The Effect of Parental Rural-to-Urban Migration on Children's Cognitive Skill Formation

Bolun Li

Capital One Financial Corporation

2021 Econometric Society North American Winter Meeting

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Background

• Large-scale internal migration is prevalent in developing countries

- economic growth has lead rural workers to migrate to urban areas
- 10 million migrant workers in Indonesia
- 130 million migrant workers in China
- Parental rural-to-urban migration \Longrightarrow left-behind children
 - left-behind children \equiv rural-origin children w/ at least 1 migrant parent

- ▶ 5 million in Indonesia, 8% of all Indonesian children
- ▶ 30 million in China, 11% of all Chinese children
- Limited parent-child interactions pose developmental challenges
 - Heckman & Mosso (2014)

Motivation

- Early cognitive skills are important in predicting later life outcomes
 - I st. dev. increase in math scores at the end of developmental stage translates into 4% higher employment rate (Currie & Thomas, 2001)
 - schooling (Heckman, Stixrud & Urzua, 2006)
 - income (Chetty, Friedman & Rockoff, 2014)
- Left-behind children have received wide attention from policy-makers
 - United Nation Children's Fund (2008) "reinforcing and promoting childrens rights, with a focus on the protection and well-being of children left behind."
 - United Nations (2015)
 "Transforming our world: the 2030 Agenda for Sustainable Development."

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

New York Times (2018)
 "Left-behind children are the orphans of China's economic miracle."

Research Question

- I. How does parental rural-to-urban migration affect children's cognitive skill formation?
- **II.** What would happen to the cognitive skill development of left-behind children if their parents had not left?
- **III.** What types of migration policies are effective in promoting children's human capital development?

Preview of Findings

- Estimate a dynamic model of children's skill formation w/in household migration using panel survey data from Indonesia
- Children's cognitive skill formation is sensitive to the duration and type of parental migration
 - leaving children behind one year reduces cognitive skill by 0.02 st. dev.
- Cognitive skills of left-behind children would have improved substantially at age 14 if their families had remained together
 - equivalent to 7% \uparrow high school graduation rates (national average 53%)

- Migration policies of encouraging family moving w/ their children promote cognitive skill formation
 - ▶ annual subsidy of \$150 \implies 3% \uparrow high school graduation rates

Outline

• Literature review

- A dynamic model of skill formation w/in household migration
- Data from the Indonesia Family Life Survey
- Identification and Simulated Maximum Likelihood estimation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Counterfactual policy experiments

Selected Literature Review

- Children's skill formation
 - Todd & Wolpin (2003, 2007), Bernal (2008), Cunha, Heckman & Schennach (2010), Del Boca, Flinn & Wiswall (2013), Agostinelli (2018)
 - Attanasio, Cattan, Fitzsimons, Meghir & Rubio-Codina (2015), Attanasio, Meghir, & Nix (2015), Attanasio, Meghir, Nix & Salvati (2017)
 - contribution: understand skills formation in developing countries
- Labor migration
 - Liu, Mroz & Van der Klaauw (2010), Kennan & Walker (2011), Gemici (2011)
 - Bryan, Chowdhury & Mobarak (2014), Kleemans (2015), Lagakos, Mobarak & Waugh (2018), Bryan & Morten (2019)
 - contribution: study welfare impacts of migration policies on children
- Impact of migration on children
 - McKenzie & Rapoport (2011), Antman (2011,2012), Zhang, Behrman, Fan, Wei,
 & Zhang (2014), Lu (2014), Xu & Xie (2015), Meng & Yamauchi (2017)
 - contribution: model skill dynamics & include a full sample of rural-origin children

Outline

• Literature review and contribution

- A dynamic model of skill formation w/in household migration
- Data from the Indonesia Family Life Survey
- Identification and Simulated Maximum Likelihood estimation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Counterfactual experiments & policy analysis

Setup

- a dynamic discrete choice model of rural household migration
- ▶ a married coupled w/ oldest child born in a rural location
- exogenous but stochastic fertility

Decision •

- \blacktriangleright sequential annual migration decision j_t from birth till age 14

