The Information-Driven Financial Accelerator

Antonio Falato Federal Reserve Board Jasmine Xiao University of Notre Dame

January 2021

Econometric Society North American Winter Meetings

Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System.

- Empirically, it is well-known that credit spreads are large, volatile and countercyclical (Gilchrist and Zakrajsek, 2012; Greenwood and Hanson, 2013)
- What are the sources of credit market and macroeconomic fragility?
- Existing theories have focused on frictions in financial intermediation (Gertler and Kiyotaki, 2010; He and Krishnamurthy, 2013) and behavioral biases (Bordalo et al. 2018)

- Empirically, it is well-known that credit spreads are large, volatile and countercyclical (Gilchrist and Zakrajsek, 2012; Greenwood and Hanson, 2013)
- What are the sources of credit market and macroeconomic fragility?
- Existing theories have focused on frictions in financial intermediation (Gertler and Kiyotaki, 2010; He and Krishnamurthy, 2013) and behavioral biases (Bordalo et al. 2018)
- This paper shows that imperfect information in credit markets is a strong force behind credit cycles.
 - Debt investors are uninformed about firms' creditworthiness
 - Update beliefs using publicly-available forecasts of profit outlook

- Empirically, it is well-known that credit spreads are large, volatile and countercyclical (Gilchrist and Zakrajsek, 2012; Greenwood and Hanson, 2013)
- What are the sources of credit market and macroeconomic fragility?
- Existing theories have focused on frictions in financial intermediation (Gertler and Kiyotaki, 2010; He and Krishnamurthy, 2013) and behavioral biases (Bordalo et al. 2018)
- This paper shows that imperfect information in credit markets is a strong force behind credit cycles.
 - Debt investors are uninformed about firms' creditworthiness
 - Update beliefs using publicly-available forecasts of profit outlook

Bond prices move in response to the arrival of noisy information, not just to changes in fundamentals.

 Policies that help to anchor investors' expectations could have substantial financial stability benefits.

Motivat	lion	Model	Results	Mechanism	Evidence
	New Fact Changes in prof		expectations of qu $[\pi_{t+1}] - \operatorname{E}_{t-1}[\pi_t]$	uarter-ahead corporate profit +1]	:
	jointly predict:	excess corporatemacroeconomic	e bond returns aggregates	at long horizons	

Motivat	ion	Model	Results	Mechanism	Evidence
	New Fact Changes in prof		expectations of quarter $[\pi_{t+1}] - E_{t-1}[\pi_{t+1}]$	er-ahead corporate profit	
	jointly predict:	excess corporatmacroeconomic	e bond returns aggregates	ong horizons	
		$R_{t \to t+k} = \alpha + \beta$	$\frac{3rev_t}{\sigma_t} + \gamma controls_t + u_t$!+ <i>K</i>	
		ffect of \Downarrow rev _t and \Uparrow 80 basis points	σ_t during 2007 financi	al crisis:	

Motivat	ion	Model	Results	Mechanism	Evidence
	New Fact	(
	Changes in pro	lessional lorecasters	expectations of quart	er-ahead corporate profit	
		$\operatorname{rev}_t = \mathrm{E}$	$t[\pi_{t+1}] - \mathbf{E}_{t-1}[\pi_{t+1}]$		
	jointly predict:	 excess corporat 	e bond returns aggregates	ong horizons	
		 macroeconomic 	aggregates	-	
		$R_{t\to t+k} = \alpha + \beta$	Brev _t + γ controls _t + u_t	t+k	
			$\partial \widehat{R}_{t \to t+k} + \gamma \text{controls}_t$	$+ u_{t+k}$	
	The combined e	effect of \Downarrow rev $_t$ and \Uparrow	σ_t during 2007 financi	al crisis:	
	 spreads ↑ 	80 basis points			
	 investmen 	t \Downarrow 1 percentage poir	nt and GDP \Downarrow 40 basis	points	

