The Effect of Parental Rural-to-Urban Migration on Children’s Cognitive Skill Formation

Bolun Li
Capital One Financial Corporation

2021 Econometric Society North American Winter Meeting
Background

• Large-scale internal migration is prevalent in developing countries
 ▶ economic growth has lead rural workers to migrate to urban areas
 ▶ 10 million migrant workers in Indonesia
 ▶ 130 million migrant workers in China

• Parental rural-to-urban migration \implies left-behind children
 ▶ left-behind children \equiv rural-origin children w/ at least 1 migrant parent
 ▶ 5 million in Indonesia, 8% of all Indonesian children
 ▶ 30 million in China, 11% of all Chinese children

• Limited parent-child interactions pose developmental challenges
 ▶ Heckman & Mosso (2014)
Motivation

- Early cognitive skills are important in predicting later life outcomes
 - 1 st. dev. increase in math scores at the end of developmental stage translates into 4% higher employment rate (Currie & Thomas, 2001)
 - schooling (Heckman, Stixrud & Urzua, 2006)
 - income (Chetty, Friedman & Rockoff, 2014)

- Left-behind children have received wide attention from policy-makers
 “reinforcing and promoting children’s rights, with a focus on the protection and well-being of children left behind.”
 “Transforming our world: the 2030 Agenda for Sustainable Development.”
 “Left-behind children are the orphans of China’s economic miracle.”
Research Question

I. How does parental rural-to-urban migration affect children’s cognitive skill formation?

II. What would happen to the cognitive skill development of left-behind children if their parents had not left?

III. What types of migration policies are effective in promoting children’s human capital development?
Preview of Findings

• Estimate a dynamic model of children’s skill formation within household migration using panel survey data from Indonesia

• Children’s cognitive skill formation is sensitive to the duration and type of parental migration
 ▸ leaving children behind one year reduces cognitive skill by 0.02 st. dev.

• Cognitive skills of left-behind children would have improved substantially at age 14 if their families had remained together
 ▸ equivalent to 7% ↑ high school graduation rates (national average 53%)

• Migration policies of encouraging family moving with their children promote cognitive skill formation
 ▸ annual subsidy of $150 ⇒ 3% ↑ high school graduation rates
Outline

• Literature review

• A dynamic model of skill formation w/in household migration

• Data from the Indonesia Family Life Survey

• Identification and Simulated Maximum Likelihood estimation

• Counterfactual policy experiments
Selected Literature Review

- **Children’s skill formation**
 - **contribution: understand skills formation in developing countries**

- **Labor migration**
 - **contribution: study welfare impacts of migration policies on children**

- **Impact of migration on children**
 - **contribution: model skill dynamics & include a full sample of rural-origin children**
Outline

- Literature review and contribution
- A dynamic model of skill formation within household migration
- Data from the Indonesia Family Life Survey
- Identification and Simulated Maximum Likelihood estimation
- Counterfactual experiments & policy analysis
Economic Model

• Setup
 ▶ a dynamic discrete choice model of rural household migration
 ▶ a married coupled w/ oldest child born in a rural location
 ▶ exogenous but stochastic fertility

• Decision
 ▶ sequential annual migration decision j_t from birth till age 14
 $j_t = \begin{cases}
 1, & \text{if both parents stay with the child in a rural location} \\
 2, & \text{if at least one parent migrates and child is left behind in a rural location} \\
 3, & \text{if both parents move with the child to an urban location}
 \end{cases}$

• Household Utility
 $U_t = U(C_t, Q_t, j_t, j_{t-1}, S_t^O, S_t^U, \varepsilon_t; \alpha)$
 ▶ parents face a trade-off consumption C_t and child’s skill Q_t
 ▶ $S_t^O = \text{observed characteristics}$
 ▶ $S_t^U = \text{unobserved household types}$
 ▶ $\varepsilon_t = \text{preference shock } \sim \text{TIEV distribution}$
Economic Model

- **Budget Constraint**

 \[C_t = \mathbb{1}_{\{j_t = j\}} Y_{jt} - (\Delta_1 \mathbb{1}_{\{j_t = 2, 3\}} D + \Delta_2 \mathbb{1}_{\{j_t = 2\}} N_t + \Delta_3 \mathbb{1}_{\{j_t = 3\}} N_t), \quad j \in J_t \]

