications. First, I allow

for asymmetry for positive and negative wage changes in each specification. The setting
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Table A.3: Estimated parameters in different specifications of wage adjustment cost

Description Symbol Baseline Alternative 1 Alternative 2
(fixed+linear) (fixed only) (fixed+quad.)

For job-stayers
Fixed cost for positive wage changes m+

0 0.012 0.011 0.015
Fixed cost for negative wage changes m−

0 0.097 0.155 0.247
Linear cost for positive wage changes m+

1 0.675 — —
Linear cost for negative wage changes m−

1 3.626 — —
Quadratic cost for positive wage changes m+

2 — — 3.464
Quadratic cost for negative wage changes m−

2 — — 48.347
Prob. of not subject to adjustment cost ζ 0.011 0.010 0.008

Prob. of not receiving productivity shock γ 0.848 0.710 0.814
Persistence of productivity ρstz 0.698 0.894 0.801

Trend growth of productivity (% per year) µstz 1.692 0.444 1.250
S.D. of innovations to productivity σstz 0.097 0.050 0.096

For job-changers
Trend growth of productivity (% per year) µchz 8.085 13.945 8.985

nests symmetric costs when the parameter values for positive and negative wage changes are

identical. Second, I include a fixed cost in each specification. This is because a fixed cost

is essential to replicate the infrequent wage changes observed in the data. It is also worth

noting that the setting nests the case without a fixed cost when the corresponding parameters

are zero. Third, fixed, linear, and quadratic costs are widely used in the literature on price-

and wage-setting.6

I estimate the parameters for wage adjustment costs along with those for cross-sectional

wage distribution in each specification adopting the same procedure as the baseline case in

the main article.7 The estimated parameter values are listed in Table A.3, whereas the target

and model moments are reported in Table A.4 and A.5.

The first thing to note in these tables is that alternative specifications can replicate major

features of nominal wage adjustments observed in the data. Quantitatively, however, the

6Although some studies use a linex function to approximate adjustment cost, especially in a representative
agent model (e.g., Kim and Ruge-Murcia 2009, Aruoba et al. 2017), I find the function becomes highly convex
and unstable in practice when applied to dispersed individual wage changes in the data.

7As in the baseline case, I restrict U chz = 1 because equilibrium tends to be unstable under a large U chz .
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Table A.4: Targeted moments in different specifications of wage adjustment cost
Quarterly changes

Moment Data Baseline Alternative 1 Alternative 2
(fixed+linear) (fixed only) (fixed+quad.)

Job-stayers
Probability of positive wage changes 0.185 0.187 0.191 0.188
Probability of negative wage changes 0.009 0.011 0.011 0.009
Median size of positive wage changes 0.033 0.041 0.045 0.044
Median size of negative wage changes –0.077 –0.074 –0.083 –0.076
Mean size of positive wage changes 0.057 0.055 0.052 0.056
Mean size of negative wage changes –0.087 –0.080 –0.080 –0.077

Median of unconditional wage changes 0.000 0.000 0.000 0.000
Mean of unconditional wage changes 0.010 0.010 0.009 0.010
S.D. of unconditional wage changes 0.037 0.029 0.025 0.027

Job-changers
Probability of positive wage changes 0.527 0.589 0.598 0.582
Probability of negative wage changes 0.374 0.402 0.392 0.410
Median size of positive wage changes 0.167 0.191 0.193 0.181
Median size of negative wage changes –0.136 –0.173 –0.167 –0.175
Mean size of positive wage changes 0.235 0.209 0.218 0.204
Mean size of negative wage changes –0.165 –0.87 –0.187 –0.194

Median of unconditional wage changes 0.023 0.043 0.043 0.032
Mean of unconditional wage changes 0.063 0.048 0.057 0.040
S.D. of unconditional wage changes 0.259 0.238 0.246 0.242

All workers
Probability of positive wage changes 0.206 0.207 0.210 0.207
Probability of negative wage changes 0.032 0.030 0.029 0.028

Median of unconditional wage changes 0.000 0.000 0.000 0.000
Mean of unconditional wage changes 0.012 0.012 0.012 0.012
S.D. of unconditional wage changes 0.067 0.060 0.060 0.060
Loss in moment-matching method — 1.645× 10−3 2.266× 10−3 1.821× 10−3

Notes: The data moments and the moments of the baseline specification are identical to those reported in
the main article.

baseline case with a combination of fixed and linear costs delivers the best fit to the data,

as shown in the loss in the moment-matching method, i.e., the sum of quadratic distances

between the data and model moments.