Model

Results

Dynamic Model with Financing and Investment

Costly debt financing

default risk

Model

Results

Dynamic Model with Financing and Investment

Costly debt financing + Imperfect information

default risk

• investors do not observe firm's state

$$\mathbf{z}_t = \rho_z \mathbf{z}_{t-1} + \varepsilon_t^z$$

learn from a noisy public signal

$$s_t = \varepsilon_t^z + u_t$$

using a Kalman filter

Model

Results

Dynamic Model with Financing and Investment

Costly debt financing + Imperfect information

• default risk

 $\underset{q_t(z_t)}{\Downarrow}$

investors do not observe firm's state

$$\mathbf{z}_t = \rho_z \mathbf{z}_{t-1} + \varepsilon_t^z$$

learn from a noisy public signal

$$s_t = \varepsilon_t^z + u_t$$

using a Kalman filter

Imperfect information \implies

Dynamic Model with Financing and Investment

Costly debt financing +

default risk

 $\downarrow q_t(z_t)$

- investors do not observe firm's state $z_t = \rho_z z_{t-1} + \varepsilon_t^z$
- learn from a noisy public signal

$$s_t = \varepsilon_t^z + u_t$$

using a Kalman filter

$$\bigcup_{q_t(s_t, s_{t-1}, ..., s_0)}$$

Model-based counterfactual for 2007 financial crisis:

- 1/2 of increase in spread
- 1/5 of contraction in aggregate investment

from noisy signals

Amplification

Results

Historical Bond Spread: Data vs. Model

Imperfect information model matches the size and cyclical variation of credit spreads

subjective default probability > actual default probability

Motivation	Model	Results	Mechanism	Evidence
Information un1. higher me2. countercy		and spreads		

- default probability p increasing in b'
- lending schedule r_b(p) increasing in b'
- recession $\Downarrow \rightarrow$ deleveraging $\rightarrow r_b \Downarrow b' \Downarrow$ (first-order effect)

- default probability p increasing in b'
- lending schedule r_b(p) increasing in b'
- recession ↓ → deleveraging → r_b ↓ b' ↓ (first-order effect)

lending schedule shifts to the left due to:
 (i) bad signal (s_L), (ii) noisy signal (σ_u ↑) in recession → r_b ↑ & b' ↓

Motivat	ion	Model	Results	Mechanism	Evidence
	Microdata: IBES: firm	n-level estima	ates of earning forecasts)	
	 ICE/IDC and Warga: bond-level spreads Compustat 		0	5,000 bonds & 10,000 (1982-2010)) firms

Motivat	ion	Model	Results	Mechanism	Evidence
	Microdata:				
	 IBES: firm 	n-level estimat	tes of earning forecasts	s)	
	 ICE/IDC a 	and Warga: bo	ond-level spreads	5,000 bonds 8	10,000 firms
	 Compusta 	at) ₍₁₉₈₂₋₂₀₁₀₎	

More direct support for our mechanism:

- · Predictability results hold at the firm-level
 - Quarter-ahead forecast revisions are strongly and economically related to spreads and investment over long horizons

Motivat	ion	Model	Results	Mechanism	Evidence
	Microdata:	- I			
		and Warga: b	tes of earning forecasts ond-level spreads	5,000 bonds & 10,0 (1982-2010)	000 firms

More direct support for our mechanism:

- · Predictability results hold at the firm-level
 - Quarter-ahead forecast revisions are strongly and economically related to spreads and investment over long horizons
- ... also holds with "shocks" to revisions that are unrelated to realized macroeconomic and firm fundamentals

Motivat	ion Model	Results	Mechanism	Evidence
		stimates of earning forecast ga: bond-level spreads	ts)0 firms

More direct support for our mechanism:

- · Predictability results hold at the firm-level
 - Quarter-ahead forecast revisions are strongly and economically related to spreads and investment over long horizons
- ... also holds with "shocks" to revisions that are unrelated to realized macroeconomic and firm fundamentals

⇒ Imperfect information in credit markets is a quantitatively important source of macroeconomic fragility.