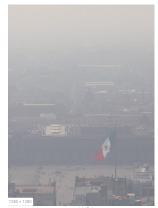
Particulate Matter and Labor Supply: Evidence from Mexico City


Bridget Hoffmann ¹ Juan Pablo Rud ²

 1 Research Department, Inter-American Development Bank 2 Royal Holloway, University of London

January 5, 2020

Introduction

- Exposure to PM2.5 has negative S-T and L-T health impacts
- If exposure labor > exposure leisure
 →Trade-off: health vs. income
- Workers with income closely linked to hours worked: low income, informal, etc.

source: WSJ.com

Introduction Context Data Empirical Strategy Results Conclusio

Preview of Results

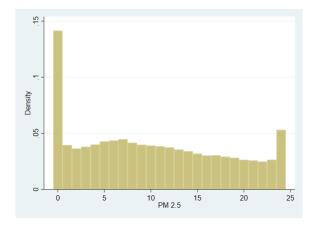
Estimate the S-T response of labor supply and hospital admissions for respiratory diseases to PM2.5

Preview of Results:

- PM 2.5 has a negative, non-linear effect on labor supply
- PM 2.5 has positive, non-linear effect on hospital admissions for respiratory diseases
- Relative to formal workers, informal workers reduce hours worked less on days with high PM2.5 and compensate less over the following days
 - ightarrow informal workers have larger negative impacts on health and income
- Income constraints likely to play a role: smaller reductions in labor supply when previous days had high PM2.5

Introduction Context Data Empirical Strategy Results Conclusion

Particulate Matter and Health


Particulate Matter:

- Particulate matter is causally linked to respiratory and cardiovascular disease and mortality (U.S. EPA, 2009)
- Short-term and long-term exposure can have serious health impacts (Anderson et al, 2012; Crouse et al., 2015; Cesaroni et al., 2014; Lin et al., 2002; Tertre et al., 2002;)

Fine Particulate Matter (PM2.5):

 Fine PM has stronger and broader health impacts than coarser PM (Bell et al., 2014; Pope and Douglas, 2006)

Particulate Matter in Mexico City

In study sample, mean number of hours above WHO PM 2.5 Air Quality Guideline: 10.1 hours

Sources of Data

- Labor supply data: National Survey of Occupation and Employment (ENOE) collected by INEGI
- 4 Hospitalizations data: Automated Subsystem of Hospital Expenditures from Secretary of Health
- Air pollution and weather data: Ground monitoring stations network available from SEDEMA
- Precipitation data: CHIRPS from University of California Santa Barbara

Air Pollution Variables

	PM 2.5	PM 10
	(1)	(2)
Interim Target 1 (IT1)	75	150
Interim Target 2 (IT2)	50	100
Interim Target 3 (IT3)	37.5	75
Air Quality Guideline (AQG)	25	50

Notes: PM 2.5 and PM 10 are measured in $\mu g/m^3$ (WHO, 2005).

Introduction

Baseline Regression Model: Labor Supply

$$y_{ilm,tw} = \alpha_m + \phi_w + \beta PM2.5_{lm,tw} + \gamma X_{ilm,tw} + \epsilon_{ilm,tw}$$

Where unit of observation is:

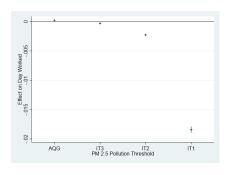
- Individual i
- Who resides in locality /
- Of municipality m
- On day t
- That falls within week w

Time-varying controls:

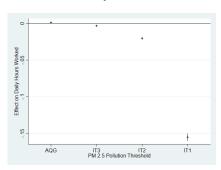
- Maximum temperature in locality /
- Precipitation in municipality m and it's square
- Day of week FE
- Age and it's square
- Gender
- Years of schooling and it's square