When it comes to the performance of each alternative specification, the specification with

a fixed cost only (Alternative 1) fails to simultaneously match the frequency and size of wage

changes observed in the data. In particular, Table A.4 and A.5 indicate that the median

wage changes for job-stayers tends to be larger than those in the data. This result can be

understood by a standard Ss interpretation, i.e., only workers who have strong desires for
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Table A.5: Targeted moments in different specifications of wage adjustment cost (cont.)

Yearly changes
Moment Data Baseline Alternative 1 Alternative 2

(fixed+linear) (fixed only) (fixed+quad.)
Job-stayers

Probability of positive wage changes 0.639 0.638 0.635 0.635
Probability of negative wage changes 0.024 0.035 0.036 0.029
Median size of positive wage changes 0.035 0.046 0.046 0.046
Median size of negative wage changes –0.066 –0.072 –0.077 –0.074
Mean size of positive wage changes 0.063 0.067 0.063 0.068
Mean size of negative wage changes –0.073 –0.080 –0.076 –0.077

Median of unconditional wage changes 0.024 0.035 0.036 0.038
Mean of unconditional wage changes 0.039 0.040 0.038 0.041
S.D. of unconditional wage changes 0.065 0.056 0.048 0.054

Job-changers
Probability of positive wage changes 0.568 0.610 0.626 0.608
Probability of negative wage changes 0.380 0.371 0.353 0.372
Median size of positive wage changes 0.185 0.202 0.205 0.195
Median size of negative wage changes –0.158 –0.161 –0.159 –0.166
Mean size of positive wage changes 0.261 0.223 0.233 0.222
Mean size of negative wage changes –0.185 –0.178 –0.180 –0.186

Median of unconditional wage changes 0.046 0.065 0.068 0.058
Mean of unconditional wage changes 0.080 0.070 0.082 0.066
S.D. of unconditional wage changes 0.293 0.238 0.246 0.243

All workers
Probability of positive wage changes 0.627 0.634 0.634 0.630
Probability of negative wage changes 0.087 0.095 0.092 0.090

Median of unconditional wage changes 0.025 0.036 0.037 0.039
Mean of unconditional wage changes 0.044 0.046 0.046 0.046
S.D. of unconditional wage changes 0.120 0.114 0.115 0.115
Loss in moment-matching method

(redisplaying)
— 1.645× 10−3 2.266× 10−3 1.821× 10−3

Notes: The data moments and the moments of the baseline specification are identical to those reported in
the main article.

wage adjustments pay a fixed cost, and therefore small wage changes do not occur. This

interpretation is consistent with the large estimated values for fixed costs in the specification

shown in Table A.3.8 Regarding the specification with a combination of fixed and quadratic

costs (Alternative 2), the mean size of wage changes and the standard deviation of uncondi-

tional wage changes are relatively small whereas the median size of wage changes is slightly

high. This is because of the convexity of wage adjustment costs in this specification; a large

8In this specification, the estimated probability of not receiving idiosyncratic shocks ζ is somewhat low
whereas the estimated persistence of productivity ρstz is high, compared with the estimates of previous studies
(e.g., Kaplan et al. 2018).

A-23



Table A.6: Optimal inflation rates in alternative settings
Optimal

Π∗
Wel. diff. <0.05% Optimal

Π∗

in HA
model

in HA model in RA
model

(1) Baseline 2.0 [ 1.0 3.0 ] –0.4
Steady-state wage and price markups

(2) Labor subsidy τw = µw 1.8 [ 1.2 2.6 ] –1.0
(3) Production subsidy τp = µp 2.0 [ 1.0 3.0 ] –1.0
(4) τw = µw and τp = µp 1.8 [ 1.2 2.4 ] –1.0

