Monetary Policy with Endogenous Money Supply S. Cem Karaman St. Louis

Motivation:

economy.

• We observe that asset prices are correlated to money supply.

• Asset prices and general price level do not follow the same path which requires a dual price system, general price level and asset prices.

• Asset prices, borrowing and debt stock are closely related in an

Existing Literature

- agents into borrowers and lenders. We think it is not necessary.
- low-money-growth equilibrium imply higher welfare.
- characterístics of real balances.

• Eggertsson and Krugman (2012) blame the representative agent model for not accounting for the role of debt in New Keynesian models. They divide

• Palivos, Wang, and Zhang (1993) use a modified cash in advance (CIA) model to show high-money-growth equilibrium imply lower welfare and

• Salyer (1991) analyzes the timing of the markets and how it influences the

- A representative agent model
- A modified Cash-in Advance (CIA) model.
- In a CIA model, "money" is in the form of cash only, where in our model bank deposits are money as well.
- períod t. $D_t^s = D_{t-1}^s + D_{t-1}$. In real terms:

$$d_t^s = \frac{1}{1 + \pi_t} (d_{t-1}^s + d_{t-1})$$

Mode

• Consequently, more borrowing (loans) implies more money in the economy. D_t^s is the debt stock of an agent at time t, D_t is period borrowing (or saving if negative) at

- level $(\tilde{P}_t), A_t = P_t \tilde{P}_t q_t \& A_t^s = P_t \tilde{P}_t q_t^s$
- In quantity, $q_t^s = \phi q_{t-1}^s + q_{t-1}$ where ϕ is period asset depreciation and in real terms $a_t^s = (1 + \tilde{\pi}_t) (\phi a_{t-1}^s + a_{t-1})$ where $\tilde{P}_t / \tilde{P}_{t-1} = 1 + \tilde{\pi}_t, a_t = A_t / P_t, a_t^s = A_t^s / P_t$
- condition is $a_t = s$, demand equals supply

Assets

 Households have the opportunity to build up wealth in the form of assets which have no returns other than their nominal appreciation, or depreciation. A_t^s is the nominal value of an agent's asset stock at period t, A_t is how much assets is purchased at period t.

• The nominal value of assets is determined from the quantity of assets purchased by multiplying the quantity of assets (q_t) by the general price level (P_t) and the asset price

• Asset supply is constant at "s" every period. Therefore, asset market equilibrium

The Budget Constraint

- $P_t c_t + E_t \{P_{t+1}\} E_t \{\tilde{P}_{t+1}\} q_{t+1}^s + i_{t-1} D_t^s \le P_t y_t + P_t \tau_t + P_t \tilde{P}_t \phi q_t^s + D_t$
- Households have a constant stream of real income, y_t . They can borrow funds, D_t every períod.
- next period, unless they are saving (a negative D_t)
- choice variable, a_t , is in real terms.

(saving if $D_t < 0$). They receive an extra income of τ_t from production of new assets

· Households pay the interest cost on their debt stock but they carry the balance to the

• Households decide how many assets to purchase that determines their asset stock. The

• For solving our model we will assume naive expectations, $E_t\{P_{t+1}\} = P_t$ and $E_t\{\tilde{P}_{t+1}\} = \tilde{P}_t$

Monetary Policy, Assets

The central bank determines the interest rate *i_t* that affects the debt burden in households' budget. Higher interest rate means less money to spend on consumption and assets, low interest rate means more money to spend on consumption and assets.

• Although assets do not have a return, their significance will be allowing agents to borrow more, which will be explained later.

Constraint on Purchases

• Similar to a CIA model, money is required to purchase consumption goods and assets. But the definition of money is extended to include money created by bank loans. We use the following "money-in-advance" constraint:

• $P_t(c_t + a_t) \leq D_t^s$

• As people borrow more, D_t^s increases which allows for more purchases. As people save more, D_t^s decreases which restricts people's purchases.

• For the sake of simplicity we ignored government printed money

Timing of the Markets

 Unlike a CIA model, how much money to hold is not a choice variable in this model. It is accumulated debt accrued from prior borrowing decisions.

Optimization

• Maximize the Lagrangian w.r.t. c_t , a_t , d_t . Part of the function is as follows: $u(c_t) + \lambda_t \left| y_t + \phi a_t^s + \tau_t + d_t - c_t - \frac{1}{1 + \tilde{\pi}_{t+1}} a_{t+1}^s - i_{t-1} d_t^s \right|$ $+\lambda_{t+1}\beta \quad y_{t+1} + \phi a_{t+1}^s + \tau_{t+1} + \phi a_{t+1}^s + \eta a_{t+1}^$ $+\mu_t(d_t^s - c_t - a_t)$ $+\mu_{t+1}\beta(d_{t+1}^s - c_{t+1})$

$$d_{t+1} - c_{t+1} - \frac{1}{1 + \tilde{\pi}_{t+2}} a_{t+2}^s - i_t d_{t+1}^s$$

$$+1 - a_{t+1})$$

 $\lambda_{t+1} = \frac{u'(c_t)}{\beta \phi (1 + \tilde{\pi}_{t+1})}$ • Euler eqn: $\frac{u'(c_{t-1})}{\beta\phi(1+\tilde{\pi}_t)} - \frac{u'(c_t)}{\phi(1+\tilde{\pi}_{t+1})} \frac{1+i_t}{1+\pi_{t+1}} + \frac{\beta u'(c_{t+1})}{1+\pi_{t+1}} = 0$

Lambda and Euler Equation

Market Clearing

• To close the money market, we have a borrowing limit: $d_t = a_t^s - d_t^s$ • The borrowing limit is the net worth of households, the difference between their asset stock and debt stock. We assume that banks lend, as long as net worth is positive. More debt than assets imply a negative d_t , savings!