Baseline Regression Model: Hospital Admissions

$$y_{hm,tcy} = \alpha_m + \phi_{cy} + \beta PM2.5_{lm,tcy} + \epsilon_{hm,tcy}$$

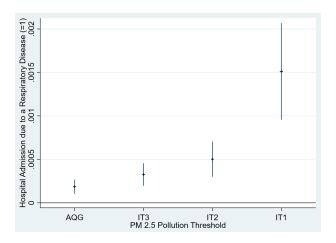

Where unit of observation is a hospital admission in:

- Hospital h
- Located in locality I
- Of municipality m
- On day t
- Within month m
- In year y


Restrict sample to exclude admissions related to pregnancy or child birth

PM2.5 and Labor Supply: Negative, Non-Linear Relationship

Panel A: Worked Day



Panel B: Daily Hours Worked

PM2.5 and Hospital Admissions: Positive, Non-Linear Relationship

troduction Context Data Empirical Strategy **Results** Conclusio

PM2.5 and Labor Supply: Heterogeneity by Employment Characteristics/Status

	Daily Hours Worked					
Characteristic	-0.569*** (0.005)	-0.624*** (0.006)	-0.139*** (0.005)	0.117*** (0.008)	-0.391*** (0.014)	
Hours Above PM2.5 IT1	-0.183*** (0.004)	-0.168*** (0.003)	-0.166*** (0.004)	-0.169*** (0.004)	-0.212*** (0.016)	
Characteristic x Hours Above PM2.5 IT1	0.049*** (0.006)	0.051*** (0.007)	0.024*** (0.006)	0.027*** (0.006)	0.030* (0.018)	
Characteristic	Informal	Self	Non-wage	Low	Low	
N	2,232,239	Employed 2,232,239	Employee 2,232,032	Education 2,232,239	Income 391,276	

troduction Context Data Empirical Strategy **Results** Conclusio

PM2.5 and Hospital Admissions: Heterogeneity by Share of Informality

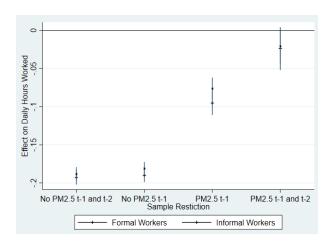
	Respiratory	Disease (==1)
Hours Above PM2.5 IT1	-0.0027	0.0004
	(0.0021)	(0.0007)
Hours Above PM2.5 IT1	0 007044	
x Share Informality	0.0073**	
	(0.0037)	
Hours Above PM2.5 IT1		0.0010
x Share Informality Q2		
Hours Above PM2 5 IT1		(8000.0)
x Share Informality Q3		0.0005
		(0.0011)
Hours Above PM2.5 IT1		(0.0011)
x Share Informality Q4		0.0023**
		(0.0011)
Method	Controls	Controls
N	1,290,481	1,290,481

PM2.5 and Labor Supply: Weekly-Level

	Weekly Hours Worked					
	Forma	I Workers	Informa	al Workers		
Hours Above PM2.5 IT1	-0.058* (0.035)	-0.078** (0.034)	-0.088** (0.035)	-0.093*** (0.035)		
Method	Baseline	Occupation Controls	Baseline	Occupation Controls		
N	159,348	159,348	180,084	180,084		

PM2.5 and Hospital Admissions: Weekly Level

	Respiratory Disease $(==1)$				
Hours Above PM2.5 IT1	0.0011***				
Mass Have Abava	(0.0003)				
Mean Hours Above PM2.5 IT1 Prior Week	0.0030*** (0.0011)				
	(0.0011)				
Method	Prior Week				
N	1,292,219				


Summary of Results

Informal workers suffer greater impacts of high PM2.5 than formal workers:

- Exposure to PM2.5 and negative health impacts
- 2 Labor supply and income losses

Income constraints may be playing an important role in workers' decisions

Role of Income Constraints: Consecutive Days with High PM2.5

Introduction Context Data Empirical Strategy Results Conclusion

Policy Implications

- Impacts to labor supply are another externality of PM2.5
 - Strong non-linear relationships implies focus on policies to decrease peaks of PM2.5
 - Large impacts imply even costly policies to reduce PM2.5 are worthwhile
- Health and labor supply impacts of PM2.5 are largest for workers with lower and more uncertain income
 - Distributional implications
 - Programs to support the health and income of informal and low SES workers

THANK YOU!

