

THE LADDER OF DEVELOPMENT

Popular metaphor about development:

- Countries sit at different rungs of a ladder
- \blacktriangleright Each rung associated with a \neq set of economic activities
- As countries develop, they become more capable, move up the ladder, produce and export more complex goods

This paper:

 Use ladder metaphor as a starting point to explore relationship between globalization and development

Development — Trade:

 Countries with growing capability (because of domestic shocks) may acquire CA in more complex goods

Trade — Development:

 Countries specializing in more complex goods (because of foreigns shocks) may have faster capability growth

THIS PAPER

- Theory: Does trade push countries up the development ladder or hold them at the bottom?
 - Trade can move all countries up the ladder
 - This happens if (i) complex goods raise capability and (ii) fewer countries export complex goods
- Empirics: Do complex goods raise capability?
 - Supporting evidence using entry of other countries in WTO as IV for sectoral distribution of employment
- Putting it together: Are the conditions necessary for trade to push all countries up the ladder satisfied in the data? No
 - Robust to alternative measures of complexity and capability

RELATED LITERATURE

Theory

- Comparative advantage: Krugman (1979), Krugman (1986), Matsuyama (2005), Costinot (2009), Cunat Melitz (2012), Sutton Trefler (2016)
- Learning-by-Doing: Krugman (1987), Boldrin Scheinkman (1988), Grossman Helpman (1990), Young (1991), Stokey (1991)
- Knowledge diffusion: Perla, Tonetti and Waugh (2015), Sampson (2016), Buera Oberfield (2017)

Empirics

- Complexity and capability: Hausman Hidalgo (2009), Costinot, Donaldson, and Komunjer (2012), Hausman Hidalgo Bustos Coscia Chung Jimenez Simoes Yi. (2011), Levchenko and Zhang (2016), Hanson Lind Muendler (2016)
- Trade patterns and growth: Hausman Hwang Rodrik (2007), Lederman Mahoney (2012), Bartelme Lan Levchenko (2019)

ROADMAP

- Theory
- Measurement
- Estimation
- Counterfactuals
- Robustness

THEORY

ENVIRONMENT

- lacksquare Many countries indexed by i
- lacksquare Continuum of goods indexed by k
 - Total measure of goods normalized to one
- ▶ Time is continuous and indexed by t
- Labor is the only factor for production
 - $L_{i,t}$ = labor endowment in country i at date t

PREFERENCES

Nested CES utility:

$$U_{i} = \int_{0}^{\infty} e^{-\rho_{i}t} u_{i}(C_{i,t}) dt$$

$$C_{i,t} = \left(\int (C_{i,t}^{k})^{(\epsilon-1)/\epsilon} dk\right)^{\epsilon/(\epsilon-1)}$$

$$C_{i,t}^{k} = \left(\sum_{j} (c_{ji,t}^{k})^{(\sigma-1)/\sigma}\right)^{\sigma/(\sigma-1)}$$

- Elasticities of substitution such that:
 - $\epsilon > 0, \sigma > 1, \sigma > \epsilon$
 - Foreign competition in a sector less employment

TECHNOLOGY

- lacksquare Goods differ in complexity n_t^k , countries differ in capability $N_{i,t}$:
 - F_t = cdf of complexity across goods
 - $N_t = \{N_{i,t}\}$ = state of world technology
 - Linear technology:

$$q_{ij,t}^k = A_{ij,t}^k \mathcal{C}_{ij,t}^k$$

$$Prob(A_{i,t}^k \le a) = G_{i,t}(a | n_t^k = n, N_{i,t})$$

TECHNOLOGY

 Future capabilities depend on present capabilities and their endogenous patterns of specialization

FROM TRADE

$$\dot{N}_{i,t} = H_{i,t}(N_{i,t}, F_{i,t}^{\ell})$$

$$F_{i,t}^{\ell}(n) = \frac{\int_{0 \le n^k \le n} \sum_{j} \ell_{ij,t}^k dk}{\int \sum_{j} \ell_{ij,t}^k dk}$$

Dynamic spillovers:

- ullet $H_{i,t}$ is increasing in $F_{i,t}^{\ell}$ (in M.L.R.P sense)
- More employment in complex sectors more growth

COMPETITIVE EQUILIBRIUM

- Competitive equilibrium with free trade + financial autarky
- lacksquare At each date t, conditional on state of world technology N_t :
 - profit maximization, utility maximization, market clearing

$$\{w_{i,t}\}, \{p_{ij,t}^k, P_{j,t}^k, P_{j,t}\}, \{c_{ij,t}^k, C_{j,t}^k, C_{j,t}\}, \{\ell_{ij,t}^k\}$$

From t to t+dt, employment distribution $F_{i,t}^{\ell}$ \longrightarrow N_{t+dt}