 - $j_t = \begin{cases} 1, & \text{if both parents stay with the child in a rural location} \\ 2, & \text{if at least one parent migrates and child is left behind in a rural location} \\ 3, & \text{if both parents move with the child to an urban location} \end{cases}$

Household Utility

 $U_t = U(C_t, Q_t, j_t, j_{t-1}, S_t^O, S_t^U, \varepsilon_t; \alpha)$ functional form

- parents face a trade-off consumption C_t and child's skill Q_t
- S_t^O = observed characteristics
- S_{t}^{U} = unobserved household types
- ε_t = preference shock ~ TIEV distribution

Budget Constraint

$$C_t = \underbrace{\mathbb{1}\{j_t = j\}Y_{j_t}}_{\text{income}} - \underbrace{(\Delta_1 \mathbb{1}\{j_t = 2, 3\}D + \Delta_2 \mathbb{1}\{j_t = 2\}N_t + \Delta_3 \mathbb{1}\{j_t = 3\}N_t)}_{\text{migraiton cost}}, \quad j \in J_t$$

$$\blacktriangleright Y_j = \text{income}$$

- D = distance between home village & provincial capital
- N_t = number of children

Parental Income

$$\ln Y_{jt} = \beta_{j1} educ_f + \beta_{j2} educ_m + \sum_{k \in K} \delta_{jk} \mathbb{1}\{\text{type} = k\} + \eta_{jt}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Iocation-dependent stochastic process
- ▶ k = unobserved type
- $\eta_{jt} =$ income shock \sim Normal distribution

Cognitive skill production function

$$\begin{split} Q_t &= \delta_1 \operatorname{age} + \delta_2 \operatorname{age}^2 + \delta_3 \operatorname{gender} + \delta_4 \operatorname{educ}_f + \delta_5 \operatorname{educ}_m + \delta_6 N_t \\ &+ \delta_7 H_{2t} + \delta_8 H_{3t} + \delta_9 H_{2t}^2 + \delta_{10} H_{3t}^2 + \sum_{k \in \mathcal{K}} \delta_k \mathbbm{1} \{ \operatorname{type} = k \} + \omega_t \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- N_t = number of children
- $H_{jt} \equiv \sum_{\tau=1}^{t-1} \mathbb{1}\{j_{\tau} = j\} = \text{migration experience}$
- k = unobserved household type
- ▶ ω_t = stochastic production component \sim Normal distribution

Features & restrictions

- 1. migration experience serve as proxy for parental investments
- cumulative migration history matter instead of its timing
- stock of children captures resource allocation among children
- 4. unobserved heterogeneity has a constant effect over time

Cognitive skill production function

$$\begin{split} Q_t &= \delta_1 age + \delta_2 age^2 + \delta_3 gender + \delta_4 educ_f + \delta_5 educ_m + \delta_6 N_t \\ &+ \delta_7 H_{2t} + \delta_8 H_{3t} + \delta_9 H_{2t}^2 + \delta_{10} H_{3t}^2 + \sum_{k \in \mathcal{K}} \delta_k \mathbbm{1} \{ \text{type} = k \} + \omega_t \end{split}$$

- N_t = number of children
- $H_{jt} \equiv \sum_{\tau=1}^{t-1} \mathbb{1}\{j_{\tau} = j\} = \text{migration experience}$
- k = unobserved household type
- $\omega_t = ext{stochastic production component} \sim ext{Normal distribution}$
- Features & restrictions
 - 1. migration experience serve as proxy for parental investments
 - 2. cumulative migration history matter instead of its timing
 - 3. stock of children captures resource allocation among children
 - 4. unobserved heterogeneity has a constant effect over time

Cognitive skill production function

$$\begin{split} Q_t &= \delta_1 \operatorname{age} + \delta_2 \operatorname{age}^2 + \delta_3 \operatorname{gender} + \delta_4 \operatorname{educ}_f + \delta_5 \operatorname{educ}_m + \delta_6 N_t \\ &+ \delta_7 H_{2t} + \delta_8 H_{3t} + \delta_9 H_{2t}^2 + \delta_{10} H_{3t}^2 + \sum_{k \in \mathcal{K}} \delta_k \mathbbm{1} \{ \operatorname{type} = k \} + \omega_t \end{split}$$

