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Motivation

• People often have incorrect views of the world despite
abundant data.

• Examples:

– Belief that taxes are linear in income when they are not;

– Belief in the “law of small numbers” and the gambler’s fallacy;

– “Causation neglect” about the impact of actions on outcomes;

– Ignoring informative signals in the belief that they don’t
matter.

• It is important to understand how such agents learn from
data, and how they will behave.
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Introduction

• We analyze learning from endogenous data when the agent is
a misspecified Bayesian: Their prior assigns probability 0 to a
neighborhood of the true map from actions to outcome
distributions.

• We provide:

– A new and sharper necessary condition for an action to be a
limit point of the learning process.

– A characterization of the actions that are limit points for all
“nearby” beliefs.

– Sufficient conditions for an action to have positive probability
of being the limit outcome from any initial beliefs.
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• A Berk-Nash equilibrium (Esponda and Pouzo, 2016) is an
action a that is myopically optimal against some beliefs
supported on the models that are closest (wrt the KL
divergence) to the true data generating process given that a is
played. (formal definitions later)

• We relate limit outcomes to two refinements of this concept.

• A uniform Berk-Nash equilibrium is a best reply to any
mixture over KL minimizers.

• A uniformly strict Berk-Nash equilibrium is an action that is a
strict best reply to every mixture over KL minimizers.
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General Results
• Any limit point must be a uniform Berk-Nash equilibrium.

• Uniformly strict Berk-Nash equilibria are uniformly stable:
behavior converges to them with high probability from all
nearby beliefs.

• Conversely uniformly stable equilibria must be uniformly strict.

• Thus

Uniformly Strict B-N = Uniformly Stable ⊆ Stable ⊆ Uniform B-N.
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Positive Attractiveness
• Equilibria are positively attractive if they have positive
probability from any starting beliefs.

• We show that uniformly strict Berk-Nash equilibria are
positively attractive under various types of misspecification:

– Causation Neglect, where the agent mistakenly believes that
their action does not affect the outcome distribution,

– Subjective Bandits, where the agent thinks that the outcomes
observed when playing one action are uninformative about the
distribution induced by the others,

• In supermodular environments, extremal equilibria are
positively attractive.

• Some of the results extend to the case in which the agent
observes a signal before taking their action.
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Most Closely Related Work

• Esponda and Pouzo (2016) introduces Berk-Nash equilibrium,
and proves convergence to it when the payoffs of the agent
face iid shocks.

• Esponda, Pouzo, and Yamamoto (2019) focuses on
convergence of beliefs and of action frequencies as opposed to
actions.

• Frick, Iijima, and Ishii (2020) studies convergence of beliefs
without explicitly modelling actions. Assumes a finite-support
prior, and proves convergence to Berk-Nash equilibrium under
myopia. It also introduces a measure of distance between
models that we use in a proof.

• Mention other related work at the end time permitting.
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Actions, Utilities and Objective Outcome Distributions
• Every period t ∈ N, the agent chooses an action a from the

finite set A.

• Finite set of outcomes Y .

• Action a has two consequences:

– Induces objective probability distribution over outcomes
p∗

a ∈ ∆ (Y );

– Directly influences the agent’s payoff through u : A× Y → R.
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Subjective Beliefs of the Agent
• Let P := ×a∈A∆ (Y ) be the space of all action-dependent
outcome distributions.

• Elements p ∈ P , components pa.

• The agent is Bayesian.

• They have a prior µ0 ∈ ∆ (P ).

• P := suppµ0 is the set of conceivable outcome distributions.

• The agent may be misspecified, i.e. we allow p∗ /∈ P.
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Behavior of the Agent
• A (pure) policy π :

⋃∞
t=0A

t × Y t → A specifies an action for
every history (aτ , yτ )tτ=0 = (at, yt) ∈ At × Y t.

• We assume that the agent wants to maximize expected
discounted utility with discount factor β ∈ [0, 1).

• Am (µ) = arg maxa∈A
∫
P Epa [u(a, y)] dµ(p) is the set of

myopic best replies to belief µ.
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Berk-Nash Equilibrium
• Given two distributions over outcomes q, q′ ∈ ∆(Y ) define

H
(
q, q′

)
= −

∑
y∈Y

q(y) log q′(y).