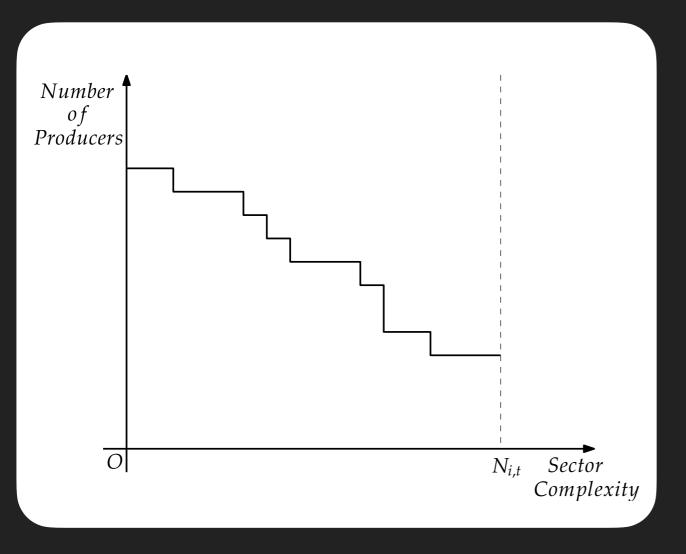
PUSHED TO THE TOP OR HELD AT THE BOTTOM? A BENCHMARK

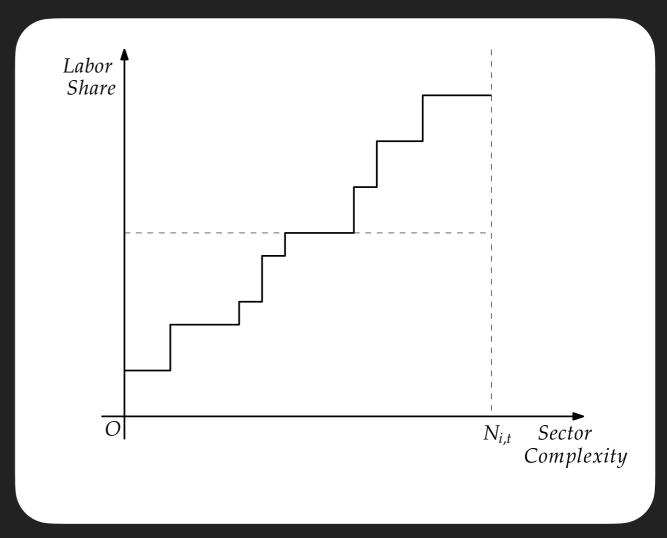
Pure ladder economy (Generalization of Krugman 1979):

$$A_{ij,t}^{k} = \begin{cases} A_{ij,t} & \text{if } n_k^t \leq N_i^t, \\ 0 & \text{otherwise.} \end{cases}$$

- Key features:
 - More capable countries more likely to export
 - More complex goods less likely to be exported
 - More capable countries CA in more complex goods
- Question: What is the difference between time paths of capability $N_{i,t}$ and consumption $C_{i,t}$ with & without trade?

THE CASE FOR DYNAMIC GAINS FROM TRADE IN ALL COUNTRIES


PROPOSITION 1.


IN A PURE LADDER ECONOMY, OPENING UP TO TRADE RAISES TECHNOLOGICAL CAPABILITY $\{N_{i,t}\}$ and aggregate consumption $\{C_{i,t}\}$ at all dates in all countries

Sketch of Proof:

- More foreign competition in less complex sectors in all countries
 more employment in more complex sectors in all countries
- At any date t, $(N_{i,t})_{trade} = (N_{i,t})_{autarky} \longrightarrow (\dot{N}_{i,t})_{trade} > (\dot{N}_{i,t})_{autarky}$
- $(N_{i,t})_{trade} > (N_{i,t})_{autarky} \qquad (C_{i,t})_{trade} > (C_{i,t})_{autarky}$

MORE COMPLEX, LESS FOREIGN COMPETITION!

HOW LARGE ARE THE STATIC AND DYNAMIC GAINS FROM TRADE?

PROPOSITION 2.

IN A PURE LADDER ECONOMY, GAINS FROM TRADE ARE BOUNDED FROM BELOW AND ABOVE BY

$$\underline{GT_i} = 1 - \underbrace{\left[\int e_i(n)(\lambda_{ii}(n))^{\frac{e-1}{\sigma-1}} dF(n)\right]^{\frac{1}{e-1}}}_{\textbf{Static Gains}}$$

$$\bar{GT_i} = 1 - \underbrace{\left[\int e_i(n)(\lambda_{ii}(n))^{\frac{e-1}{\sigma-1}} dF(n)\right]^{\frac{1}{e-1}}}_{\textbf{Static Gains}} \cdot \underbrace{\left[H_i^{-1}(0,F_i^{\ell})/H_i^{-1}(0,F)\right]^{\frac{1}{(1-e)}}}_{\textbf{Dynamic Gains}}$$

