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Context

 The Current Population Survey (CPS) gets monthly data from ~60,000 households
 Each job is assigned a Census-defined industry category and an occupation

These are 3-digit codes, used in the CPS, ACS, and other data sets

Challenge:  The categories have changed over time

 We need long time series for industries and occupations

Our intended application: labor composition indexes by industry

 Past approaches:  Crosswalks; or, study each category for customized imputation
 Approach here:  Impute for each individual by machine learning
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Census industries and occupations

 Hundreds of discrete groups, with 3-digit numbers

 Industry and occupation are coded (assigned) jointly

 Same categories used in Population Census, CPS, ACS, and other data

 Challenge:  standardize comparison of  observations across time & datasets

To follow one category over time
 E.g. electrical engineers category grew and split, creating software categories

 In our case, to fill in NAICS industry code consistently over time

To hold industry or occupation constant in a study of something else
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CPS period
Occupation 

categories

Industry 

categories

1982-92 394 229

1993-1999 456 237

2000-2010 503 264

2011-2012 533 263

2013-18 484 260



Harmonizing industry and occupation over time

 A crosswalk or concordance matches the categories over time

 It’s a table where each category is mapped into categories in the other 
classification system

To avoid empty cells, destination categories may be merged

Users trade off precision of category with sparseness and length of time series

E.g. in 1960 there was one Census category for lawyers and judges
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 Researchers choose among crosswalks; there is a quiet literature on this

 IPUMS (1994 and on), Meyer and Osborne (2005), IPUMS (~2007), Dorn (2009)

Counts of lawyers and judges in decennial Census 1% samples

1960 1970 1980 1990

Lawyers
2053

2570 5082 7603

Judges 123 298 331



Examples from occupation study

 Lawyers and judges
 Combined in 1960 Census of Population; separate in 1970-1990
 Can split them apart?

 Yes, using other Censuses as training data (1970-1990)
 Predictors:  State employee, Federal employee, Age, age2, earnings cubic, business income

 And:   Education level below 16 years (!)

 Statisticians and actuaries
 Combined in 1960 Census of Population; separate in 1970-1990
 Predictors:   Industry, Age, age2, earnings cubic, education

 And:   Lives in CT, MN, NE, or WI

 Surprising categories and thresholds help predict, but it’s too labor intensive
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Random forests

The random forests method can make large scale 
imputations to individual records.

 We use the ranger package, which works well 

with many data types, notably categories

 Builds decision trees of linear combinations of 
predictors, threshold values, and category 
divisions – based on training data set

 Many decision trees “vote” to make a prediction 
in the test data set

 Random forests can incorporate interaction 
effects, and tend not to overfit.
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Random forests models are complicated

 The “forest” is complicated to describe

 Like a Rube Goldberg machine

 Variables’ importance in prediction is available

 Less info than from a regression

 We think random forests fit the problem well.

 Logistic regressions are easier to check and control, 
but too labor-intensive

 Neural networks may not give much additional 
benefit with this class of problem, and can require 
more resources.
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Rube Goldberg, Collier’s, Sept 26, 1931
From Wikimedia Commons



CPS and ACS data

Main training data set:  
 Dual-coded CPS sample from 2000-2002

 Dual-coded means it has both Census 1990 and Census 2000 industries and occupations

 Coded by the Census specialists

Main target data:  Monthly CPS 1986-99 combined with IPUMS-CPS

 15.5 million observations

Separately, 2000-2018 CPS

American Community Survey, 2003-2018

We use a random forests method on the training data to build prediction models.
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Several imputations are necessary

 Main goal: impute after-2000 industry to earlier microdata

 We train predictions on the dual-coded 2000-2002 CPS for:
Class of worker (e.g. for profit, not for profit, government)

Hours of work, attributes of any 2nd job

Occupation  (2- and 3 digit Census 2000)

 Industry  (3 digit Census 2000)

NAICS industry
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Work, location, and demographics predict industry

Strongest predictors:
 Industry (in earlier/native category system)
 Occupation
 State of residence

Weaker predictors:
 Education, age
 Earnings, work hours, employer type
 Age, sex, race
 Metro, county
 State unemployment, from Local Area Unemployment Statistics

Challenge:  Other variables definitions change in CPS notably in 1994 redesign
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Creates an augmented CPS dataset

 We get imputations in an “augmented CPS” dataset for 1986-2018.
 To compare methods we estimate industry employment and self-employment
 Some imputations look good on the micro level.  Examples:

 Example: Durable vs nondurable manufacturing for “not specified manufacturing” industry 3990

 Milling industries were reclassified in 2000. Our method modestly changes aggregates:



Tuning the classifier

Main tuning parameters for each imputed variable:

Number of variables at branches of decision trees

Numbers of trees

These are limited by computer memory and time.

Goal:  High accuracy of out-of-sample predictions in the dual-coded data
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Benchmarks to apply

 Broad tests of the augmented data set are necessary
 Imputations may be biased toward the conventional

 Benchmarks:  Total in each industry and occupation
 Each occupation and industry category should evolve slowly

 the fraction of the population in each category

average earnings in each category

demographic and geographic distribution
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Application:  Labor composition indexes
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Our office has an established technique to create an index summarizing the 
education and experience of workforce in each industry (BLS, 1993)

 More educated and experienced workforce correlates to more output

 So the index accounts for some of productivity growth, apart from hours worked

 The index is constructed from data on individuals from the CPS
 For small-sample industries that gives a volatile index

We’d like more accurate industry imputations
 Often smooths out fluctuations
 To create indexes for smaller industries



Labor composition in ACS and CPS
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 Indexes combine change in education 
and experience of industry workforces

 Indexes are 100 in base year 2012 
 Red lines are CPS
 Blue lines are ACS-based
 Both raked to CPS three-year averages 

by 2-digit sector and age group, sex, 
and education groups

 Differences between them are from 
sample variation at the 3-digit level

 Larger sample size in ACS  less 
volatility in these 3-digit indexes

NAICS 483 - Water Transportation

NAICS 518 - Data processing, 
hosting, and related services



How to work together on next steps

For users
 Used to share source code for this
 Easier to share databases as CPS and IPUMS now do

Among developers
 Share code
 Test against benchmarks, adjust thresholds
 Put to use in our applied area
 Apply techniques to other data sets
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Conclusions

The random forest approach gets us key benefits
 Large scale assignment of industry and occupation for CPS
 Using data on every person’s primary job
 First known implementation of this
 Expected to be more accurate than a crosswalk, more feasible than logit regression

Long term
 use more data sets as training data (NLSY, population Census)
 apply to other data sets (older CPS and population Census)
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