 - \(Y_j \) = income
 - \(D \) = distance between home village & provincial capital
 - \(N_t \) = number of children

- **Parental Income**

 \[\ln Y_{jt} = \beta_{j1} educ_f + \beta_{j2} educ_m + \sum_{k \in K} \delta_{jk} \mathbb{1}_{\text{type} = k} + \eta_{jt} \]

 - location-dependent stochastic process
 - \(k \) = unobserved type
 - \(\eta_{jt} \) = income shock \(\sim \) Normal distribution
Economic Model

- **Cognitive skill production function**

\[
Q_t = \delta_1 \text{age} + \delta_2 \text{age}^2 + \delta_3 \text{gender} + \delta_4 \text{educ}_f + \delta_5 \text{educ}_m + \delta_6 N_t \\
+ \delta_7 H_{2t} + \delta_8 H_{3t} + \delta_9 H_{2t}^2 + \delta_{10} H_{3t}^2 + \sum_{k \in \mathcal{K}} \delta_k \mathbb{1}\{\text{type} = k\} + \omega_t
\]

- \(N_t\) = number of children
- \(H_{jt} \equiv \sum_{\tau=1}^{t-1} \mathbb{1}\{j_{\tau} = j\}\) = migration experience
- \(k\) = unobserved household type
- \(\omega_t\) = stochastic production component \(\sim\) Normal distribution

- **Features & restrictions**

1. migration experience serve as proxy for parental investments
2. cumulative migration history matter instead of its timing
3. stock of children captures resource allocation among children
4. unobserved heterogeneity has a constant effect over time
Economic Model

- **Cognitive skill production function**

 \[Q_t = \delta_1 \text{age} + \delta_2 \text{age}^2 + \delta_3 \text{gender} + \delta_4 \text{educ}_f + \delta_5 \text{educ}_m + \delta_6 N_t \]

 \[+ \delta_7 H_{2t} + \delta_8 H_{3t} + \delta_9 H_{2t}^2 + \delta_{10} H_{3t}^2 + \sum_{k \in K} \delta_k 1\{\text{type} = k\} + \omega_t \]

 - \(N_t \) = number of children
 - \(H_{jt} \equiv \sum_{\tau=1}^{t-1} 1\{j_\tau = j\} = \text{migration experience} \)
 - \(k = \text{unobserved household type} \)
 - \(\omega_t = \text{stochastic production component} \sim \text{Normal distribution} \)

- **Features & restrictions**

 1. migration experience serve as proxy for parental investments
 2. cumulative migration history matter instead of its timing
 3. stock of children captures resource allocation among children
 4. unobserved heterogeneity has a constant effect over time
Economic Model

• Cognitive skill production function

\[Q_t = \delta_1 \text{age} + \delta_2 \text{age}^2 + \delta_3 \text{gender} + \delta_4 \text{educ}_f + \delta_5 \text{educ}_m + \delta_6 \text{N}_t \]
\[+ \delta_7 H_{2t} + \delta_8 H_{3t} + \delta_9 H_{2t}^2 + \delta_{10} H_{3t}^2 + \sum_{k \in K} \delta_k \mathbb{1}\{\text{type} = k\} + \omega_t \]

- \(N_t \) = number of children
- \(H_{jt} \equiv \sum_{\tau=1}^{t-1} \mathbb{1}\{j_\tau = j\} = \) migration experience
- \(k = \) unobserved household type
- \(\omega_t = \) stochastic production component \(\sim \) Normal distribution

• Features & restrictions

1. migration experience serve as proxy for parental investments
2. cumulative migration history matter instead of its timing
3. stock of children captures resource allocation among children
4. unobserved heterogeneity has a constant effect over time
Economic Model

- Cognitive skill production function

\[Q_t = \delta_1 age + \delta_2 age^2 + \delta_3 gender + \delta_4 educ_f + \delta_5 educ_m + \delta_6 N_t + \delta_7 H_{2t} + \delta_8 H_{3t} + \delta_9 H_{2t}^2 + \delta_{10} H_{3t}^2 + \sum_{k \in K} \delta_k 1\{type = k\} + \omega_t \]

- \(N_t \) = number of children
- \(H_{jt} \equiv \sum_{\tau=1}^{t-1} 1\{j_\tau = j\} = \) migration experience
- \(k \) = unobserved household type
- \(\omega_t \) = stochastic production component \sim \text{Normal distribution}