MEASURING CAPABILITY AND COMPLEXITY

TWO APPROACHES

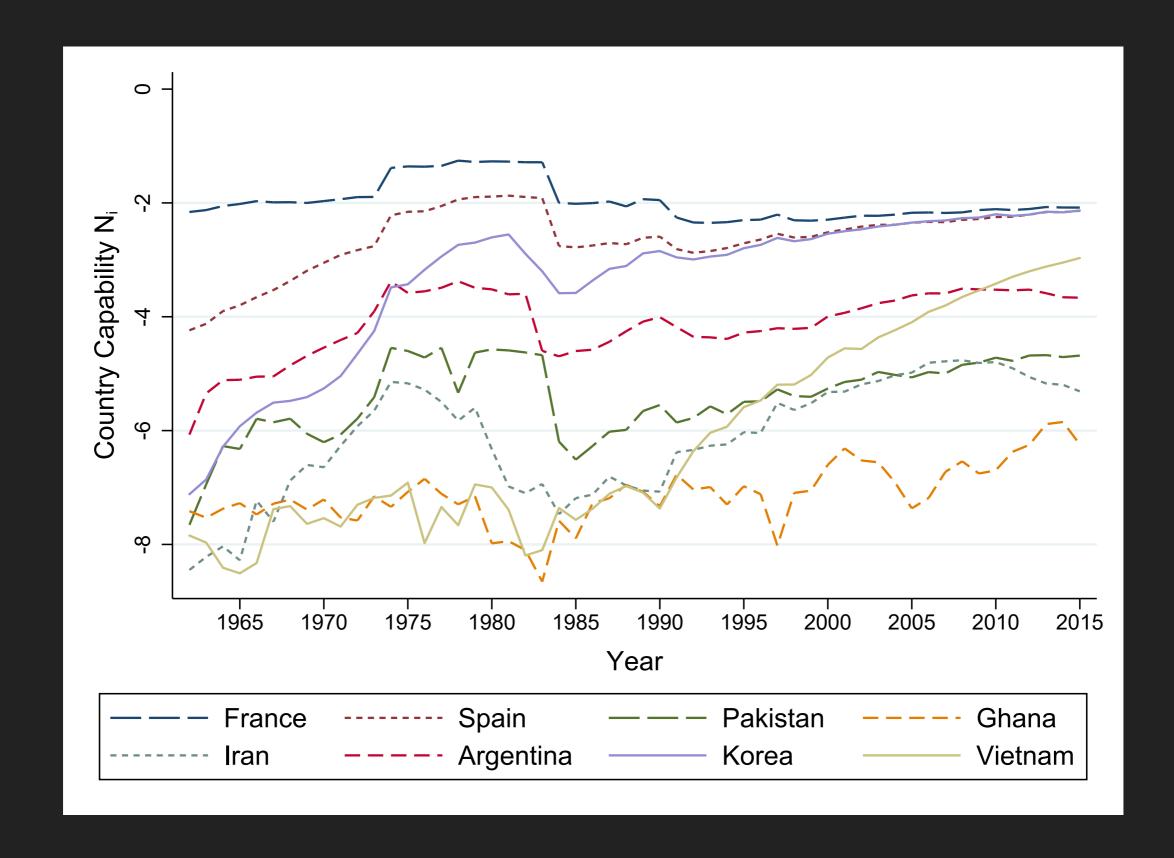
- General idea = Use trade data to reveal productivity distribution and, in turn, capability and complexity
- Approach 1 (next, closer to HHR and HH):
 - Assumption: more capable countries more likely to export more complex goods + more complex goods more likely to be exported by more capable countries
- Approach 2 (later, closer to pure ladder benchmark):
 - Assumption: more capable countries more likely to export + more complex goods less likely to be exported

BASELINE MEASURES OF CAPABILITY AND COMPLEXITY

• Productivity distribution $G_{i,t}$ such that:

$$Prob(A_{ij,t}^k > 0) = \delta_{ij,t} + \gamma_{j,t}^k + N_{i,t}n_t^k$$

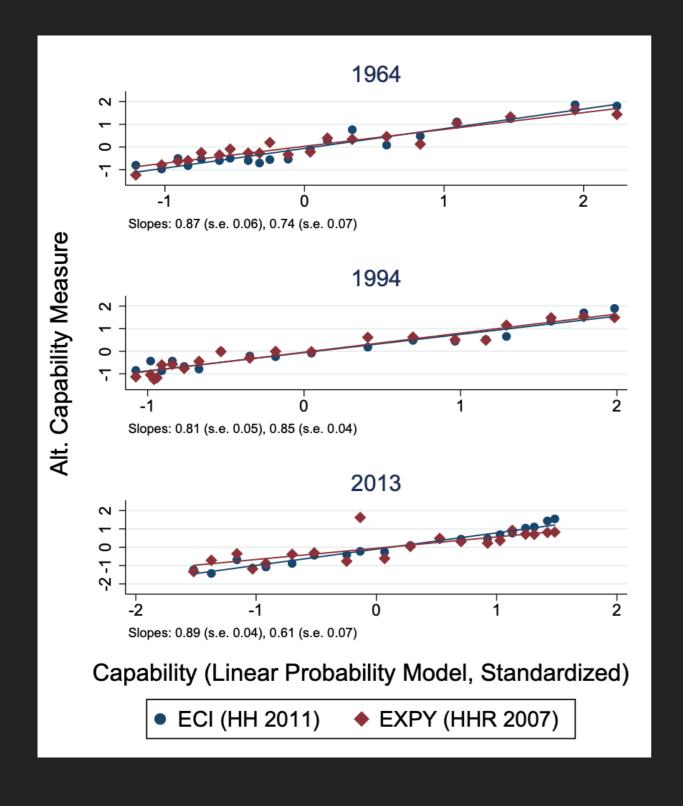
Linear probability model:

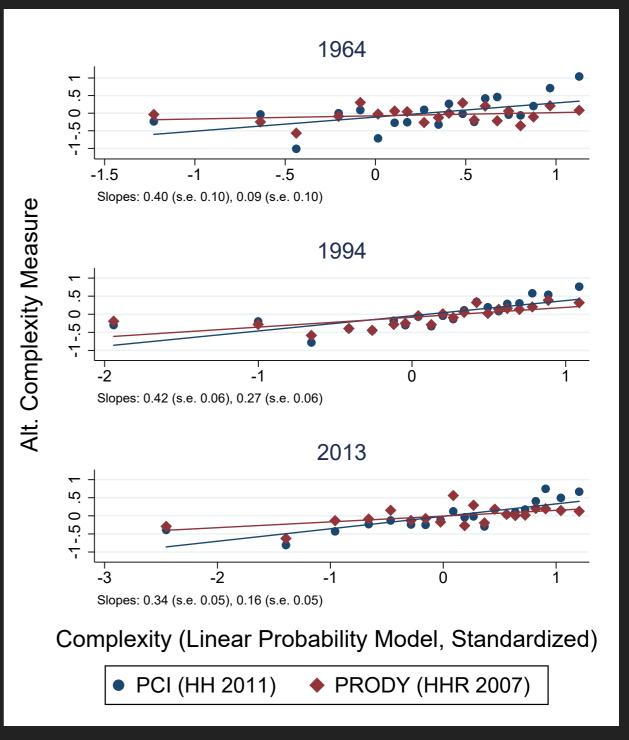

Dummy
$$\{x_{ij,t}^k > 0\} = \delta_{ij,t} + \gamma_{j,t}^k + N_{i,t}n_t^k + u_{ij,t}^k$$

