The Information-Driven Financial Accelerator

Antonio Falato Jasmine Xiao
Federal Reserve Board University of Notre Dame

January 2021

Econometric Society North American Winter Meetings

Disclaimer: The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System.
Empirically, it is well-known that credit spreads are large, volatile and countercyclical (Gilchrist and Zakrajsek, 2012; Greenwood and Hanson, 2013)

What are the sources of credit market and macroeconomic fragility?

Existing theories have focused on frictions in financial intermediation (Gertler and Kiyotaki, 2010; He and Krishnamurthy, 2013) and behavioral biases (Bordalo et al. 2018)
• Empirically, it is well-known that credit spreads are large, volatile and countercyclical (Gilchrist and Zakrajsek, 2012; Greenwood and Hanson, 2013)

• What are the sources of credit market and macroeconomic fragility?

• Existing theories have focused on frictions in financial intermediation (Gertler and Kiyotaki, 2010; He and Krishnamurthy, 2013) and behavioral biases (Bordalo et al. 2018)

• This paper shows that imperfect information in credit markets is a strong force behind credit cycles.
 – Debt investors are uninformed about firms’ creditworthiness
 – Update beliefs using publicly-available forecasts of profit outlook
• Empirically, it is well-known that credit spreads are large, volatile and countercyclical (Gilchrist and Zakrajsek, 2012; Greenwood and Hanson, 2013)

• What are the sources of credit market and macroeconomic fragility?

• Existing theories have focused on frictions in financial intermediation (Gertler and Kiyotaki, 2010; He and Krishnamurthy, 2013) and behavioral biases (Bordalo et al. 2018)

• This paper shows that imperfect information in credit markets is a strong force behind credit cycles.
 – Debt investors are uninformed about firms’ creditworthiness
 – Update beliefs using publicly-available forecasts of profit outlook

 Bond prices move in response to the arrival of noisy information, not just to changes in fundamentals.

• Policies that help to anchor investors’ expectations could have substantial financial stability benefits.
New Fact
Changes in professional forecasters’ expectations of quarter-ahead corporate profit

\[\text{rev}_t = E_t [\pi_{t+1}] - E_{t-1} [\pi_{t+1}] \]

jointly predict:

- excess corporate bond returns
- macroeconomic aggregates

\[\Rightarrow \text{at long horizons} \]
New Fact
Changes in professional forecasters’ expectations of quarter-ahead corporate profit

\[\text{rev}_t = \mathbb{E}_t[\pi_{t+1}] - \mathbb{E}_{t-1}[\pi_{t+1}] \]

jointly predict:

- excess corporate bond returns
- macroeconomic aggregates

\[R_{t \to t+k} = \alpha + \beta \text{rev}_t + \gamma \text{controls}_t + u_{t+k} \]

The combined effect of ↓ rev\text{t} and ↑ σ\text{t} during 2007 financial crisis:

- spreads ↑ 80 basis points
New Fact
Changes in professional forecasters’ expectations of quarter-ahead corporate profit

\[\text{rev}_t = E_t[\pi_{t+1}] - E_{t-1}[\pi_{t+1}] \]

jointly predict:
- excess corporate bond returns
- macroeconomic aggregates

\[
\begin{align*}
R_{t \rightarrow t+k} &= \alpha + \beta_{\text{rev}_t} + \gamma_{\text{controls}_t} + u_{t+k} \\
\sigma_t
\end{align*}
\]

\[
\begin{align*}
y_{t \rightarrow t+k} &= \alpha + \beta_{\hat{R}_{t \rightarrow t+k}} + \gamma_{\text{controls}_t} + u_{t+k} \\
\end{align*}
\]

The combined effect of \(\downarrow \text{rev}_t \) and \(\uparrow \sigma_t \) during 2007 financial crisis:
- spreads \(\uparrow \) 80 basis points
- investment \(\downarrow \) 1 percentage point and GDP \(\downarrow \) 40 basis points
Dynamic Model with Financing and Investment

Costly debt financing

- default risk

Model-based counterfactual for 2007 financial crisis:

- 1/2 of increase in spread
- 1/5 of contraction in aggregate investment

\[q_t(z_t) \]