- Features & restrictions

1. migration experience serve as proxy for parental investments
2. cumulative migration history matter instead of its timing
3. stock of children captures resource allocation among children
4. unobserved heterogeneity has a constant effect over time
Economic Model

- **Household Problem**

 \[
 \max_{\{j_t \in J\}_{t=0}^T} E \left[\sum_{t=0}^{T} \rho^t U_{jt} \mid \Omega_t \right]
 \]

 ▶ parents choose sequentially optimal migration alternatives to maximize discounted expected lifetime utility
 ▶ \(\rho \) = discount factor
 ▶ \(\Omega_t \) = state space

- **Bellman equation**

 \[
 V(\Omega_t) = \max_{j \in J} \left\{ U_{jt}(\Omega_t) + \rho E[V(S_{t+1}) \mid \Omega_t, j_t] \right\}
 \]

 for \(t < T \),

 \[
 = \max_{j \in J} \left\{ U_{jT}(\Omega_T) + \alpha_{jqT} \ln Q_{T+1} \right\}
 \]

 for \(t = T \)

 ▶ with period timing: 1st fertility, 2nd shocks, 3rd decision
 ▶ solution: backward recursion due to finite horizon
Outline

- Literature review and contribution
- A dynamic model of skill formation within household migration
- Data from the Indonesia Family Life Survey
- Identification and Simulated Maximum Likelihood estimation
- Counterfactual experiments & policy analysis
Data: Indonesia Family Life Survey

- **Main feature**
 - retrospective & longitudinal information on migration & household income
 - established cognitive measures using Raven’s Colored Progressive Matrices test & math test (Raven, 2000; Unsworth et al., 2014)
 - transform raw score using Item Response Theory

- **Migration patterns**
 - majority (70%) of rural households stay in rural over a long period (11 yrs)
 - migration (64%) is concentrated internally w/in each major island
Data: Internal Migration in Indonesia

Outline

- Literature review and contribution
- A dynamic model of skill formation within household migration
- Data from the Indonesia Family Life Survey
- Identification and Simulated Maximum Likelihood estimation
- Counterfactual experiments & policy analysis
Identification & Estimation

- **Identification**
 - **problem**: skills are endogenously formed through migration experience
 - **instrument 1**: distance from home village to provincial capital in budget constraint (Card, 1995, 2001; Meng & Yamauchi, 2017)
 - **instrument 2**: ratio of number of schools divided by population in one’s home village to its counterpart in provincial capital cities in utility function
 - instruments validity

- **Estimation**

\[L_i(\theta) = \sum_{k \in K} \mu_k \prod_{t=1}^{15} \left[\sum_{j \in J} d_{jt} \Pr(d_{jt} = 1, Y_{jt}, Q_t | \Omega_t, k; \theta) \right] \]

- iterative process of solving the dynamic model and maximizing the likelihood
- simulation deals with missing income
- stochastic production component is assumed to be a measurement error
Identification & Estimation

- **Identification**
 - **problem**: skills are endogenously formed through migration experience
 - **instrument 1**: distance from home village to provincial capital in *budget constraint* (Card, 1995, 2001; Meng & Yamauchi, 2017)
 - **instrument 2**: ratio of number of schools divided by population in one’s home village to its counterpart in provincial capital cities in *utility function*
 - **instruments validity**

- **Estimation**

 \[
 L_i(\theta) = \sum_{k \in K} \mu_k \prod_{t=1}^{15} \left[\sum_{j \in J} d_{jt} \Pr(d_{jt} = 1, Y_{jt}, Q_t \mid \Omega_t, k; \theta) \right]
 \]

 - iterative process of solving the dynamic model and maximizing the likelihood
 - simulation deals with missing income
 - stochastic production component is assumed to be a measurement error
Model Fit

- The estimated dynamic model replicates the data reasonably well.

- **Both parents stay w/ child rural ($j = 1$)**

- **At least one parent moves w/o child ($j = 2$)**

- **Both parents move w/ child urban ($j = 3$)**
Outline

- Literature review and contribution
- A dynamic model of skill formation within household migration
- Data from the Indonesia Family Life Survey
- Identification and Simulated Maximum Likelihood estimation
- Counterfactual experiments & policy analysis
Counterfactual: Are Left-behind Children Worse Off?