RCA (CDK, LZ, HLM), but at extensive margin (HHR, HH)

DATA

- Use COMTRADE SITC (Rev2) 4-digit bilateral trade data 1962-2015
- Replicate Feenstra et al. (2005) to clean data
 - But use all flows, bottom coding trade flows ≤ \$100,000


BASELINE CAPABILITY (1962–2015)



BASELINE COMPLEXITY (1962–2015)

	Sectors with highest n ^k (Average Rank, 1962-201	5)
1	Medicaments	4.926
2	Chemical Products	10.778
3	Miscellaneous Non-Electrical Machines	12.130
4	Cars	12.685
5	Miscellaneous Electrical Machinery	14.167
6	Miscellaneous Non-Electrical Machinery Parts	14.667
7	Medical Instruments	21.870
8	Electric Wire	25.056
9	Miscellaneous Hand Tools	25.167
10	Trucks and Vans	34.352
	Sectors with lowest n ^k (Average Rank, 1962-2015	5)
1	Yarn of Regenerated Fibres	522.559
2	Wood Panels	503.756
3	Hand Woven Rugs	503.576
4	Wool Undergarments	502.071
5	Undergarments of Other Fibres	501.177
6	Lime, cement, and fabricated construction materials	493.292
7	Elastic Knitted Fibres	488.607
8	Aircraft Tires	487.095
9	Rotary Converters	484.381
10	Men's Underwear	483.250

COMPARISON TO EARLIER WORK (HHR 2007 + HH 2011)

ESTIMATING DYNAMIC SPILLOVERS

BASELINE SPECIFICATION

Dynamic spillovers:

$$N_{i,t+1} = \beta \int ndF_{i,t}^{\ell}(n) + \phi N_{i,t} + \gamma_i + \delta_t + \varepsilon_{i,t+1}$$

Key endogeneity issue:

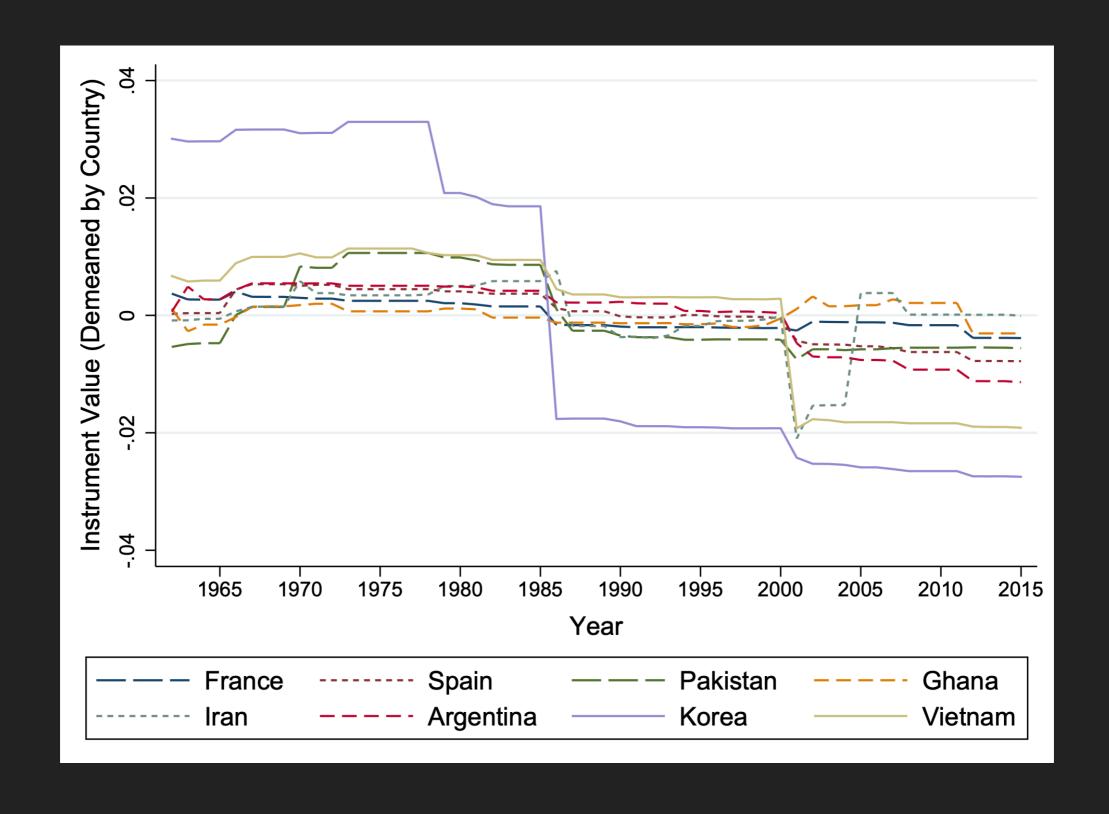
$$S_{i,t} \equiv \int ndF_{i,t}^{\ell}(n) + \varepsilon_{i,t+1}$$