- N_t = number of children
- $H_{jt} \equiv \sum_{\tau=1}^{t-1} \mathbb{1}\{j_{\tau} = j\} = \text{migration experience}$
- k = unobserved household type
- ▶ ω_t = stochastic production component \sim Normal distribution
- Features & restrictions
 - 1. migration experience serve as proxy for parental investments
 - 2. cumulative migration history matter instead of its timing
 - 3. stock of children captures resource allocation among children
 - 4. unobserved heterogeneity has a constant effect over time

Cognitive skill production function

$$\begin{split} Q_t &= \delta_1 \operatorname{age} + \delta_2 \operatorname{age}^2 + \delta_3 \operatorname{gender} + \delta_4 \operatorname{educ}_f + \delta_5 \operatorname{educ}_m + \delta_6 N_t \\ &+ \delta_7 H_{2t} + \delta_8 H_{3t} + \delta_9 H_{2t}^2 + \delta_{10} H_{3t}^2 + \sum_{k \in \mathcal{K}} \delta_k \mathbbm{1} \{ \operatorname{type} = k \} + \omega_t \end{split}$$

- N_t = number of children
- $H_{jt} \equiv \sum_{\tau=1}^{t-1} \mathbb{1}\{j_{\tau} = j\} = \text{migration experience}$
- k = unobserved household type
- $\omega_t = ext{stochastic production component} \sim ext{Normal distribution}$
- Features & restrictions
 - 1. migration experience serve as proxy for parental investments
 - 2. cumulative migration history matter instead of its timing
 - 3. stock of children captures resource allocation among children
 - 4. unobserved heterogeneity has a constant effect over time

Household Problem

$$\max_{[j_t \in J]_{t=0}^T} E\left[\sum_{t=0}^T \rho^t U_{jt} \mid \Omega_t\right]$$

- parents choose sequentially optimal migration alternatives to maximize discounted expected lifetime utility
- ρ = discount factor
- $\Omega_t = \text{state space}$
- Bellman equation

$$V(\Omega_t) = \max_{j \in J} \left\{ U_{jt}(\Omega_t) + \rho E[V(S_{t+1}) \mid \Omega_t, j_t] \right\} \text{ for } t < T$$
$$= \max_{j \in J} \left\{ U_{jT}(\Omega_T) + \alpha_{jqT} \ln Q_{T+1} \right\} \text{ for } t = T$$

- with period timing: 1st fertility, 2nd shocks, 3rd decision
- solution: backward recursion due to finite horizon

Outline

- Literature review and contribution
- A dynamic model of skill formation w/in household migration
- Data from the Indonesia Family Life Survey
- Identification and Simulated Maximum Likelihood estimation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Counterfactual experiments & policy analysis

Data: Indonesia Family Life Survey

• Main feature

- retrospective & longitudinal information on migration & household income
- established cognitive measures using Raven's Colored Progressive Matrices test & math test (Raven, 2000; Unsworth et al., 2014) (test example)
- transform raw score using Item Response Theory score disttribution
- Migration patterns statistics
 - ▶ majority (70%) of rural households stay in rural over a long period (11 yrs)

migration (64%) is concentrated internally w/in each major island

Data: Internal Migration in Indonesia

Sorce: Kleeman. M. (2015) Migration choice under risk and liquidity constraints. & Indonesia Family Life Survey

Outline

• Literature review and contribution

- A dynamic model of skill formation w/in household migration
- Data from the Indonesia Family Life Survey
- Identification and Simulated Maximum Likelihood estimation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Counterfactual experiments & policy analysis

Identification & Estimation

Identification

- problem: skills are endogenously formed through migration experience
- instrument 1: distance from home village to provincial capital in *budget* constraint (Card, 1995, 2001; Meng & Yamauchi, 2017)
- instrument 2: ratio of number of schools divided by population in one's home village to its counterpart in provincial capital cities in *utility function*
- instruments validity