Figure: Counterfactual Skill Distribution of **Left-behind Children**

- 0.3 st. dev. ↑ skills if parents of left-behind children had never left them
- skill improvement ≈ 6.8% ↑ graduation rates (national average 53%)
Counterfactual: Decomposition of Cognitive Skills

- Decomposition by counterfactual migration choices
 - of all parents who leave their children behind in the baseline (factual world)
 - 94% now stay in rural areas → 0.2 st. dev. ↑ in skills
 - 6% now migrate w/ child to urban locations → 0.6 st. dev. ↑ in skills
 - policy suggestion: encouraging family migration together w/ children
Policy Experiments: Migration Subsidy

- Subsidize families if parents migrate w/ their children to urban locations
Policy Experiments: Migration Subsidy

Table: Effects of Cash Transfer Programs on Migration Rates

<table>
<thead>
<tr>
<th>Subsidy</th>
<th>$j = 1$ nonmigrant</th>
<th>$j = 2$ left-behind</th>
<th>$j = 3$ migrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>84.02%</td>
<td>11.55%</td>
<td>4.44%</td>
</tr>
<tr>
<td>25</td>
<td>83.56%</td>
<td>11.49%</td>
<td>4.95%</td>
</tr>
<tr>
<td>50</td>
<td>82.81%</td>
<td>11.37%</td>
<td>5.82%</td>
</tr>
<tr>
<td>75</td>
<td>81.89%</td>
<td>11.22%</td>
<td>6.89%</td>
</tr>
<tr>
<td>100</td>
<td>80.81%</td>
<td>11.08%</td>
<td>8.11%</td>
</tr>
<tr>
<td>125</td>
<td>79.49%</td>
<td>10.90%</td>
<td>9.61%</td>
</tr>
<tr>
<td>150</td>
<td>78.11%</td>
<td>10.71%</td>
<td>11.18%</td>
</tr>
<tr>
<td>175</td>
<td>76.45%</td>
<td>10.43%</td>
<td>13.11%</td>
</tr>
<tr>
<td>200</td>
<td>74.36%</td>
<td>10.17%</td>
<td>15.47%</td>
</tr>
<tr>
<td>450</td>
<td>34.15%</td>
<td>4.88%</td>
<td>60.97%</td>
</tr>
</tbody>
</table>

a $j = 1$ if both parents stay w/ child rural
 $j = 2$ if at least one parent migrates w/o child
 $j = 3$ if both parents migrate w/ child to urban
Policy Experiments: Migration Subsidy

Table: Effects of Cash Transfer Programs on Migration Rates

<table>
<thead>
<tr>
<th>Subsidy</th>
<th>$j = 1$ nonmigrant</th>
<th>$j = 2$ left-behind</th>
<th>$j = 3$ migrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>84.02%</td>
<td>11.55%</td>
<td>4.44%</td>
</tr>
<tr>
<td>25</td>
<td>83.56%</td>
<td>11.49%</td>
<td>4.95%</td>
</tr>
<tr>
<td>50</td>
<td>82.81%</td>
<td>11.37%</td>
<td>5.82%</td>
</tr>
<tr>
<td>75</td>
<td>81.89%</td>
<td>11.22%</td>
<td>6.89%</td>
</tr>
<tr>
<td>100</td>
<td>80.81%</td>
<td>11.08%</td>
<td>8.11%</td>
</tr>
<tr>
<td>125</td>
<td>79.49%</td>
<td>10.90%</td>
<td>9.61%</td>
</tr>
<tr>
<td>150</td>
<td>78.11%</td>
<td>10.71%</td>
<td>11.18%</td>
</tr>
<tr>
<td>175</td>
<td>76.45%</td>
<td>10.43%</td>
<td>13.11%</td>
</tr>
<tr>
<td>200</td>
<td>74.36%</td>
<td>10.17%</td>
<td>15.47%</td>
</tr>
<tr>
<td>450</td>
<td>34.15%</td>
<td>4.88%</td>
<td>60.97%</td>
</tr>
</tbody>
</table>

*a $j = 1$ if both parents stay w/ child rural
 $j = 2$ if at least one parent migrates w/o child
 $j = 3$ if both parents migrate w/ child to urban*
Policy Experiments: Migration Tax