IV STRATEGY

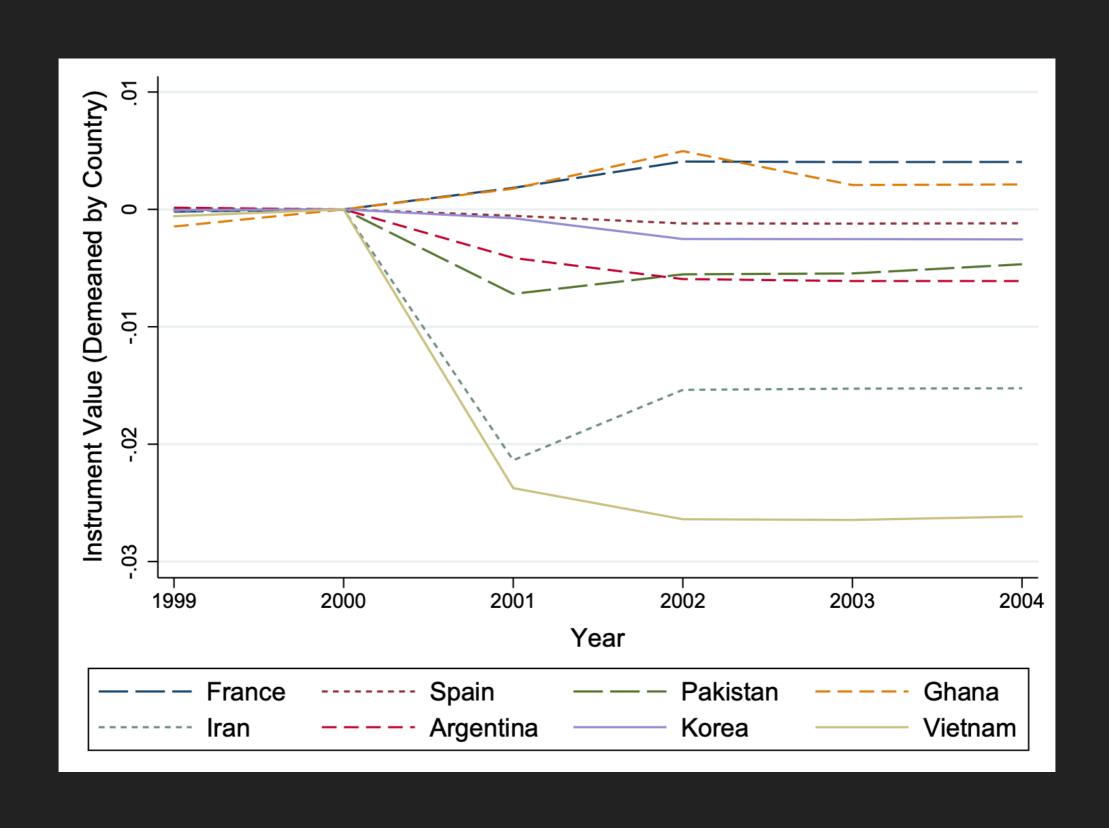
General idea:

- Reductions in other countries tariffs affect domestic production mix, exogenous to domestic policies
- Construct IV from FO approx. of impact of others' WTO entry
- ▶ IV (I): Product-destination-level labor demand shifter

$$Z_{i,t}^{I} = \sum_{t_c \le t} \sum_{k} n_{t_c-1}^{k} \omega_{i,t_c-1}^{k} (\sum_{j \ne c} \rho_{ij,t_c-1}^{k} \lambda_{cj,t_c-1}^{k} - \sum_{k'} \omega_{i,t}^{k'} \sum_{j \ne c} \rho_{ij,t_c-1}^{k'} \lambda_{cj,t_c-1}^{k'})$$


shift in k's employment share predicted by sector-level price changes

▶ IV (II): Destination-level labor demand shifter


$$Z_{i,t}^{II} = \sum_{t_c \le t} \sum_{k} n_{t_c-1}^k \times \omega_{i,t_c-1}^k (\sum_{j \ne c} \rho_{ij,t_c-1}^k \lambda_{cj,t_c-1} - \sum_{k'} \omega_{i,t}^{k'} \sum_{j \ne c} \rho_{ij,t_c-1}^{k'} \lambda_{cj,t_c-1})$$

shift in k's employment share predicted by aggregate-level price changes

TIMEPATH OF IV

TIMEPATH OF IV (ZOOMING AROUND CHINA'S WTO ENTRY)

FIRST STAGE RESULTS

	Average Complexity $S_{i,t}$	
	(1)	(2)
WTO Entrant Shock $Z_{i,t}^{I}$	-2.717***	-0.988*
(Product-Destination Level)	(0.511)	(0.593)
WTO Entrant Shock $Z_{i,t}^{II}$		-13.19***
(Destination Level)		(1.931)
Country and year FEs	Yes	Yes
Observations	7,071	7,071
R-squared	0.514	0.529
Clusters	1592	1592

IV RESULTS: POSITIVE DYNAMIC SPILLOVERS

	Country Capability $N_{i,t+1}$		
	(1)	(2)	(3)
	OLS	$\mathrm{IV}\left(Z_{i,t}^{I}\right)$	IV ($Z_{i,t}^I$ and $Z_{i,t}^{II}$)
Average Complexity $S_{i,t}$	0.0978*	1.373***	0.739***
	(0.0532)	(0.426)	(0.229)
Initial Capability $N_{i,t}$	0.473***	0.356***	0.414***
	(0.0285)	(0.0476)	(0.0346)
Country and year FEs	Yes	Yes	Yes
Observations	6,331	6,331	6,331
R-squared	0.938	-0.041	0.184
Clusters	1442	1442	1442
CD F-Stat		112	154.4
KP F-Stat		21.66	33.11

DOES TRADE PUSH ALL COUNTRIES TO THE TOP?