• For each action a, let

P̂ (a) = argmin
p∈P

H (p∗a, pa) = argmin
p∈P

H (p∗a, pa)−H(p∗a, p∗a)

denote the set of conceivable action-contingent outcome
distributions that minimize the KL divergence relative to p∗a
when the agent plays a.

• Action a is a Berk-Nash equilibrium (Esponda and Pouzo
[2016] if there is a belief ν ∈ ∆(P̂ (a)) such that a is
myopically optimal given ν.
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• Two outcome distributions p, p′ ∈ P are observationally
equivalent under action a, written p ∼a p′, if pa(y) = p′a(y).

• Let Ea(p) ⊆ P denote the outcome distributions in P that are
observationally equivalent to p under a.

• We do not assume that agents are arbitrarily patient, so no
reason to expect them to have have much data about the
consequences of every action.
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Refinements of Berk-Nash Equilibrium

Definition (Uniform and Uniformly Strict Berk-Nash Equilibria)
Action a is a
(i) uniform Berk-Nash equilibrium if for every KL minimizing

outcome distribution p ∈ P̂(a), there is a belief over the
observationally equivalent distributions ν ∈ ∆ (Ea(p)) such
that a ∈ Am(ν).

(ii) uniformly strict Berk-Nash equilibrium if {a} = Am(ν) for
every observationally equivalent belief in ν ∈ ∆(P̂ (a)).

When the agent is correctly specified (i.e. p∗ ∈ P),

Uniform B-N = B-N = Self-Confirming,

as p∗a is the unique KL minimizer for a.
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Technical Assumptions
• Simplyfing assumption for the talk: For all p ∈ P, p and
p∗ are mutually absolutely continuous. This guarantees that
no conceivable distribution is ruled out after a finite number
of observations.
• Also assume that the prior µ0 has subexponential decay: there
is Φ : R+ → R such that for every p ∈ P and ε > 0 we have

µ0(Bε(p)) ≥ Φ(ε)

with
lim Φ(K/n) exp(n) =∞ ∀K > 0.

• Priors with a density that is bounded away from 0 on their
support, priors with finite support, and Dirichlet priors all have
subexponential decay. Fudenberg, He, and Imhof [2017] show
that Bayesian updating can behave oddly on priors w/o
subexponential decay.
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Only Uniform-Berk Nash Equilibria are Limit Actions

Theorem (Limit Actions are Uniform Berk-Nash Equilibria)
If actions converge to a ∈ A with positive probability, a is a
uniform Berk-Nash equilibrium.

• Previous results on convergence to B-N equilibria require
myopia and either i.i.d. payoff shocks or a finite-support prior
(Esponda and Pouzo, 2016, Frick, Iijima, and Ishii 2020).

• Sharper conclusion: a limit action must be a best reply to all
of the KL minimizers it induces.

• Key for this and a few of our other results is a lemma that say
the beliefs of misspecified agents converge to the K-L
minimizers at a uniform rate.

• This extends the uniform concentration result of Diaconis and
Friedman [1990] to misspecified agents.
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Proof Sketch for Theorem 1
• Our uniform concentration result shows that the agent’s belief
concentrates around the distributions that minimize the KL
divergence from the empirical frequency at an exponential
rate eKt that is uniform over the sample realizations.

• While playing a, the empirical frequency converges to p∗a

• The difference between the empirical frequency and p∗a is a
random walk, and it oscillates in the direction of the different
minimizers.

• By the Central Limit Theorem these oscillations die out at
rate 1√

t
, which is slower than the exponential contraction of

beliefs.
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Proof Sketch for Theorem 1
• So we can use an extension of the second Borel-Cantelli
lemma for events that are not "too correlated" to show that
infinitely often the beliefs concentrate around every minimizer.

• If a is not uniform B-N, this induces the agent to switch to
another action.
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When are there Multiple KL Miminimizers?
• In space of all probability distributions there is generically a
unique KL minimizer.
• But frameworks with symmetry or parametric restrictions are
not generic, and there multiple KL minimizers can arise
naturally.
• Example: suppose that y is the color of the ball drawn from

an urn which is known to contain 6 balls.
• The agent correctly believes their action doesn’t affect y.
• Outcome distributions correspond to the urn composition.
• The agent is certain that at most half of the balls have the
same color, i.e., that p(y) ≤ 1/2 for every y.
• In reality the urn has 4 white balls, 1 red, and 1 blue.
• So the two KL minimizers are (3 white, 2 blue, 1 red) and (3
white, 1 blue, 2 red).
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Possible Non-convergence
• Nyarko (1991) shows by example that misspecified learning
may not converge.