- Tax parents if they leave their children behind
Policy Experiments: Migration Tax

<table>
<thead>
<tr>
<th>Subsidy</th>
<th>$j = 1$ nonmigrant</th>
<th>$j = 2$ left-behind</th>
<th>$j = 3$ migrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>84.02%</td>
<td>11.55%</td>
<td>4.44%</td>
</tr>
<tr>
<td>25</td>
<td>85.21%</td>
<td>10.28%</td>
<td>4.51%</td>
</tr>
<tr>
<td>50</td>
<td>86.31%</td>
<td>9.31%</td>
<td>4.55%</td>
</tr>
<tr>
<td>75</td>
<td>86.98%</td>
<td>8.4%</td>
<td>4.62%</td>
</tr>
<tr>
<td>100</td>
<td>87.68%</td>
<td>7.63%</td>
<td>4.69%</td>
</tr>
<tr>
<td>125</td>
<td>88.29%</td>
<td>6.99%</td>
<td>4.72%</td>
</tr>
<tr>
<td>150</td>
<td>88.81%</td>
<td>6.45%</td>
<td>4.74%</td>
</tr>
<tr>
<td>175</td>
<td>89.24%</td>
<td>5.96%</td>
<td>4.80%</td>
</tr>
<tr>
<td>200</td>
<td>89.65%</td>
<td>5.53%</td>
<td>4.82%</td>
</tr>
</tbody>
</table>

$^a j = 1$ if both parents stay w/ child rural
$^a j = 2$ if at least one parent migrates w/o child
$^a j = 3$ if both parents migrate w/ child to urban
Policy Experiments: Relaxing Constraints

- Recent debate whether to relax household registration system (National Development and Reform Commission of China, 2019)

- Reduce migration cost by 25% if parents move together w/ their child
 - Estimated cost of family migration with children is $3,255

- Children’s cognitive skill ↑ by 0.28 st. dev., accompanied by 14% inflow of rural families to urban destinations
Conclusion

• Estimate a dynamic household migration model embedding a child’s cognitive skill formation

• Left-behind children’s cognitive skills would have improved if their families had remained together

• Encouraging rural-to-urban family migration advances children’s cognitive development

• Next steps
 ▶ model material inputs (income) in the cognitive production
 ▶ allow differentials impacts of parental investments by age
Thank you!

Any comments and suggestions are appreciated!

bolun.allen.li@gmail.com
Utility function

\[U_t = C_t + \alpha_{2c} \mathbb{1}\{j_t = 2\} C_t + \alpha_{3c} \mathbb{1}\{j_t = 3\} C_t \] = consumption

\[+ Q_t + \alpha_{2q} \mathbb{1}\{j_t = 2\} Q_t + \alpha_{3q} \mathbb{1}\{j_t = 3\} Q_t + \alpha_{cq} C_t Q_t \] = child’s cognitive skill

\[+ \alpha_{21} \mathbb{1}\{j_t = 2\} \mathbb{1}\{j_{t-1} \neq 2\} \] = transition cost

\[+ \alpha_{31} \mathbb{1}\{j_t = 3\} \mathbb{1}\{j_{t-1} \neq 3\} \]

\[+ \mathbb{1}\{j_t = 2\} (\alpha_{22} \text{age} + \alpha_{23} \text{age}^2 + \alpha_{24} \text{relative} + \alpha_{25} \text{school ratio}) \] = characteristics

\[+ \mathbb{1}\{j_t = 3\} (\alpha_{32} \text{age} + \alpha_{33} \text{age}^2 + \alpha_{34} \text{relative} + \alpha_{35} \text{school ratio}) \]

\[+ \mathbb{1}\{j_t = 2\} \sum_{k \in K} \alpha_{2k} \mathbb{1}\{\text{type} = k\} \] = unobserved heterogeneity

\[+ \mathbb{1}\{j_t = 3\} \sum_{k \in K} \alpha_{3k} \mathbb{1}\{\text{type} = k\} \]

\[+ \mathbb{1}\{j_t = 1\} \varepsilon_{1t} + \mathbb{1}\{j_t = 2\} \varepsilon_{2t} + \mathbb{1}\{j_t = 3\} \varepsilon_{3t} \] = preference shocks
Figure: Raven’s Colored Progressive Matrices Example
Descriptive Statistics