• Asset market eq-m condition: $a_t = s_t$ where a_t is asset demand, s_t is asset supply. s_t is exogenous, a_t is determined in the model. Asset prices make sure that demand equals supply

• At the beginning of the period, households learn about their endowments, y_t , asset supply, s_t , interest rate, i_t

• Then they decide how much to borrow, d_t , how much assets to demand, a_t , and how much to consume, c_t .

 Debt and asset stock flow equations determine the stock the Euler equation and the two constraints close the model

Dynamics

variables. The money market and asset market clearing equations,

•
$$a = \left(\frac{1}{1+\tilde{\pi}} - \phi\right) a^{s}$$

• $d = \pi d^{s}$
• $a = y + \tau + d - c - id^{s}$
• $d = a^{s} - d^{s}$
• $c + a = d^{s}$
• $a = s$

Steady States

 These equations produce the following two equations that determine the general price inflation, π_t , and asset price inflation, $\tilde{\pi}_t$

$$1 + \pi = \beta(1 + i) - \beta^2 \phi(1 + \tilde{\pi})$$

$$1 + \tilde{\pi} = \frac{(1 + \pi)(y + s)}{s(1 + i - \pi) + \phi(1 + \pi)(y + s)}$$

Results

• $a = (\frac{1}{1 + \tilde{\pi}} - \phi)a^s > 0$ as long as real value of asset stock is decreasing, $\phi(1 + \tilde{\pi}) < 1$

• We assumed asset stock, a^s , has a steady state too. This requires buying assets to keep asset stock steady when assets are losing value.

Results, Monetary Policy

• $\frac{\partial \tilde{\pi}}{\partial i} > 0$ when $\phi(1 + \tilde{\pi}) < 1$, as long as there is a demand for assets, a > 0, an expansionary monetary policy lowers steady state asset price inflation.

• $\frac{\partial \pi}{\partial i} > 0$, regardless of asset demand, an expansionary monetary policy lowers steady state general price inflation too.

Results, Debt

• In the special case of s = 0,

• $\frac{\partial d^s}{\partial i} = \frac{-y(1 - \frac{\partial \pi}{\partial i})}{(1 + i - \pi)^2} < 0$ which is an expected result, an expansionary monetary policy will increase money stock in the economy.

Balance Sheet Recessions

- which forced households to save.

• For the special case s = 0, and for the general case $\pi < 0$. Through $d = \pi d^s$ this implies a negative borrowing, or saving for households.

• Borrowers save as much as the difference between the value of their assets and debt, $d = a^s - d^s$. This is similar to what happened in Japan and US after the collapse of their housing markets.

• After a collapse in asset prices, debt stock exceeded asset stock

Conclusion

- Adding a second price system to a model where money is needed to of monetary policy on inflation, and asset price inflation.
- A sudden drop in asset prices induces households to save rather than borrow.
- A low interest rate policy is intended to increase asset prices. But as long as

purchase not only goods, but assets too is necessary to analyze the effects

the real value of asset stock is steady, this will lead to negative inflation rates and household saving instead of borrowing, as it is the case for Japan.

Further Research

 This model assumes debt stock and asset stock are steady, model.

 Analyzing the dynamics of the model rather than the steady state of the model is necessary.

 $d_t^s = d^s \forall t \text{ and } a_t^s = a^s \forall t$, which is a significant restriction on the

References

- Journal of Economics, 127(3):1469-1513.
- 36(4):781-814.
- Koo, R. C. et al., 2015. Escape from Balance Sheet Recession and the QE Trap. Wiley Online Library.
- Macroeconomics, 15(2), pp.225-248.

• Eggertsson, G. B. and P. Krugman, 2012. Debt, deleveraging, and the liquidity trap: A fisher-minsky-koo approach. The Quarterly

• Gambacorta, L. and D. Marques-Ibanez, 2011. The bank lending channel: lessons from the crisis. Economic Policy, 26(66):135-182. • Kapeller, J. and B. Schu'tz, 2014. Debt, boom, bust: a theory of minsky-veblen cycles. Journal of Post Keynesian Economics,

• Keen, S., 2009. Household debt: the final stage in an artificially extended ponzi bubble. Australian Economic Review, 42(3):347-357

• Lucas Jr, R. E., 982. Interest rates and currency prices in a two-country world. Journal of Monetary Economics, 10(3):335-359.

• Palivos, T., Wang, P. and Zhang, J., 1993. Velocity of money in a modified cash-in-advance economy: theory and evidence. Journal of

• Salyer, K. D., 1991. The timing of markets and monetary transfers in cash-in-advance economies. Economic Inquiry, 29(4):762-773. • Svensson, L. E., 1985. Money and asset prices in a cash-in-advance economy. Journal of Political Economy, 93(5):919-944.