• However, Esponda and Pouzo (2016) show there always exists
a B-N equilibrium.

• Their existence proof relies on possibly nonuniform Berk-Nash
equilibria featuring multiple minimizers.

• Our theorem 1 shows that if no equilibrium is uniform, actions
cannot converge; this may be easier to check than directly
verifying non-convergence.

• We show by example that uniform B-N equilibria need not
exist.

• One case where they do exist is if the agent is correctly
specified.
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Two Stability Notions

Definition (Stability)
(i) A Berk-Nash equilibrium a is stable if for every κ ∈ (0, 1),

there is an ε > 0 and a belief ν ∈ ∆(P) such that for all
initial beliefs in Bε(ν), the action prescribed by some optimal
policy converges to a with probability larger than 1− κ.

(ii) A Berk-Nash equilibrium a is uniformly stable if for every
κ ∈ (0, 1), there is an ε > 0 such that for all initial beliefs
ν ∈ ∆(P) such that ν(P̂(a)) > 1− ε, the action prescribed
by any optimal policy converges to a ∈ A with probability
greater than 1− κ.

For Nash equilibria (where the agent has correct beliefs about the
consequences of every action), these two stability notions coincide
if for every pair of actions a, a′ there is a P ∈ P such that
U(a, δP) 6= U(a′, δP)
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Characterization of Uniform Stability

Theorem (Characterization theorem)
Action a ∈ A is uniformly stable if and only if it is a uniformly
strict Berk-Nash equilibrium.

• This is the first if and only characterization of stability under
misspecified learning.

• Differs from past work in covering the case where the agent
perceives an information value from experimentation.
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Proof Sketch for Uniformly Strict Implies Uniformly Stable
• Since a is a uniformly strict B-N equilibrium, a is the unique

myopic best reply to every action- contingent outcome
distribution p in a ball around the KL minimizers P̂(a).
• The agent needn’t be myopic, and non-equilibrium actions can
convey information.
• However, this information is useless, since uniform strictness
implies the agent would want to play a regardless of what
they learn about pa′ for other actions a′.
• Then we use the fact that a transformation of the odds-ratio
between the non-KL minimizers and KL minimizers is a
positive supermartingale (as in Frick, Iijima, and Ishii, 2020)
to generalize the “active supermartingale” result of Fudenberg
and Levine (1993) to misspecification.
• Use the Dubins upcrossing inequality to show that if this odd
ratio starts sufficiently low, with an arbitrarily large probability
it never crosses the threshold needed to switch action.
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Proof Sketch for uniformly stable implies uniformly strict
• If a is not a uniformly strict B-N there is some belief over

minimizers such that a is not strictly optimal.
• So it is not the limit outcome under some optimal policy.
• Theorem 1 and Theorem 2 combined give

Unif. Strict B-N = Unif. Stable ⊆ Stable ⊆ Unif. B-N.

• In a rich environment, for every KL minimizer for every action,
there is a nearby model in P where the action’s utility is
relatively lower.This seems like a relatively weak condition, but
it rules out the common assumption of finite-support priors.
• Theorem 3 shows that in rich environments uniformly strict
B-N ⇔ stability so

Unif. Strict B-N = Unif. Stable rich= Stable ⊆ Unif. B-N.
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Positive Attractiveness
• Another natural notion of a being a long-run outcome is that

for every prior belief there is a strictly positive probability that
the agent’s action converges to a.

Definition (Positively Attracting)
Action a ∈ A is positively attracting if for every optimal policy π

Pπ
[

lim
t→∞

at = a

]
> 0 .
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Causation Neglect
• When the agent has causation neglect they believe that the
distribution over outcomes is the same for all actions:

pa = pb ∀a, b ∈ A, p ∈ P.

Theorem

Suppose that the agent has causation neglect. If a is a uniformly
strict Berk-Nash equilibrium then it is positively attracting.