<table>
<thead>
<tr>
<th>Household characteristics</th>
<th>Mean</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household income ($)</td>
<td>1069.82</td>
<td>235.29</td>
</tr>
<tr>
<td>Distance (miles)</td>
<td>60.35</td>
<td>46.23</td>
</tr>
<tr>
<td>Relative</td>
<td>0.44</td>
<td>0.50</td>
</tr>
<tr>
<td>Father education</td>
<td>2.62</td>
<td>1.04</td>
</tr>
<tr>
<td>Mother education</td>
<td>2.46</td>
<td>0.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Choice fraction</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Never move</td>
<td>56.60%</td>
<td>-</td>
</tr>
<tr>
<td>Leave child behind at least once</td>
<td>35.34%</td>
<td>-</td>
</tr>
<tr>
<td>Move at least once w/ child</td>
<td>12.33%</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cumulative decision periods (yrs)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stay w/ child</td>
<td>12.84</td>
<td>3.52</td>
</tr>
<tr>
<td>Leave child behind conditional on moving</td>
<td>4.49</td>
<td>3.69</td>
</tr>
<tr>
<td>Move w/ child conditional on moving</td>
<td>4.66</td>
<td>3.56</td>
</tr>
</tbody>
</table>
Raw Score Distribution

Mean = 9.15
St. Dev. = 3.66
Num. Obs. = 116

Mean = 9.41
St. Dev. = 3.35
Num. Obs. = 49

Mean = 8.95
St. Dev. = 3.34
Num. Obs. = 75

Mean = 10.68
St. Dev. = 3.52
Num. Obs. = 131

Mean = 11.53
St. Dev. = 3.10
Num. Obs. = 139

Mean = 11.67
St. Dev. = 3.42
Num. Obs. = 156

Mean = 12.33
St. Dev. = 3.36
Num. Obs. = 128

Mean = 12.59
St. Dev. = 3.02
Num. Obs. = 116
Item Response Theory

- model the probability of correctly answering a question from a test as a function of test characteristics and a test takers latent skills
- test characteristics include difficulty level λ_i and discrimination level κ_i
- latent skill ζ_j is assumed to follow a standard Normal distribution
- estimate parameters of test characteristics using maximum likelihood

$$\Pr(Y_{ij} = 1 \mid \Gamma, \zeta_j) = \frac{\exp\{\kappa_i(\zeta_j - \lambda_i)\}}{1 + \exp\{\kappa_i(\zeta_j - \lambda_i)\}}$$

- recover latent skill using empirical Bayesian updating

Latent Cognitive Skill Distribution
Figure: Item Characteristics Curve
Figure: Item Characteristics Curve
Figure: Variation in Instruments

Panel A: Distance

Panel B: School Ratio
Table: Instrumental Variable Test & Evidence

Panel A: Tests for Weak Instruments

Under Identification Test
Kleibergen-Paap rank LM statistic (p-value) 31.53 (0.00)

Weak Instrument Test
Cragg-Donald Wald F statistic 11.39
Kleibergen-Paap Wald F statistic 10.57

Stock-Yogo Critical values
10% & 15% maximal relative biases 13.43 & 8.18

Panel B: Suggestive Evidence

<table>
<thead>
<tr>
<th>Distance</th>
<th>Correlation</th>
<th>St. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity availability</td>
<td>−0.025</td>
<td>0.016</td>
</tr>
<tr>
<td>Agricultural wage</td>
<td>−0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Housing price</td>
<td>−0.248</td>
<td>0.335</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of School</th>
<th>Correlation</th>
<th>St. Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjective measure of school quality</td>
<td>−0.031</td>
<td>0.023</td>
</tr>
</tbody>
</table>

Identification
Table: χ^2 Goodness-of-Fit Tests of the Within-Sample Choice Distribution