Estimation

$$L_i(\theta) = \sum_{k \in K} \mu_k \prod_{t=1}^{15} \left[\sum_{j \in J} d_{jt} \Pr(d_{jt} = 1, Y_{jt}, Q_t \mid \Omega_t, k; \theta) \right]$$

iterative process of solving the dynamic model and maximizing the likelihood

- simulation deals with missing income
- stochastic production component is assumed to be a measurement error

Identification & Estimation

- Identification
 - **problem**: skills are endogenously formed through migration experience
 - instrument 1: distance from home village to provincial capital in *budget* constraint (Card, 1995, 2001; Meng & Yamauchi, 2017)
 - instrument 2: ratio of number of schools divided by population in one's home village to its counterpart in provincial capital cities in *utility function*
 - instruments validity
- Estimation

$$L_i(\theta) = \sum_{k \in \mathcal{K}} \mu_k \prod_{t=1}^{15} \left[\sum_{j \in J} d_{jt} \Pr(d_{jt} = 1, Y_{jt}, Q_t \mid \Omega_t, k; \theta) \right]$$

iterative process of solving the dynamic model and maximizing the likelihood

- simulation deals with missing income
- stochastic production component is assumed to be a measurement error

Model Fit

• The estimated dynamic model replicates the data reasonably well

590

æ

メロト メポト メヨト メヨト

Outline

• Literature review and contribution

- A dynamic model of skill formation w/in household migration
- Data from the Indonesia Family Life Survey
- Identification and Simulated Maximum Likelihood estimation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Counterfactual experiments & policy analysis

Counterfactual: Are Left-behind Children Worse Off?

Figure: Counterfactual Skill Distribution of Left-behind Children

- 0.3 st. dev. \uparrow skills if parents of left-behind children had never left them
- skill improvement \approx 6.8% \uparrow graduation rates (national average 53%)

Counterfactual: Decomposition of Cognitive Skills

- Decomposition by counterfactual migration choices
 - of all parents who leave their children behind in the baseline (factual world)
 - ▶ 94% now stay in rural areas \longrightarrow 0.2 st. dev. \uparrow in skills
 - \blacktriangleright 6% now migrate w/ child to urban locations \longrightarrow 0.6 st. dev. \uparrow in skills
 - ▶ policy suggestion: encouraging family migration together w/ children

Policy Experiments: Migration Subsidy

• Subsidize families if parents migrate w/ their children to urban locations

Policy Experiments: Migration Subsidy

		Subsidy		
Subsidy	j=1 nonmigrant	j = 2 left-behind	j = 3 migrant	
\$0	84.02%	11.55%	4.44%	
\$25	83.56%	11.49%	4.95%	
\$50	82.81%	11.37%	5.82%	
\$75	81.89%	11.22%	6.89%	
\$100	80.81%	11.08%	8.11%	
\$125	79.49%	10.90%	9.61%	
\$150	78.11%	10.71%	11.18%	
\$175	76.45%	10.43%	13.11%	
\$200	74.36%	10.17%	15.47%	
\$450	34.15%	4.88%	60.97%	

Table: Effects of Cash Transfer Programs on Migration Rates

^a j = 1 if both parents stay w/ child rural

j = 2 if at least one parent migrates w/o child

j = 3 if both parents migrate w/ child to urban

Policy Experiments: Migration Subsidy

		Subsidy		
Subsidy	j=1 nonmigrant	j = 2 left-behind	j = 3 migrant	
\$0	84.02%	11.55%	4.44%	
\$25	83.56%	11.49%	4.95%	
\$50	82.81%	11.37%	5.82%	
\$75	81.89%	11.22%	6.89%	
\$100	80.81%	11.08%	8.11%	
\$125	79.49%	10.90%	9.61%	
\$150	78.11%	10.71%	11.18%	
\$175	76.45%	10.43%	13.11%	
\$200	74.36%	10.17%	15.47%	
\$450	34.15%	4.88%	60.97%	

