PRESENT BIAS, ASSET ALLOCATION AND THE YIELD CURVE

Jorgo T.G. Goossens* and Bas J.M. Werker*

*Tilburg University

AFA 2021

BOND PREMIUM PUZZLE

Definition: For reasonable risk aversion levels, standard representative agent general equilibrium models cannot match the sign, magnitude and variability of excess long-term bond returns (as found in the data) nor produce an average upward-sloping term structure of interest rates (Backus et al., 1989; Campbell and Shiller, 1991; Bansal and Coleman, 1996; Rudebusch and Swanson, 2008)

What we know:

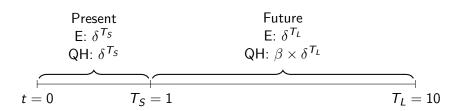
- Need high risk aversion (Piazzesi and Schneider, 2007; Van Binsbergen et al., 2012; Bansal and Shaliastovich, 2013), or need multiple mechanisms (Gomez-Cram and Yaron, 2020), or explain short-term (Wachter, 2006)
- ► What we don't know: Can only present bias explain key features of bond behavior up to long maturities with reasonable risk aversion?

3 KEY FINDINGS

- Asset allocation Present-biased investors increase (decrease) short-term (long-term) hedge demands compared to standard preferences
- (2) **Bond premium puzzle** Present bias drives up (down) short-term bond prices (yields) and drives down (up) long-term bond prices (yields)
- (3) **Duration present** Bond behavior is best explained for a present-bias interval of at most 1 year
 - ⇒ Estimate investor's duration of the present (Benartzi and Thaler, 1995)

Present bias

- Important feature of how people evaluate time (Thaler, 1981;
 Frederick et al., 2002; O'Donoghue and Rabin, 2015)
 ⇒ Extensively used outside finance, but in finance so far little attention (Barberis, 2018)
- Quasi-hyperbolic discounting captures present bias (Laibson, 1997; O'Donoghue and Rabin, 1999)



Intertemporal consumption problem

- 2-factor affine term structure model
- Price-taking representative agent solves, with $\gamma = 10$,

$$\max_{W_{t,T_j,\ j=1,\ldots,n}} \mathbb{E}_t \left[\sum_{j=1,t \leq T_j}^n D(T_j - t) \frac{W_{t,T_j}^{1-\gamma}}{1-\gamma} \right]$$

such that

$$\mathbb{E}_t \left| \sum_{j=1, t \leq T_j}^n W_{t, T_j} M_{T_j} \right| = W_t M_t$$

Solution: Optimal investment demand for asset *i*

$$\omega_{i,t}^* = \frac{\sum_{j,j>t}^n \pi_{i,t,T_j}^* W_{t,T_j}^*}{\sum_{j,j>t}^n W_{t,T_j}^*}$$

where π_{i,t,T_i}^* follows from Brennan and Xia (2002) and W_{t,T_i}^* is the optimal distribution of wealth.

ASSET ALLOCATION

	3-year bond	10-year bond	Stock	Cash	
Panel A: Present-biased investor ($\beta=0.35, \delta=0.97$)					
Hedge demand	0.48	0.04			
Speculative demand	2.44	-0.63	0.27		
Total demand	2.92	-0.59	0.27	-1.61	
Panel B: Time-consistent investor ($\beta=1,\delta=0.97$)					
Hedge demand	0.39	0.21			
Speculative demand	2.44	-0.63	0.27		
Total demand	2.83	-0.42	0.27	-1.68	

TABLE: Optimal fraction of total wealth invested in a 3-year bond, a 10-year bond, a stock and cash.

SUPPLY AND DEMAND

- Definition: The market is in equilibrium if:
 - 1. The representative investor solves the intertemporal consumption problem.
 - 2. Bond markets clear continuously, such that for all $t \in [0, T]$ we have

$$\omega_{B,t}^* = \hat{w}_{B,t}$$

where $\omega_{B,t}^*$ is the bond demand and $\hat{w}_{B,t}$ is the bond supply, given by monthly U.S. government debt data from October 1976 to January 2019.

Match bond supply with demand by solving for the two prices-of-risk λ_F each year

1. Bond returns in excess of the short rate

	Data	Time consistency	Present bias	
		$(\beta=1,\delta=0.97)$	$(\beta = 0.35, \delta = 0.97)$	
3-year bond				
Mean	1.90	1.06	1.59	
Sharpe	0.48	0.27	0.41	
10-year bond				
Mean	4.10	2.79	4.45	
Sharpe	0.38	0.26	0.42	
Stock				
Mean	7.27	7.01	7.48	
Sharpe	0.48	0.46	0.49	

TABLE: Mean returns $r_B(\tau_j) = -(B(\tau_j)\iota)'\sigma_F \hat{\lambda}_F$ and Sharpe ratios (annual values).

2. Slope yield curve

Maturity <i>n</i>	Data	Time consistency $(\beta = 1, \delta = 0.97)$	Present bias $(\beta = 0.35, \delta = 0.97)$
5 years			
Mean	1.33	0.61	1.03
Standard deviation	0.97	0.96	0.97
10 years			
Mean	1.78	1.04	1.88
Standard deviation	1.22	1.28	1.30

TABLE: Mean and standard deviation of the yield spread. The yield spread is the difference in yields between the long-term n-year bond and the 3-month bond: $y_t(n)-y_t(3 \text{ month})$, where yields follow from the vector: $\mathbf{Y}_t(\tau) \equiv -\ln \mathbf{P}_t(\tau)/\tau = -A(\tau)/\tau + \iota' \mathbf{B}(\tau) \mathbf{F}_t/\tau$.