<table>
<thead>
<tr>
<th>Age</th>
<th>$j = 1$</th>
<th>$j = 2$</th>
<th>$j = 3$</th>
<th>Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.13</td>
<td>1.11</td>
<td>0.32</td>
<td>1.56</td>
</tr>
<tr>
<td>1</td>
<td>0.20</td>
<td>8.72*</td>
<td>1.72</td>
<td>10.64*</td>
</tr>
<tr>
<td>2</td>
<td>0.31</td>
<td>1.76</td>
<td>2.17</td>
<td>4.25</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.17</td>
<td>0.08</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.28</td>
<td>0.11</td>
<td>0.39</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.11</td>
<td>0.05</td>
<td>0.16</td>
</tr>
<tr>
<td>6</td>
<td>0.10</td>
<td>0.26</td>
<td>2.04</td>
<td>2.40</td>
</tr>
<tr>
<td>7</td>
<td>0.39</td>
<td>1.01</td>
<td>2.01</td>
<td>3.40</td>
</tr>
<tr>
<td>8</td>
<td>0.10</td>
<td>0.12</td>
<td>2.15</td>
<td>2.37</td>
</tr>
<tr>
<td>9</td>
<td>0.04</td>
<td>0.39</td>
<td>1.79</td>
<td>2.22</td>
</tr>
<tr>
<td>10</td>
<td>0.02</td>
<td>0.22</td>
<td>0.00</td>
<td>0.24</td>
</tr>
<tr>
<td>11</td>
<td>0.01</td>
<td>0.00</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>12</td>
<td>0.13</td>
<td>0.01</td>
<td>1.06</td>
<td>1.20</td>
</tr>
<tr>
<td>13</td>
<td>0.17</td>
<td>0.02</td>
<td>1.04</td>
<td>1.22</td>
</tr>
<tr>
<td>14</td>
<td>0.17</td>
<td>0.01</td>
<td>1.38</td>
<td>1.56</td>
</tr>
</tbody>
</table>
Model Fit: Migration Choice Transition Matrix

Table: χ^2 Goodness-of-Fit Tests of the Migration Transition Matrix

<table>
<thead>
<tr>
<th>Choice $(t-1)$</th>
<th>$j = 1$</th>
<th>$j = 2$</th>
<th>$j = 3$</th>
<th>Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>$j = 1$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>95.88%</td>
<td>0.91%</td>
<td>3.21%</td>
<td>-</td>
</tr>
<tr>
<td>Model</td>
<td>95.51%</td>
<td>0.99%</td>
<td>4.51%</td>
<td>-</td>
</tr>
<tr>
<td>χ^2</td>
<td>0.14</td>
<td>0.66</td>
<td>38.24*</td>
<td>39.04*</td>
</tr>
<tr>
<td>$j = 2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>19.51%</td>
<td>79.78%</td>
<td>0.71%</td>
<td>-</td>
</tr>
<tr>
<td>Model</td>
<td>28.42%</td>
<td>71.26%</td>
<td>0.32%</td>
<td>-</td>
</tr>
<tr>
<td>χ^2</td>
<td>35.22*</td>
<td>12.85*</td>
<td>5.99*</td>
<td>54.06*</td>
</tr>
<tr>
<td>$j = 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>4.60%</td>
<td>1.31%</td>
<td>94.09%</td>
<td>-</td>
</tr>
<tr>
<td>Model</td>
<td>6.49%</td>
<td>0.17%</td>
<td>93.34%</td>
<td>-</td>
</tr>
<tr>
<td>χ^2</td>
<td>2.51</td>
<td>34.94*</td>
<td>0.03</td>
<td>37.48*</td>
</tr>
</tbody>
</table>
Model Fit: Skill Distribution by Migration Experience

- For both parents staying with the child in rural areas (\(j = 1\)), the data and model show a similar trend in mean skills across different cumulative migration duration intervals (\([0, 5]), [6, 10], [11, 15]\)).

- For at least one parent moving without the child in urban areas (\(j = 2\)), the data and model also show comparable mean skills across the same intervals.

- For both parents moving with the child in urban areas (\(j = 3\)), the data and model align similarly in mean skills across the intervals.

A graphical representation illustrates the comparisons between data and model for each scenario, with the x-axis representing cumulative migration duration in years and the y-axis showing mean and standard deviation of skills.
Figure: Model Fit to Income Distribution by Migration Status
Figure: Model Fit to Income Distribution by Parental Education

- Father education = 1, Mother education = 1
- Father education = 1, Mother education = 2
- Father education = 1, Mother education = 3
- Father education = 2, Mother education = 1
- Father education = 2, Mother education = 2
- Father education = 2, Mother education = 3
- Father education = 3, Mother education = 1
- Father education = 3, Mother education = 2
- Father education = 3, Mother education = 3