COUNTERFACTUAL QUESTION

Question:

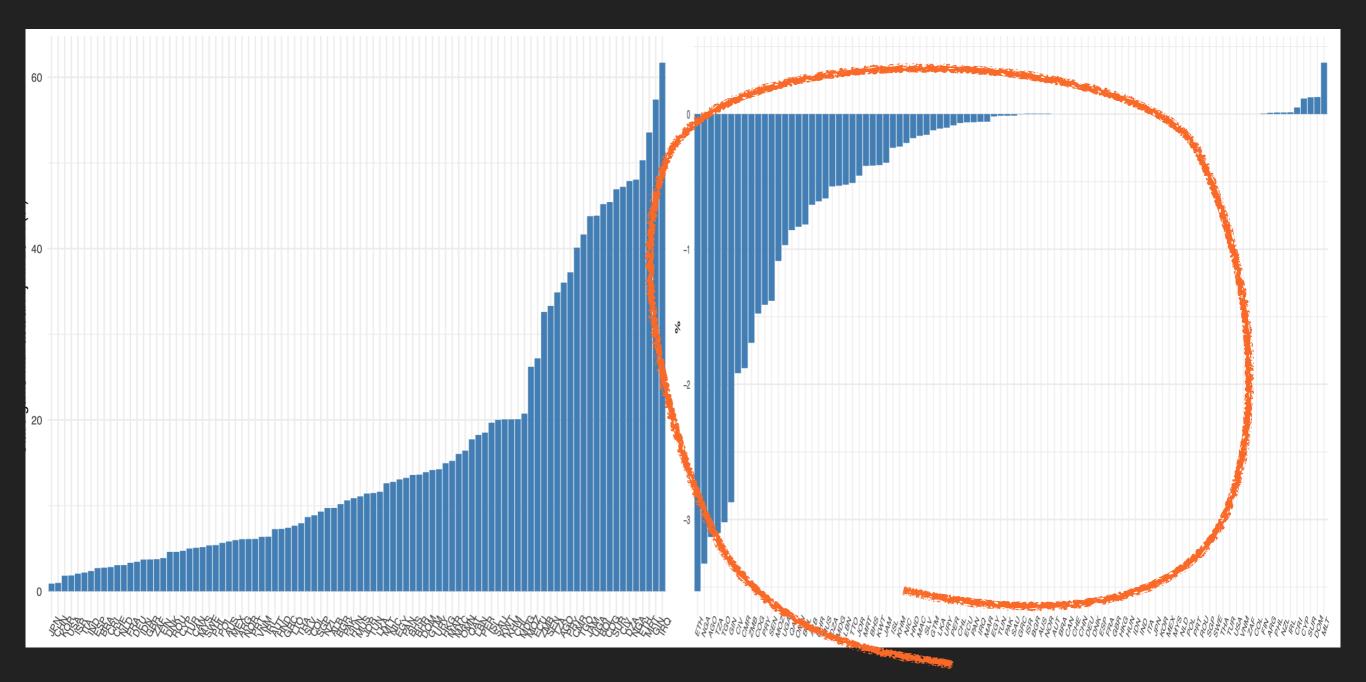
- What would happen to path of capability and aggregate consumption from 1962 to 2014 if, from 1962 onwards, a country were to move to autarky?
- Decomposition of welfare changes into:
 - Static gains:

$$GT_{i,t}^{static} = 1 - \frac{C_{i,t}^{autarky}}{C_{i,t}} |_{N_{i,t}=N_{i,t}^{data}}$$

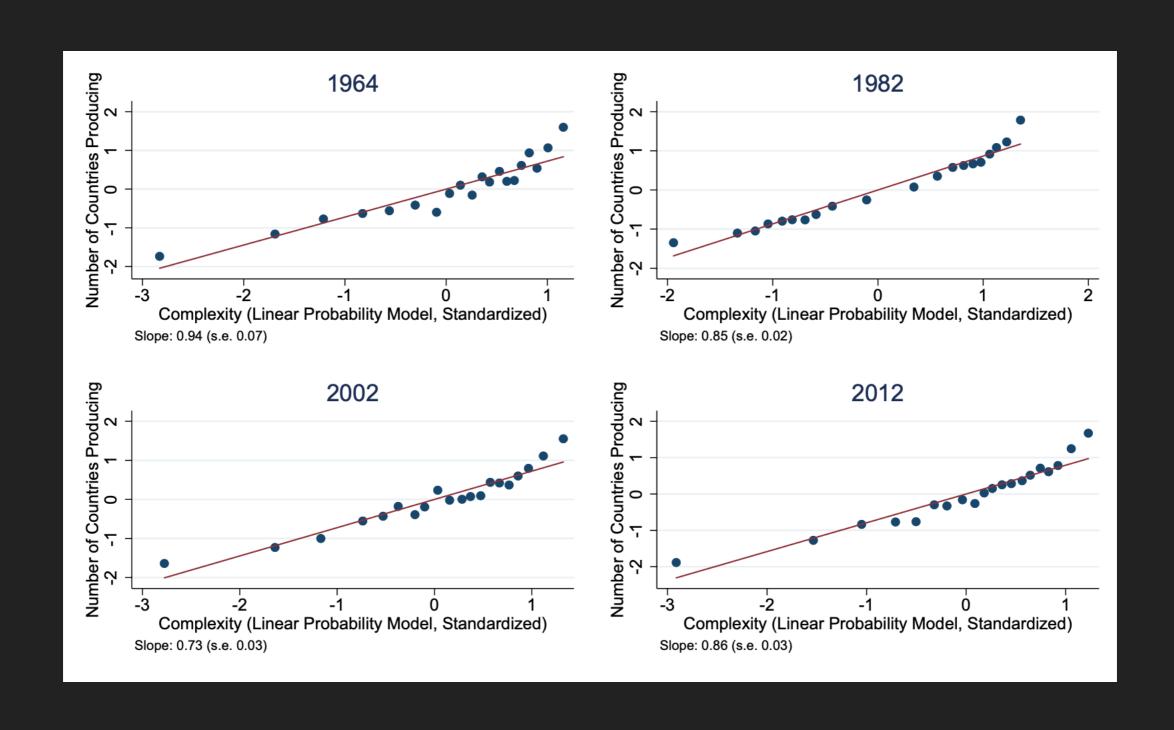
Dynamic gains:

$$GT_{i,t}^{dynamic} = GT_{i,t} - GT_{i,t}^{static}$$

BASELINE ECONOMY


Parameter	Value	Choice Calibration
Danal A. Nia		C Dueferon coe
Panel A: Ne	estea CE	S Preferences
σ	2.7	Broda and Weinstein (2006)
ϵ	1.36	Redding and Weinstein (2018)
Panel B: Dy	namic S	pillovers
β	0.739	Baseline estimate
φ	0.838	Baseline estimate