3. Risk premia and 4. Predictability

- ▶ 3. The **bond risk premium**, or term premium, equals: $y_t(n) \tilde{y}_t(n)$, where $\tilde{y}_t(n)$ is the risk-neutral yield $(\hat{\lambda}_F = \mathbf{0})$ \Rightarrow Present-biased model closer to the data than time-consistent model
- ▶ 4. "Long-rate" regressions (Campbell and Shiller, 1991)
 ⇒ Present-biased model closer to the data than time-consistent model

DURATION OF THE PRESENT: EXCESS BOND RETURNS

		Duration present					
	Data	3 months $(\beta = 0.7, \delta = 0.97)$	1 year $(eta=0.35, \delta=0.97)$	3 years $(\beta = 0.05, \delta = 0.97)$			
3-year bond							
Mean	1.90	1.66	1.59	1.05			
Sharpe	0.48	0.42	0.41	0.27			
10-year bond							
Mean	4.10	4.39	4.45	3.11			
Sharpe	0.38	0.41	0.42	0.29			
Stock							
Mean	7.27	7.50	7.48	7.05			
Sharpe	0.48	0.49	0.49	0.46			

Conclusions

- (1) We explain the bond-premium puzzle in a general equilibrium model by introducing present bias, in line with the experimental literature
- (2) Present-biased investors overvalue the present and, therefore, care less about hedging opportunities for the long run ⇒ Drives up (down) short-term bond prices (yields) and drives down (up) long-term bond prices (yields) compared to standard preferences
- (3) Bond behavior is best explained for a present-bias interval of at most 1 year
 - ⇒ Excess bond returns, slope yield curve, bond risk premia, predictability

TILBURG UNIVERSITY GOOSSENS, WERKER 12

References I

- Backus, D., A. Gregory, and S. Zin (1989). "Risk Premiums in the Term Structure: Evidence from Artificial Economies". In: *Journal of Monetary Economics* 24, pp. 371–399.
- Bansal, R. and W. Coleman (1996). "A Monetary Explanation of the Equity Premium, Term Premium, and Risk-Free Rate Puzzles". In: *Journal of Political Economy* 104.6, pp. 1135–1171.
- Bansal, R. and I. Shaliastovich (2013). "A Long-Run Risks Explanation of Predictability Puzzles in Bond and Currency Markets". In: *Review of Financial Studies* 26.1, pp. 1–33.
- Barberis, N. (2018). "Psychology-Based Models of Asset Prices and Trading Volume". In: *Handbook of Behavioral Economics Foundations and Applications 1*. Ed. by S. DellaVigna D. Bernheim and D. Laibson. North Holland, pp. 79–175.
 - Benartzi, S. and R. Thaler (1995). "Myopic Loss Aversion and the Equity Premium Puzzle". In: *The Quarterly Journal of Economics* 110.1, pp. 73–92.

References II

- Brennan, M.J. and Y. Xia (2002). "Dynamic Asset Allocation under Inflation". In: *Journal of Finance* 57.3, pp. 1201–1238.
- Campbell, J. and R. Shiller (1991). "Yield Spreads and Interest Rate Movement: A Bird's Eye View". In: *Review of Economic Studies* 58, pp. 495–514.
- Frederick, S., G. Loewenstein, and T. O'Donoghue (2002). "Time Discounting and Time Preference: A Critical Review". In: *Journal of Economic Literature* 40, pp. 351–401.
- Gomez-Cram, R. and A. Yaron (2020). "How Important Are Inflation Expectations for the Nominal Yield Curve?" In: *Review of Financial Studies* 00, pp. 1–61.
 - Laibson, D. (1997). "Golden Eggs and Hyperbolic Discounting". In: *Quarterly Journal of Economics* 112.2, pp. 443–477.
 - O'Donoghue, T. and M. Rabin (1999). "Doing It Now or Later". In: *American Economic Review* 98.1, pp. 103–124.
- (2015). "Present Bias: Lessons Learned and To Be Learned". In: American Economic Review 105.5, pp. 273–279.

References III

- Piazzesi, M. and M. Schneider (2007). "Equilibrium Yield Curves". In: NBER Macroeconomics Annual 2006. Ed. by K. Rogoff D. Acemoglu and M. Woodford. Cambridge, MA: MIT Press, pp. 389–472.
- Rudebusch, G. and E. Swanson (2008). "Examining the bond premium puzzle with a DSGE mode". In: *Journal of Monetary Economics* 55, S111–S126.
- Thaler, R. (1981). "Some empirical evidence on dynamic inconsistency". In: *Economics Letters* 8.3, pp. 201–207.
- Van Binsbergen, J., J. Fernández-Villaverde, R. Koijen, and J. Rubio-Ramiíez (2012). "The termstructure of interest rates in a DSGE model with recursive preferences". In: *Journal of Monetary Economics* 59, pp. 634–648.
 - Wachter, J. (2006). "A consumption-based model of the term structure of interest rates". In: *Journal of Financial Economics* 79, pp. 365–399.