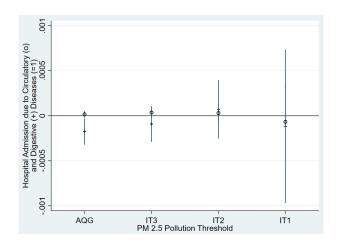
Robustness and Falisification Tests

- Robustness and falsification tests for daily hours worked <a>Table
- ② Daily hours above WHO IT1 and daily hospital admissions for digestive and circulatory diseases Figure

PM2.5 and Labor Supply

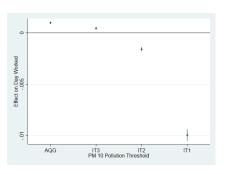
	Day Worked		Daily Hours Worked		
Hours Above PM2.5 IT1	-0.018*** (0.000)	-0.018*** (0.000)	-0.155*** (0.003)	-0.155*** (0.003)	
Method	Baseline	Occupation Controls	Baseline	Occupation Controls	
N	2,232,239	2,232,239	2,232,239	2,232,239	

PM2.5 and Hospital Admissions for Respiratory Disease

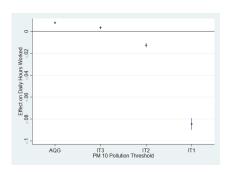

	Respiratory Disease (==1)			
Hours Above	0.015***	0.013***		
PM2.5 IT1	(0.0003)	(0.0003)		
Method	Baseline	Controls		
N	1,302,701	1,291,703		

Back

Robustness and Falsification Tests Table: Labor Supply


	Daily Hours Worked					Usual Daily Hours Worked			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Hours Above PM2.5 IT1 Threshold	-0.199***					-0.272***	-0.217***	-0.154***	0.002
PM2.5111 Inresnoid	(0.004)					(0.057)	(0.047)	(0.003)	(0.002)
Hours Above PM10 IT1 Threshold	(0.004)	-0.085***	-0.091***			(0.057)	(0.047)	(0.003)	(0.007)
Max Hours Above		(0.003)	(0.003)						
PM25-PM10 IT1 Threshold				-0.108***					
				(0.003)					
Min Hours Above PM25-PM10 IT1 Threshold					-0.166***				
rwiza-rwiio ii i iiilesnoid					(0.005)				
Lead Hours Above					(0.000)				
PM2.5 IT1 Threshold								-0.006**	
								(0.003)	
			PM10 -	Max IT1	Min IT1		IV -		Usual
Method	PM2.5	PM10	Indiv. FE	PM2.5-PM10	PM2.5-PM10	IV	Indiv. FE	Lead	Hours
Sample	Weekdays	Full	Full	Full	Full	Full	Full	Full	Weekdays
N	1,593,422	2,328,400	2,328,369	2,338,133	2,338,133	2,224,744	2,224,708	2,230,682	152,784
R2	0.074	0.283	0.475	0.283	0.283	0.279	0.324	0.285	0.042

Falsification Figure: Hospital Admissions for Digestive and Circulatory Diseases



Negative Non-Linear Relationship

Panel A: Worked Day

Panel B: Daily Hours Worked

Back

WHO Thresholds

	PM 2.5	PM 10
	(1)	(2)
Interim Target 1 (IT1)	75	150
Interim Target 2 (IT2)	50	100
Interim Target 3 (IT3)	37.5	75
Air Quality Guideline (AQG)	25	50
37 - D3 60 - 1 D3 640	1. / 3.	

Notes: PM 2.5 and PM 10 are measured in $\mu g/m^3$ (WHO, 2005).