- Under trade equilibrium, $\{A_{ij,t}^k\}$ = match all trade flows
- Under autarky equilibrium, $Prob(A_{ij,t}^k > 0) = linear probability model$

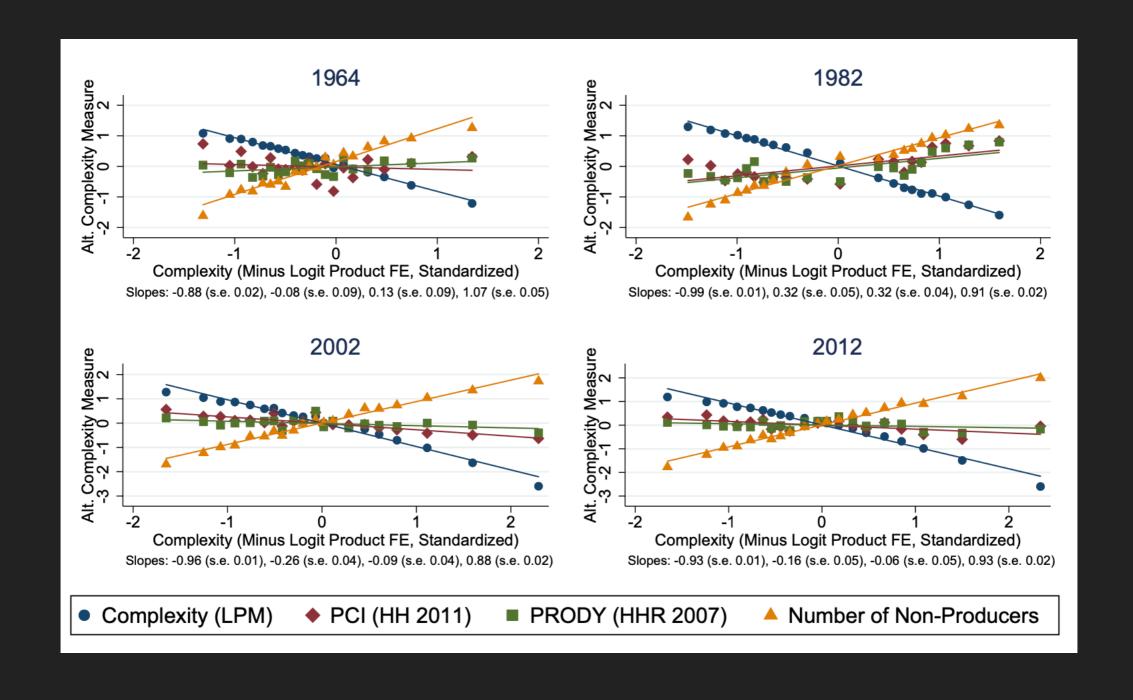

STATIC AND DYNAMIC GAINS FROM TRADE

STATIC GAINS

DYNAMIC LOSSES

MORE COMPLEX, MORE FOREIGN COMPETITION!

HOW ROBUST ARE DYNAMIC LOSSES?


ALTERNATIVE MEASURES OF CAPABILITY AND COMPLEXITY

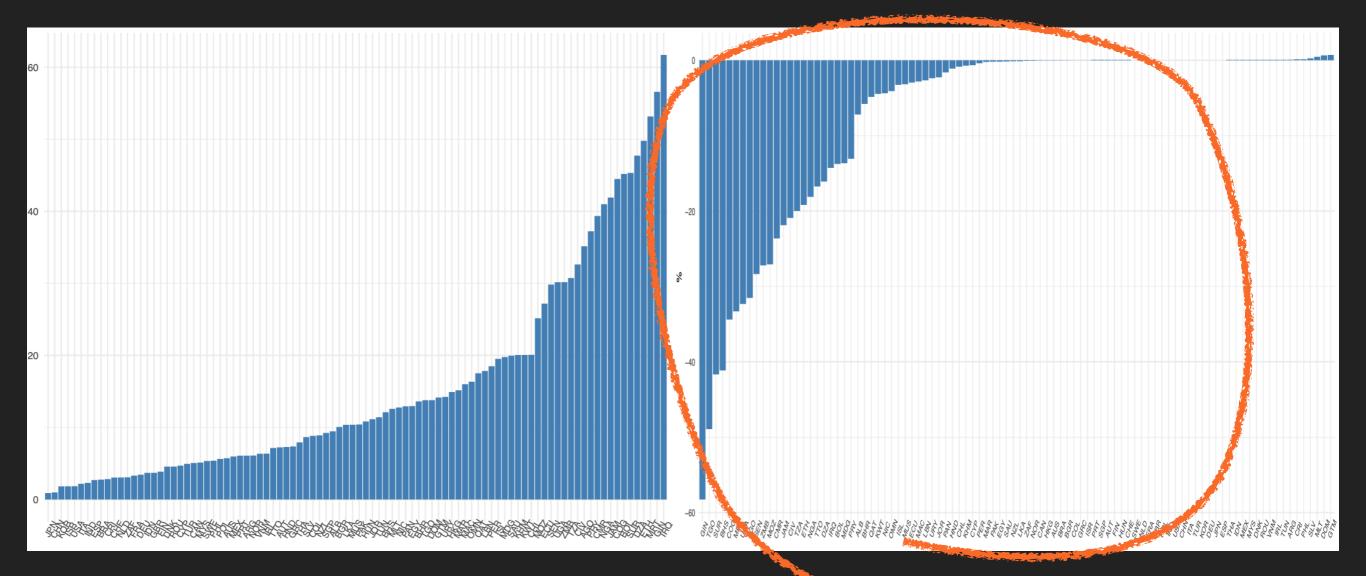
- Productivity distribution $G_{i,t}$ such that:
 - More capable countries export more goods
 - More complex goods exported by fewer countries