Imperfect information \[\Rightarrow \] Amplification

- investors do not observe firm's state \[z_t = \rho z_t - 1 + \varepsilon z_t \]
- learn from a noisy public signal \[s_t = \varepsilon z_t + u_t \] using a Kalman filter

\[q_t(s_t, s_t-1, ..., s_0) \]
Motivation Model Results Mechanism Evidence

Dynamic Model with Financing and Investment

Costly debt financing + Imperfect information

- default risk
- investors do not observe firm's state
 \[Z_t = \rho_z Z_{t-1} + \epsilon_t^Z \]
- learn from a noisy public signal
 \[s_t = \epsilon_t^Z + u_t \]

using a Kalman filter
Dynamic Model with Financing and Investment

Costly debt financing + Imperfect information

- default risk
- investors do not observe firm’s state
 \[Z_t = \rho_z Z_{t-1} + \epsilon^Z_t \]
- learn from a noisy public signal
 \[S_t = \epsilon^Z_t + U_t \]
 using a Kalman filter
 \[q_t(S_t, S_{t-1}, ..., S_0) \]
Dynamic Model with Financing and Investment

Costly debt financing + Imperfect information \Rightarrow Amplification

- **default risk** $q_t(z_t)$
- investors do not observe firm's state

 \[z_t = \rho z z_{t-1} + \varepsilon_t \]

- learn from a noisy public signal

 \[s_t = \varepsilon_t^Z + u_t \]

 using a Kalman filter

 \[q_t(s_t, s_{t-1}, ..., s_0) \]

Model-based counterfactual for 2007 financial crisis:

- 1/2 of increase in spread
- 1/5 of contraction in aggregate investment from noisy signals
Imperfect information model matches the **size** and **cyclical variation** of credit spreads.
Information uncertainty:

1. higher mean spread

Antonio Falato & Jasmine Xiao The Information-Driven Financial Accelerator 5/6
Information uncertainty:

1. higher mean spread
2. countercyclical defaults and spreads

Only financial frictions

- default probability p increasing in b'
- lending schedule $r_b(p)$ increasing in b'
- recession $\downarrow \rightarrow$ deleveraging $\rightarrow r_b \downarrow \quad b' \downarrow$
 (first-order effect)
Information uncertainty:

1. higher mean spread
2. countercyclical defaults and spreads

Motivation Model Results Mechanism Evidence

- Only financial frictions
 - default probability p increasing in b'
 - lending schedule $r_b(p)$ increasing in b'
 - recession $\downarrow \rightarrow$ deleveraging $\rightarrow r_b \downarrow$ $b' \downarrow$
 (first-order effect)

- Financial frictions + information frictions
 - lending schedule shifts to the left due to:
 (i) bad signal (s_L), (ii) noisy signal (σ_u \uparrow)
 in recession $\rightarrow r_b$ \uparrow $&$ b' \downarrow
Microdata:

- IBES: firm-level estimates of earning forecasts
- ICE/IDC and Warga: bond-level spreads
- Compustat

5,000 bonds & 10,000 firms (1982-2010)
Motivation Model Results Mechanism Evidence

Microdata:

- IBES: firm-level estimates of earning forecasts
- ICE/IDC and Warga: bond-level spreads
- Compustat

\[\begin{align*}
5,000 \text{ bonds} & \quad 10,000 \text{ firms} \\
(1982-2010)
\end{align*} \]

More direct support for our mechanism:

- Predictability results hold at the firm-level
 - *Quarter-ahead* forecast revisions are strongly and economically related to spreads and investment over long horizons
Motivation Model Results Mechanism Evidence

Microdata:

- IBES: firm-level estimates of earning forecasts
- ICE/IDC and Warga: bond-level spreads
- Compustat

\[\{ \text{5,000 bonds} & \text{10,000 firms} \} \]

(1982-2010)

More direct support for our mechanism:

- Predictability results hold at the firm-level
 - Quarter-ahead forecast revisions are strongly and economically related to spreads and investment over long horizons

- ... also holds with “shocks” to revisions that are unrelated to realized macroeconomic and firm fundamentals
Microdata:

- IBES: firm-level estimates of earning forecasts
- ICE/IDC and Warga: bond-level spreads
- Compustat

\[
\begin{align*}
\text{5,000 bonds & 10,000 firms} \\
(1982-2010)
\end{align*}
\]

More direct support for our mechanism:

- Predictability results hold at the firm-level
 - Quarter-ahead forecast revisions are strongly and economically related to spreads and investment over long horizons

- ... also holds with “shocks” to revisions that are unrelated to realized macroeconomic and firm fundamentals

\[\implies\text{Imperfect information in credit markets is a quantitatively important source of macroeconomic fragility.}\]