 Table:
 Effects of Cash Transfer Programs on Migration Rates

^a j = 1 if both parents stay w/ child rural

j = 2 if at least one parent migrates w/o child

j = 3 if both parents migrate w/ child to urban

Policy Experiments: Migration Tax

• Tax parents if they leave their children behind

・ロト ・四ト ・モト ・モト

590

æ

Policy Experiments: Migration Tax

		Tax		
Subsidy	j=1 nonmigrant	j = 2 left-behind	j = 3 migrant	
\$0	84.02%	11.55%	4.44%	
\$25	85.21%	10.28%	4.51%	
\$50	86.31%	9.31%	4.55%	
\$75	86.98%	8.4%	4.62%	
\$100	87.68%	7.63%	4.69%	
\$125	88.29%	6.99%	4.72%	
\$150	88.81%	6.45%	4.74%	
\$175	89.24%	5.96%	4.80%	
\$200	89.65%	5.53%	4.82%	

Table: Effects of Migration Tax on Migration Rates

^a j = 1 if both parents stay w/ child rural

j = 2 if at least one parent migrates w/o child

j = 3 if both parents migrate w/ child to urban

Policy Experiments: Relaxing Constraints

- Recent debate whether to relax household registration system (National Development and Reform Commission of China, 2019)
- Reduce migration cost by 25% if parents move together w/ their child
 - Estimated cost of family migration with children is \$3,255
- Children's cognitive skill \uparrow by 0.28 st. dev., accompanied by 14% inflow of rural families to urban destinations

Conclusion

- Estimate a dynamic household migration model embedding a child's cognitive skill formation
- Left-behind children's cognitive skills would have improved if their families had remained together
- Encouraging rural-to-urban family migration advances children's cognitive development

- Next steps
 - model material inputs (income) in the cognitive production
 - allow differentials impacts of parental investments by age

Thank you!

Any comments and suggestions are appreciated! bolun.allen.li@gmail.com

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Utility function

 $U_t = C_t + \alpha_{2c} \mathbb{1}\{j_t = 2\} C_t + \alpha_{3c} \mathbb{1}\{j_t = 3\} C_t \} =$ consumption

$$+Q_t + \alpha_{2q} \mathbb{1}\{j_t = 2\}Q_t + \alpha_{3q} \mathbb{1}\{j_t = 3\}Q_t + \alpha_{cq}C_tQ_t \} = \text{child's cognitive skill}$$

$$\left. \begin{array}{l} +\alpha_{21}\mathbbm{1}\{j_t=2\}\mathbbm{1}\{j_{t-1}\neq 2\} \\ +\alpha_{31}\mathbbm{1}\{j_t=3\}\mathbbm{1}\{j_{t-1}\neq 3\} \end{array} \right\} = \text{transition cost}$$

$$+1\{j_t = 2\}(\alpha_{22}age + \alpha_{23}age^2 + \alpha_{24}relative + \alpha_{25}school ratio) \\ +1\{j_t = 3\}(\alpha_{32}age + \alpha_{33}age^2 + \alpha_{34}relative + \alpha_{35}school ratio) \\ \end{vmatrix} = characteristics$$

$$\left. \begin{array}{l} +1\{j_t = 2\}\sum_{k \in K} \alpha_{2k} \mathbbm{1}\{\text{type} = k\} \\ +1\{j_t = 3\}\sum_{k \in K} \alpha_{3k} \mathbbm{1}\{\text{type} = k\} \end{array} \right\} = \text{unobserved heterogeneity}$$

$$+1{j_t = 1}\varepsilon_{1t} + 1{j_t = 2}\varepsilon_{2t} + 1{j_t = 3}\varepsilon_{3t}$$
 = preference shocks