Logit model:

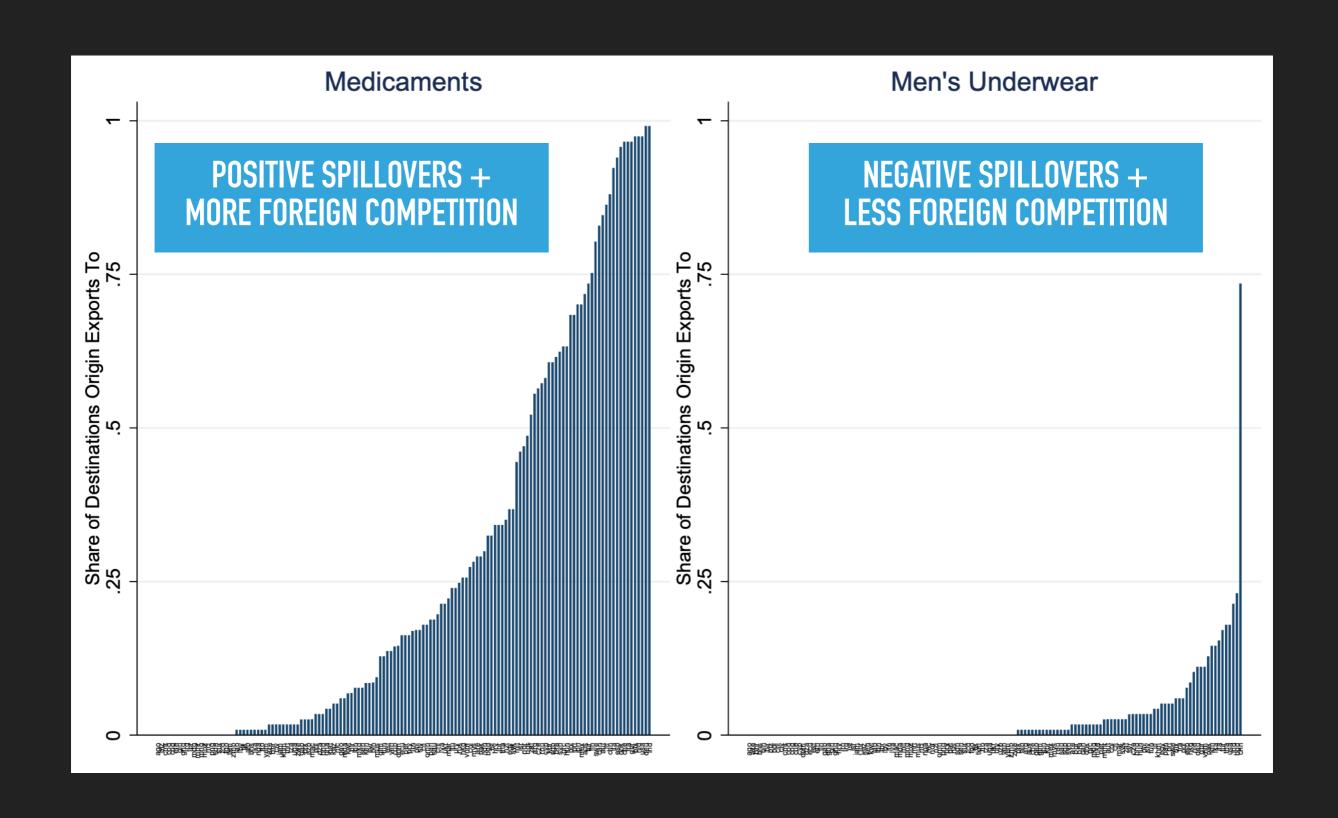
Prob
$$(A_{ij,t}^k > 0) = \frac{e^{(N_{i,t} - n_t^k)}}{1 + e^{(N_{i,t} - n_t^k)}}$$

MORE COMPLEX GOODS, LESS FOREIGN COMPETITION

by construction!


BUT DYNAMIC SPILLOVERS ARE NOW NEGATIVE...

	Country Capability $N_{i,t+1}$		
	(1)	(2)	(3)
	OLS	IV $(Z_{i,t}^I)$	IV ($Z_{i,t}^I$ and $Z_{i,t}^{II}$)
Average Complexity $S_{i,t}$	-0.0799*	-0.567**	-0.512***
,	(0.0412)	(0.275)	(0.189)
Initial Capability $N_{i,t}$	0.539***	0.489***	0.494***
• • •	(0.0323)	(0.0405)	(0.0363)
Country and year FEs	Yes	Yes	Yes
Observations	6,331	6,331	6,331
R-squared	0.967	0.328	0.343
Clusters	1442	1442	1442
CD F-Stat		151	142.5
KP F-Stat		36.32	34.19


... AND SO DYNAMIC LOSSES REMAIN PERVASIVE

STATIC GAINS

DYNAMIC LOSSES

A TALE OF TWO SECTORS

WHAT HAVE WE LEARNT?

MAIN TAKEAWAYS

1. Theory:

- Trade can move all countries up the ladder
- This happens if (i) complex goods raise capability and
 (ii) fewer countries export complex goods

2. Empirics:

- Evidence of plausibly exogenous employment shifts towards some sectors raising technological capability
- However, more countries export in those sectors
- 1 + 2 pervasive dynamic welfare losses from trade