Production function
(5) Decreasing returns α = 0.66 2.0 [ 0.6 3.2 ] –0.5

Heterogeneity in trend productivity growth
(6) µstz = µchz 2.4 [ 1.2 3.8 ] —

Notes: The HA model is solved at different levels of Π∗ with an interval of 0.2 percentage points due to the
computational burden of deriving equilibrium repeatedly at different Π∗. The RA model is solved with an
interval of 0.1 percent points, and the range of Π∗ is truncated at –1.0 percent because equilibrium tends to
be unstable at a lower Π∗. The second and third columns report the range of Π∗ within which the differences
in welfare loss from the optimum are within 0.05 percent of consumption.

wage change becomes increasingly costly due to the quadratic costs. Consequently, relatively

small wage changes are more likely to occur, reducing the mean size and the standard devia-

tion of wage changes. In sum, the baseline specification of a combination of fixed and linear

costs does better than alternative ones in matching the size and frequency of wage changes

in a balanced manner.

C.2 Sensitivity to calibrated parameters

I provide sensitivity analyses with respect to several calibrated parameters. Specifically, I

assess (i) steady-state wage and price markups, (ii) returns to scale in production, and (iii)

heterogeneity in trend productivity growth. The results are summarized in Table A.6. Note

that other dimensions of sensitivity are investigated in the main article.
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C.2.1 Steady-state wage and price markups

Row (2)–(4) assess the effects of steady-state wage and price markups by eliminating them

through labor and production subsidies. The presence of steady-state markups leads to

inefficiently low output, and therefore the marginal benefits of reducing inefficiency would

become larger. Notice, however, that this is the case for both reducing the distortion of

wage rigidity and that of price rigidity, and therefore the consequence for the optimal Π∗ is

ambiguous. Quantitatively, the optimal Π∗ is found to be almost unaffected, implying that

the marginal effects on wage and price rigidity are almost offset each other.

C.2.2 Returns to scale in production

Row (5) investigates the decreasing returns to scale in production whereas the baseline model

assumes the linear production technology.9 It is confirmed that the baseline result is not

drastically changed.

C.2.3 Heterogeneity in trend productivity growth

Row (6) reports the case in which there is no heterogeneity in trend productivity growth

for job-stayers and job-changers. Since µstz < µchz in the baseline calibration, eliminating the

heterogeneity means a higher µstz and a lower µchz than the baseline calibration. The result

indicates a higher optimal inflation in this case, implying that job changes are essential

opportunities to adjust wages not only because job-changers are free from wage adjustment

costs but also because they receive a higher productivity growth on average.

9The production function is modified to yt(i) = lt(i)
α where α is calibrated to 0.66.
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C.3 Discussion on consumption heterogeneity

The baseline model focuses on the misallocations in the labor market induced by wage rigid-

ity, whereas consumption dynamics are assumed to be summarized in the aggregate Euler

equation. Though the assumption is largely due to computational burden of keeping track of

the joint distribution of wages and asset holdings, one concern is that adding consumption

heterogeneity might change the welfare consequences of wage rigidity.

In this regard, there are two potential interactions between wage rigidity and consump-

tion heterogeneity. On the one hand, consumption heterogeneity would make the MRS more

dispersed across households, which causes larger desires for individual wage adjustments.

This channel would increase the welfare loss of wage rigidity, leading to a higher optimal

inflation rate. On the other hand, wage rigidity renders wages less volatile, and if it re-

duces income volatility the welfare loss associated with consumption heterogeneity can be

mitigated, adding downward pressure on the optimal inflation rate.10

Regarding the latter channel, however, I compare income volatility with and without wage

rigidity, and find that it is much more volatile with wage rigidity.11 This is because, although

individual wages become less dispersed in the presence of wage rigidity, the imperfect wage

adjustments lead to a larger dispersion of labor demand. In other words, wage rigidity would

amplify the welfare loss associated with consumption heterogeneity. Therefore, the optimal

inflation rate is conjectured to become higher if consumption heterogeneity is present, though

a rigorous analysis is left for future research.

10In a standard incomplete market setting, welfare loss arises from the lack of consumption smoothing due
to borrowing constraint.

11To be precise, the standard deviation of labor income wt(j)ht(j) is 28.8% with wage rigidity at Π∗ = 2.1
(%, annualized), whereas it is 17.5% without wage rigidity.
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D Representative agent model with asymmetric smooth

wage adjustment cost

In this appendix, I present the representative agent model with asymmetric smooth wage

adjustment cost, with which I compare the baseline heterogeneous agent model in the main

article. The specification largely follows that of Kim and Ruge-Murcia (2019).

