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Abstract
This paper deals with identification and inference on the unobservable con-

ditional factor space and its dimension in large unbalanced panels of asset re-
turns. The model specification is nonparametric regarding the way the loadings
vary in time as functions of common shocks and individual characteristics. The
number of active factors can also be time-varying as an effect of the changing
macroeconomic environment. The method deploys Instrumental Variables (IV)
which have full-rank covariation with the factor betas in the cross-section. It
allows for a large dimension of the vector generating the conditioning informa-
tion by machine learning techniques. In an empirical application, we infer the
conditional factor space in the panel of monthly returns of individual stocks in
the CRSP dataset between January 1971 and December 2017.

Introduction
Motivation

Asset Pricing literature on time-varying beta specifications has mostly
focused on models with observable factors. However, there is a great
latitude in the choice of observable economic factors. In this paper,
we aim to find a dynamic PCA method for inference in latent factor
models with time-varying betas.

Contributions
Methodological aspects

1. Deploy No-Arbitrage restrictions with conditioning information
2. (Almost) ”model-free” regarding the dynamics of betas
3. First paper that allows for time-varying number of conditional fac-

tors and provide a consistent selection procedure
4. Cope with large-dimensional conditioning information via machine

learning techniques
5. Use large unbalanced panels of individual stock returns
6. Develop asymptotic theory (n, T →∞) building on results for plug-

in Sieve estimation and Double Machine Learning.

Empirical findings

1. There are two dominant factors across the sample period, together
explaining over 70% measured by the AEP ratio.

2. The number of factors tends to be smaller during recession periods.
3. The first conditional factor is best explained by MKT, and the second

one is best spanned by SMB.

No-Arbitrage Conditional Factor Model
Consider a conditional factor model for individual asset i in period t:

yi,t = ai,t−1 + b′i,t−1ft + εi,t, t = 1, ..., T, i = 1, ..., n, (1)

• yi,t is the excess return,
• ai,t−1 is the abnormal return, a Fi,t−1-measurable scalar
• bi,t−1 is the time-varying beta, a Fi,t−1-measurable kt × 1 vector
• ft is the systematic risk factor, a Ft-measurable kt × 1 vector

• εi,t is the idiosyncratic error term
No-arbitrage restriction (Gagliardini, Ossola and Scaillet (2016)):

ai,t−1 = b′i,t−1νt−1, (2)

Insert (2) into (1) and get the no-arbitrage conditional factor model:

yi,t = b′i,t−1gt + εi,t, (3)

where gt = νt−1 + ft and λt = νt−1 +E[ft|Ft−1] is the risk premium.

Identification Strategy
Assumption 1. There exists a K × 1 (K ≥ k) vector of instrumental
variables wi,t−1 measurable w.r.t. Fi,t−1 such that:

(i) plim
n→∞

1

n

n∑
i=1

wi,t−1εi,t = 0,

(ii) plim
n→∞

1

n

n∑
i=1

wi,t−1b
′
i,t−1 =: Γt−1 is a K × k full-rank matrix, P-a.s.

Instrument-Weighted Portfolio Returns ξt

Define the large n limit of cross-sectional portfolio returns:

ξt = plim
n→∞

1

n

n∑
i=1

wi,t−1yi,t, (4)

which is measurable w.r.t. Ft. Then, (3) and Assumption 1 imply:

ξt = Γt−1gt (5)

Identification of Number of Factors kt

The conditional variance of ξt is a K ×K symmetric matrix:

V (ξt|Ft−1) = Γt−1V (gt|Ft−1)Γ′t−1 (6)

The number of latent conditional factors kt is identifiable by the rank:

kt = Rank(V [ξt|Ft−1]) (7)

Identification of Latent Factors ft

Let Jt−1 be a Ft−1-measurable K×k full-rank matrix whose columns
are the standardized eigenvectors of V (ξt|Ft−1) associated to non-zero
eigenvalues.
Assumption 2. Without loss of generality, we assume that the following
normalization restriction holds for the latent factors:

Γt−1 = Jt−1,∀t (8)

Therefore, gt is identifiable as:

gt = J ′t−1ξt, (9)

Assumption 3. Without loss of generality, we assume E[ft|Ft−1] = 0.
Under Assumption 2 and 3, the factor vector ft is identifiable as:

ft = gt − E[gt|Ft−1] (10)

Estimation Methodology
Assumption 4. The information set Ft is generated by the observable
d-dimensional vector Markov process Zt.

This assumption implies:

E[ζt|Ft−1] = E[ζt|Zt−1] =: ψζ(Zt−1)

for a function ψζ(·) and any random vector ζt. Since Zt could be large-
dimensional, machine learning techniques are used in estimating con-
ditional expectations and variances.
• Post-Lasso method used in e.g. Belloni et al. (2012)

•Artificial Neural Networks with different network structures

Double Machine Learning Inference on Avg. Cond’l Features

Let the finite-dimensional parameter c = c(θ) be defined by

c = E[γt] = E[ϕ(θ(Zt−1))]

e.g. average conditional correlation.

Double Machine Learning (DML): use the “locally robust” moment
restriction

E
[
ϕ(θ(Zt−1))− c + α(Zt−1)′(ζt − θ(Zt−1))

]
= 0 (11)

where function α(·) is the Rietz representer of the Gateaux derivative

lim
τ→0

c(θ0 + τ (θ − θ0))− c(θ0)

τ
= 〈α, θ − θ0〉

Split the sample in subintervals I`, ` = 1, ..., L, and the DML estimator

of c is given by

ĉ =
1

T

L∑
`=1

∑
t∈I`

[
ϕ(θ̂`(Zt−1)) + α̂`(Zt−1)′(ζ̂t − θ̂`(Zt−1))

]
where θ̂` and α̂` are obtained using observations not in I`.

If ‖θ̂l − θ0‖ = op(T
−1

4), then
√
T (ĉ− c) d→ N(0, σ2)

Empirical Results
U.S. equities panel data from CRSP and COMPUSTAT during period
January 1971 - December 2017.
• yi,t : monthly excess returns of individual stocks

•wi,t : 15 firm characteristics from Freyberger, Neuhierl and Weber
(2017)

• ξ̂t : 15 characteristics-based cross-sectional averages plus Fama-
French 5 factors, Momentum, and Betting Against Beta

•Zt : 19 variables - financial indicators from Goyal and Welch (2008),
risk factors and macroeconomic variables

Accumulative Explanatory Power Ratio (AEP)

We use AEP ratio defined below to determine the number of time-
varying factors kt:

R̂r,τ =
1

6

∑
t∈τ

∑r
j=1 σj[V̂ (ξ̂t|Ft−1)]

Tr[V̂ (ξ̂t|Ft−1]
, r = 1, 2, 3, 4

Figure 1: Accumulative Explanatory Power Ratio (6-month average)

The number of conditional factors is rather small. There are two dom-
inant factors together with over 70% explanatory power across the
whole sample period. Moreover, there tend to be fewer factors dur-
ing recession periods.

Average Conditional Correlation

Figure 2 shows the average conditional correlation between our condi-
tional latent factors f̂t and each variable in the information set Zt.

Figure 2: Estimation of E[Corrt−1(f1,t, Zt)]

The above figure shows that the first conditional factor correlates
most with the Market factor, at around 57%. According to another
figure not shown here, the second conditional factor correlates most
with the Small-Minus-Big factor, at about 48%.