Mode			

Figure: Raven's Colored Progressive Matrices Example

Data

æ

990

・ロト ・ 日 ト ・ モ ト ・ モ ト

Descriptive Statistics

	Mean	St. Dev.
Household characteristics		
Household income (\$)	1069.82	235.29
Distance (miles)	60.35	46.23
Relative	0.44	0.50
Father education	2.62	1.04
Mother education	2.46	0.95
Choice fraction		
Never move	56.60%	-
Leave child behind at least once	35.34%	-
Move at least once $w/$ child	12.33%	-
Cumulative decision periods (yrs)		
Stay w/ child	12.84	3.52
Leave child behind conditional on moving	4.49	3.69
Move w/ child conditional on moving	4.66	3.56

Data

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Raw Score Distribution

IRT Transformed Skill Distribution

Item Response Theory

- model the probability of correctly answering a question from a test as a function of test characteristics and a test takers latent skills
- test characteristics include difficulty level λ_i and discrimination level κ_i
- latent skill ζ_i is assumed to follow a standard Normal distribution
- estimate parameters of test characteristics using maximum likelihood (ICC)

$$\Pr(Y_{ij} = 1 | \Gamma, \zeta_j) = \frac{\exp\{\kappa_i(\zeta_j - \lambda_i)\}}{1 + \exp\{\kappa_i(\zeta_j - \lambda_i)\}}$$

recover latent skill using empirical Bayesian updating <a>(TCC)

Latent Cognitive Skill Distribution

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure: Item Characteristics Curve

IRT

€ 990

▲口 → ▲圖 → ▲ 三 → ▲ 三 → □

Figure: Item Characteristics Curve

IRT

・ロト ・回 ト ・ヨト ・ヨト

Figure: Variation in Instruments

Identification

æ

990

・ロト ・四ト ・モト ・モト

Panel A: Tests for Weak Instruments		
Under Identification Test Kleibergen-Paap rank LM statistic (p-value)	31.53 (0.00)	
Weak Instrument Test Cragg-Donald Wald F statistic Kleibergen-Paap Wald F statistic	11.39 10.57	
Stock-Yogo Critical values 10% & 15% maximal relative biases	13.43 & 8.18	
Panel B: Suggestive Evidence	Correlation	St. Err.
Distance Electricity availability Agricultural wage Housing price	-0.025 -0.001 -0.248	0.016 0.001 0.335
Number of School Subjective measure of school quality	-0.031	0.023

[Identification]

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Age	j = 1	<i>j</i> = 2	<i>j</i> = 3	Row
0	0.13	1.11	0.32	1.56
1	0.20	8.72*	1.72	10.64*
2	0.31	1.76	2.17	4.25
3	0.00	0.17	0.08	0.25
4	0.00	0.28	0.11	0.39
5	0.00	0.11	0.05	0.16
6	0.10	0.26	2.04	2.40
7	0.39	1.01	2.01	3.40
8	0.10	0.12	2.15	2.37
9	0.04	0.39	1.79	2.22
10	0.02	0.22	0.00	0.24
11	0.01	0.00	0.13	0.14
12	0.13	0.01	1.06	1.20
13	0.17	0.02	1.04	1.22
14	0.17	0.01	1.38	1.56

Table: χ^2 Goodness-of-Fit Tests of the Within-Sample Choice Distribution

Model Fit

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Model Fit: Migration Choice Transition Matrix

Choice $(t-1)$	j = 1	<i>j</i> = 2	<i>j</i> = 3	Row
j = 1				
Data	95.88%	0.91%	3.21%	-
Model	95.51%	0.99%	4.51%	-
χ^2	0.14	0.66	38.24*	39.04*
j = 2				
Data	19.51%	79.78%	0.71%	-
Model	28.42%	71.26%	0.32%	-
χ^2	35.22*	12.85*	5.99*	54.06*
<i>j</i> = 3				
Data	4.60%	1.31%	94.09%	-
Model	6.49%	0.17%	93.34%	-
χ^2	2.51	34.94*	0.03	37.48*

Table: χ^2 Goodness-of-Fit Tests of the Migration Transition Matrix

Model Fit

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Model Fit: Skill Distribution by Migration Experience

Figure: Model Fit to Income Distribution by Migration Status

Model Fit

æ

590

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ -

Figure: Model Fit to Income Distribution by Parental Education