Households’ problem. I consider the following household problem:

max
wt(j),ct(j),bt(j)

Et

[
∞∑
s=0

βs
(

ln ct+s(j)−
ht+s(j)

1+1/η

1 + 1/η

)]
, (A.61)

s.t. ct(j) + Ψw(Πw
t (j))Ct +

bt(j)

Pt
≤ wt(j)

Pt
ht(j) +Qt−1Rt−1

bt−1(j)

Pt
+
τt(j)

Pt
+ Φt(j),

(A.62)

lt(j) = zt(j)ht(j), (A.63)

lt(j) =

(
wt(j)/zt(j)

Wt

)−θw
Lt, (A.64)

where Ψw(Πw
t (j)) = φw

(
exp(−ψw(Πw

t (j)− 1)) + ψw(Πw
t (j)− 1)− 1

ψ2
w

)
. (A.65)

Ψw(Πw
t (j)) is the adjustment cost of nominal wages, which is proportional to the aggregate

consumption. The notations of the other variables follow those in the baseline model. The

first order condition for wt(j) takes the following form:

− ht(j)1/η ∂ht(j)

∂wt(j)
+ λt(j)

{(
1

Pt
ht(j) +

wt(j)

Pt

∂ht(j)

∂wt(j)

)
−Ψ

′

w(Πw
t (j))

1

wt−1(j)
Ct

}
− βEt

[
λt+1(j)Ψ

′

w(Πw
t+1(j))

(
−wt+1(j)

wt(j)2

)
Ct+1

]
= 0, (A.66)
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where λt(j) = 1/ct(j) is the Lagrangian multiplier of the budget constraint (A.62). (A.63)

and (A.64) yield

∂ht(j)

∂wt(j)
=
∂ht(j)

∂lt(j)

∂lt(j)

∂wt(j)

=
1

zt(j)

(
−θw

lt(j)

wt(j)

)
= −θw

ht(j)

wt(j)
. (A.67)

Using (A.67), (A.66) is rearranged to

Ψ
′

w(Πw
t (j))Πw

t (j) = βE
[
Ψ
′

w(Πw
t+1(j))Πw

t+1(j)
]

+ θw

(
ht(j)

1/ηct(j)−
1

µw

wt(j)

Pt

)
ht(j)

ct(j)
.

(A.68)

In the symmetric equilibrium, (A.68) yields the aggregate wage Phillips curve:

Ψ
′

w(Πw
t )Πw

t = βE
[
Ψ
′

w(Πw
t+1)Πw

t+1

]
+ θw

(
H

1/η
t Ct −

1

µw

Wt

Pt

)
Ht

Ct
. (A.69)

Other parts of the model is identical to those of the baseline model.

Resource constraint. The resource constraint of the economy is modified as follows.

Yt = Ct (1 + Ψw(Πw
t )) . (A.70)

Calibration. For the parameter φw and ψw, I use the estimated values of Kim and Ruge-
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Murcia (2019).12 They report φw = 33.85 and ψw = 602.48 when they estimate the model

with normally distributed shocks using U.S. data from 1964Q2 to 2015Q4 (Table 1 of Kim

and Ruge-Murcia 2019).

Computation. I use the policy function iteration method of Coleman (1990) to compute

equilibrium. However, I find that the wage adjustment cost Ψ
′
w(Πw

t ) is highly convex under

the calibrated parameter values and tend to be unstable in the non-linear solution when the

wage inflation rate deviate from the steady-state value.13 Therefore, I apply the second-order

Taylor expansion for Ψ
′
w(Πw

t ) while keeping the fully non-linear setting for the remaining

parts of the model.

12I find that the main results are robust to alternative parameter values such as those estimated by
Kim and Ruge-Murcia (2009) and Aruoba et al. (2017). I also verify that the quantitative results do not
significantly change when the overall degree of rigidity φw is calibrated according to the frequency of wage
changes reported by Grigsby et al. (2019) though a direct measure of the degree of asymmetry ψw is not
available in Grigsby et al. (2019).

13A similar issue is pointed out by Aruoba et al. (2017).
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