• Example: The agent is randomly matched with an opponent
and believes they are playing a simultaneous game, and they
are uncertain about the distribution over strategies p in the
opponents’ population.
• In reality the opponents observe a noisy signal about the
action taken by the agent before moving, so p∗a 6= p∗b if a = b.
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Sketch of the Proof of Positive Attractiveness
• Our uniform consistency result guarantees that on every path
of outcome realizations, beliefs concentrate around the
empirical frequency.

• We use this concentration to show that if the empirical
frequency is close to p∗a, the beliefs concentrate around P(a).

• Causation neglect guarantees that the empirical frequency is a
sufficient statistic.

• We combine this with our stability result to guarantee that
once the beliefs get sufficiently close to the KL minimizers,
the agent never switches to another action.
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Subjective Bandit Problems

• In a subjective bandit problem, the agent’s prior µ0 is a
product measure µ0 = ×a∈Aµa. (so the actions are
independent arms.)

• In these problems, uniformly strict B-N typically don’t exist,
even in the correctly specified case, because optimistic
off-path beliefs can make other actions better replies.

• But here we can replace uniformity requirement with the
requirement that the equilibrium is weakly identified (Esponda
and Pouzo 2016), meaning that there is a unique conceivable
outcome distribution qa that best matches p∗a.

Definition (Weak Identification )
A Berk-Nash equilibrium a is weakly identified if for all
p, p′ ∈ P̂(a) we have pa = p′a.
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Theorem

For every subjective bandit problem there is a β̄ < 1 such that if
the discount factor β ≥ β̄, then every weakly identified strict
Berk-Nash equilibrium is positively attractive.

• The proof uses the fact that patient agents experiment with
actions that they believe might give them a higher payoff.

• Note that here the result needs the agent to be sufficiently
patient.

• In contrast, patience didn’t matter for the causation neglect
result because there the agent thinks there is no value to
experimentation.
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Extension to Signals
• We extend our setup to allow for the agent to observe an
exogenous signal s ∈ S before taking their action.

• Here the counterpart of the actions are strategy profiles
σ : S → A.

• Utility function u : A× Y × S → R.

• The conceivable models are in ∆(Y )A×S .

• Adding the signals lets us to incorporate i.i.d. payoff shocks as
in Esponda and Pouzo (2016).

• Also lets us incorporate another common form of
misspecification: signal neglect (see, e.g., Molavi 2019).

• Convergence to uniform Berk-Nash equilibria and the positive
attractiveness under causation neglect generalize to this
setting once the equilibrium definitions are extended.
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Conclusion
• We provide sharp characterizations of the long-run outcomes
of misspecified learning, and propose uniformity as a learning
refinement of Berk-Nash equilibria.

• We show that all uniformly strict Berk Nash equilibria are
stable, and that only uniform Berk Nash equilibria can be
stable.

• We then provide the first sufficient conditions for an action to
be positively attracting under several forms of
misspecification:

– Causation Neglect;
– Subjective Bandit Problems;
– Supermodular Environments.
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More Related Literature
• The statistics literature starting with Berk (1966) studies
exogenous misspecified Bayesian learning.

• Already mentioned Esponda and Pouzo(2016), Esponda,
Pouzo, and Yamamoto (2019), and Frick, Iijima,and Ishii
(2020).

• Also related: Fudenberg, Romanyuk, and Strack (2018),
Heidhues, Koszegi, and Strack (2018), (He 2019), Molavi,
2019).

• And models of misspecified social learning such as Frick,
Iijima, and Ishi (2019) Bohren (2016), Bohren and Hauser
(2018), Mailath and Samuelson (2019).

• Fudenberg-Lanzani (2020, in preparation) uses an evolutionary
model to study which misperceptions are “robust to
mutations.”
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Thank you!
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Definition (Rich)

Definition (Rich)

A problem is rich if for every action a, minimizer p ∈ P̂(a) and
ε > 0 there exists a p′ ∈ P \ P̂(a) with ||p− p′|| ≤ ε such that

Epa [u(a, y)]−max
b∈A

Epb
[u(b, y)] > Ep′

a
[u(a, y)]−max

b∈A
Ep′

b
[u(b, y)] .

Back to slides

1 / 1


	Appendix

